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TOPOLOGICAL UNIQUENESS OF NEGATIVELY
CURVED SURFACES

HSUNGROW CHAN

Abstract. In this paper we consider complete, noncompact, negatively curved

surfaces that are twice continuously differentiably embedded in Euclidean three-

space, showing that if such surfaces have square integrable second fundamental

form, then their topology must, by the index method, be an annulus. We then

show how this relates to some minimal surface theorems and has a corollary

on minimal surfaces with finite total curvature. In addition, we discuss, by

the index method, the relation between the topology and asymptotic curves.

Finally, we apply the results yielded to the problem of isometrical immersions

into Euclidean three-space of black hole models.

§1. Introduction

Geometers have been studying minimal surfaces for many years. Their
studies have extended in many different directions. Here, we generalize
according to classical surface theory. We examine which minimal surface
theorems with finite total curvature (

∫
|K| < ∞) continue to hold true if

the vanishing mean curvature H ≡ 0 is changed to
∫

H2 < ∞. Because the
Gauss curvature K of minimal surfaces is nonpositive, the generalization
will keep the curvature nonpositive. Let |B| be the length of the second
fundamental form, |B|2 = 4|H|2 − 2K. Minimal surfaces with finite total
curvature belong to the subset of nonpositively curved surfaces with square
integrable second fundamental form

∫
|B|2 < ∞. Thus, under different topo-

logical assumptions, we have several results which generalize the Bernstein’s
minimal graph theorem; an entire minimal graph in R3 must be a plane.
For example, we showed that if M is a complete, simply connected, nonpos-
itively curved surface embedded in R3 with

∫
|B|2 < ∞, then it must be a

plane [3]. As another example, we proved that if M is a complete one-ended,
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nonpositively curved surface immersed in R3 with the end embedded near
infinity and

∫
|B|2 < ∞, then it must lie between two parallel planes [4].

In this paper we constrain the Gauss curvature from nonpositivity to neg-
ativity and consider the condition of χ(M) ≤ 0. From the above examples,
a negatively curved surface in R3 with

∫
|B|2 < ∞ and χ(M) = 1 cannot

exist, nor can a negatively curved surface in R3 with one embedded end and∫
|B|2 < ∞. The main theorem of this paper is as follows.

Theorem 1. If M is a complete negatively curved surface C2 isometri-
cally embedded in R3 with

∫
|B|2 < ∞, then χ(M) = 0.

To a degree, Theorem 1 relates to some minimal surface theorems and a
minimal surface conjecture with finite total curvature.

Theorem 2 (Schoen [11]). A properly embedded minimal surface with∫
|K| < ∞ and two embedded ends must be a catenoid.

Theorem 3 (Lopez and Ros [8]). The plane and the catenoid are the only
embedded, complete, minimal surfaces in R3 with

∫
|K| < ∞ and genus zero

in R3.

Conjecture 4 (Meeks and Perez, see [5]). A complete, embedded, min-
imal surface in R3 with negative curvature must be a catenoid, a helicoid,
or a scherk 1- or 2-periodic surface in particular; there exist no minimal
examples of complete, embedded, negatively curved surfaces with a negative
Euler characteristic in R3.

The main object of Theorems 2 and 3 and Conjecture 4 is to show the
uniqueness of the catenoid among the minimal surfaces with finite total
curvature. The Gauss curvature of a catenoid is negative. It is thus natural
to focus on the negatively curved surfaces with

∫
H2 < ∞ and

∫
|K| <

∞. When H ≡ 0 is changed to
∫

H2 < ∞, the uniqueness of the catenoid
in minimal surfaces with finite total curvature is changed to topological
uniqueness (χ(M) = 0) in negatively curved surfaces with

∫
|B|2 < ∞. We

can show the following as an application of Theorem 1.

Conjecture 5. The only complete embedded minimal surface with finite
total curvature and without umbilic points are the plane and the catenoid.

The remainder of this paper is organized as follows. In Section 2 we
discuss the index method and give several examples of its application. The
proof of Theorem 1 is given in Section 3, and in Section 4 we apply the index
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method to the orthogonal projections of the asymptotic curves. Finally, in
Section 5 we apply Theorem 1 to the problem of isometrical immersions
into Euclidean three-space of black hole models.

§2. Index method

In 1987, White [14] proved that if M is a complete, oriented, connected,
nonpositively curved surface C2-immersed in R3 with

∫
|B|2 < ∞, then the

Gauss map extends continuously to one point near infinity, and M is prop-
erly immersed near infinity. Thus, the complement of a big compact set of a
negatively curved embedded surface M in R3 with

∫
|B|2 < ∞ is a union of

a finite number of graph ends p1, . . . , pn. Let C be a continuous nonvanishing
line field on M . Let γ : I → M ⊂ R3 be a simple closed curve parameterized
by arc length s ∈ I looping around the graph end pi. Let T (s) = γ′(s) be
the unit tangent vector of γ. Then C is the continuous line field on M along
γ(s). Let α be the angle from the vectors T (s) to �C(s), where �C(s) is a
continuous vector field along γ representing C. Let Δα be the increment
of α(s) as γ is traversed once around in the positive sense. The index of a
graph end pi corresponding to the line field C is defined by

L(pi) = 1 ± Δα

π
.

Let (0,0,1) be the z-direction of the plane P for the graph end and the
north pole of the unit sphere. Define γ to be a clockwise loop corresponding
to (0,0,1). There are two cases for the images of a Gauss map. In case 1,
the image of γ is clockwise, and in case 2 it is counterclockwise correspond-
ing to (0,0,1). In case 1, define L(pi) = 1 − Δα/π, and in case 2, define
L(pi) = 1 + Δα/π. The index of a graph end corresponding to the line field
is independent of loops chosen.

There are four natural and well-defined line fields on a negatively curved
surface M in R3. Two are the principal directions, and the other two are
the asymptotic directions. Let A1 and A2 be the two families of asymptotic
lines on M . We define the index of Aj , j = 1,2, and denote Lj(pi) in a
manner analogous to defining indices of vector fields about singularities (or
zero). It is clear that L1(pi) = L2(pi). The index of an end is independent
of these four lines chosen.

Verner [13] found the following Poincare index formula for complete, non-
compact surfaces with K ≤ 0 and

∫
|K| < ∞ and used it to classify the
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number of possible horn and bowl ends for complete, connected, smoothly
embedded surfaces in R3.

Theorem 6 (Verner [13]). If M is a complete, noncompact, C2 negatively
curved surface with

∫
|K| < ∞, then

2χ(M) =
n∑

i=1

(
L(pi) − 1

)
,

where L(pi) is the index of the end Ui corresponding to an asymptotic line
field C.

Since the Gauss map extends continuously to one point near the infinity
of each graph end, we define a map from the line field of the end to the line
field of a neighborhood of a point on the sphere S2. This maps the infinity
of an end to a point of S2. We can then adapt the definition for elliptic,
parabolic, and hyperbolic sectors (Hartman [7, page 166]). Let nh be the
number of hyperbolic sectors, and let ne be the number of elliptic sectors
around a Jordan curve near infinity or the singularity. We apply Hartman’s
formula to compute the index of a vector field, so L(pi) = 1 + ne − nh. It
is clear that two definitions of L(pi) are consistent in the proof of Verner’s
theorem, and the index is independent of the homotopic regular, simple
closed curves looping around the end.

Example 1. The Gauss curvature of graph M1 = {(x, y,xy)} is negative,
and the projections of asymptotic lines to the xy-plane are {x = constant}
and {y = constant}. There are two elliptic sectors at infinity. The index of
this graph end, then, is L(p1) = 1+2 = 3. Let γ : I → M1 be a simple closed
circle. The increment of angle α as γ traversed is 2π. The Gauss image of
clockwise γ is counterclockwise, so

L(p1) = 1 +
2π
π

= 3.

By Theorem 6, we have 2χ(M1) = L(p1) − 1 = 2. Therefore, χ(M1) = 1.

Example 2. Let Mrev be a surface of revolution which is revolving a
graph of a convex function from R to R, in the xy-plane, about the x-axis.
The Gauss curvature, then, of Mrev is negative. There exists a shortest
closed geodesic curve γg in the throat part, and it divides the surface into
two ends: p1 and p2. The convexity and the circular symmetry force the
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asymptotic curves from one end to the other. Thus, there are no hyperbolic
and elliptic sectors for each end; that is, L(pi) = 1. The increment of angle
α as γ is traversed is 0. L(pi) = 1 + 0 = 1. By Theorem 6, we have

2χ(Mrev) =
(
L(p1) − 1

)
+

(
L(p2) − 1

)
= 0 + 0 = 0.

Therefore, χ(Mrev) = 0.

Example 3. An important example is Hadamard’s surface. A hyper-
boloid of one sheet Mhyp can be considered a solution described by the
equation x2 + y2 − z2 − 1 = 0 in R3, or a revolving hyperboloid by rotation
of the curve (x,0,

√
x2 + 1) about the x-axis. Mhyp is one kind of Mrev.

Its Gauss image does not converge to one point at infinity. It may also be
parameterized as a ruled surface on which

(1) Ψ(v, θ) = α(θ)+v((0,0,1)+α′(θ)) = (cosθ, sinθ,0)+v(− sinθ, cosθ,1),

where α(θ) is a circle on the xy-plane and α′(θ) is the tangent vector. By
replacing (0,0,1) − α′(θ), we obtain the same surfaces. This shows that a
revolving hyperboloid has two sets of mappings. The straight lines (0,0,1) ±
α′(θ) are the two families of asymptotic lines. Clearly, χ(Mhyp) = 0.

Example 4. Let U and V be two hyperboloids of one sheet as follows:

U : x2 + (y − 2)2 = z2 + 1,

V : x2 + (y + 2)2 = z2 + 1.

Hadamard [6] merged U and V to get the union surface M2
had. He smoothed

the edge and proved that the union was a negatively curved surface which
was homeomorphic to a two-points-punctured torus. Thus, χ(Mhad) = −2.

On the upper plane {y = 0}, the intersection curve {z2 − x2 = 3} of M2
had

is an opening, upward hyperbola. The straight asymptotic lines from two
surfaces meet along the intersection curve, and they form two hyperbolic
sectors from two sides for the upper end. Parts of the asymptotic lines come
from the lower end, meet the intersection curve, and bounce back to the
lower end. There is no elliptic sector for the end. Thus L(pi) = 1 − 2 = −1.
The increment of angle α as γ traversed is 2π. The Gauss image of clockwise
γ is clockwise, so

L(p1) = 1 − 2π
π

= −1.
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By Theorem 6, we have 2χ(M2
had) = (L(p1) − 1)+(L(p2) − 1) = −2 − 2 = −4.

Therefore, χ(M2
had) = −2. In general, for the union of n hyperboloids of one

sheet,
χ(Mn

had) = −2(n − 1).

In [2], we proved that Hadamard’s method cannot apply to merge two sur-
faces of revolution with their Gauss image converging to one point at each
infinity.

§3. Proof of Theorem 1

We will prove that the index of each graph end of M is 1. Then, by Theo-
rem 6, 2χ(M) =

∑n
i=1(L(pi) − 1) = 0, which finishes the proof of Theorem 1.

Let γ : I → M ⊂ R3 be a simple, closed curve parameterized by arc length
s ∈ I looping around the graph end pi. Let N (s) be the unit normal vector
to the surface at the point γ(s) ∈ M , and let b(s) = T (s) × N (s) be the unit
conormal of γ. By differentiating the vectors {T, b, N }, we have the Frenet
formula adapted to the surface:

⎧⎪⎨
⎪⎩

T ′ = kgb + knN ,

b′ = −kgT + τg N ,

N ′ = −knT − τgb,

where τg is the torsion of γ, kg is the geodesic curvature of γ, and kn is
the conormal curvature of γ. Let g be the Gauss map, and let k∗

g be the
geodesic curvature of the image g(γ(s)) on S2. Let ρ be the arc length
along the image g(γ(s)) on S2. Then dρ = ±

√
k2

n + τ2
g ds, where the sign of

dρ depends on orientations of γ(s) and g(γ(s)) in R3.
Since K < 0, N ′(s) 	= 0 at every point on γ, and N ′(s) is a continuous

nonvanishing vector field along γ. Let α(s) be the angle between T (s) and
N ′(s), and let Δα be the increments of α(s) along γ(s) going around once.
Since tanα(s) = τg/kn,

(2)
dα

ds
=

knτ ′
g − k′

nτg

k2
g + τ2

g

.

Along g(γ(s)),

(3) k∗
g =

|(N (s), N ′(s), N ′ ′(s))|
|N ′(s)|3 =

kg√
k2

n + τ2
g

+
knτ ′

n − k′
nτg

(k2
n + τ2

g )3/2
.



NEGATIVELY CURVED SURFACES 143

Then, multiplying by
√

k2
n + τ2

g and taking the line integral of (3) along
γ(s), we have∫

γ(s)
k∗

g

√
k2

n + τ2
g ds = ±

∫
g(γ(s))

k∗
g dρ =

∫
γ(s)

kg ds +
∫

γ(s)

knτ ′
g − k′

nτg

k2
n + τ2

g

ds.

By (2), the second integral is∫
γ(s)

knτ ′
g − k′

nτg

k2
n + τ2

g

ds =
∫

γ(s)
dα = Δα = ±π

(
L(pi) − 1

)
.

Thus, Verner proved the following lemma, which showed the relationship
between the geodesic curvatures and the index of an end.

Lemma 7 [12]. Let γ(s) be a closed C3-curve on a C3-surface M , which
loops around an end U and is parameterized by arc length. If N ′(s) 	= 0 at
every point on γ, then

±
∫

g(γ(s))
k∗

g dρ =
∫

γ(s)
kg ds ± π

(
L(pi) − 1

)
,

where the first sign of dρ depends on orientations of γ(s) and g(γ(s)) and
the second sign depends on the image of the Gauss map.

Now, we prove Theorem 1. By applying our theorem in [3], M is not
simply connected, so there is a shortest closed, geodesic curve γg surrounding
pi for each graph end. Let γi be a sequence of the level circles extending to
the infinity, which are homotopic to γg. Let Di be the region between γg

and γi. By the Gauss Bonnet theorem,
∫

Di

K dA +
∫

γi

kg +
∫

γg

kg = 2πχ(Di) = 0.

Then,
∫
γi

kg = −
∫
Di

K dA. Since the Gauss curvature is negative and the
Gauss map is one-to-one and surjective,

∫
γi

kg → 2π as i → ∞. On the Gauss
image of Mrev, we have∫

g(γi)
k∗

g dρ = −
∫

D∗
i

K dA∗ = − Area(D∗
i ),

where K = 1 for a unit sphere. When i → ∞,
∫
g(γi)

k∗
g → −2π. Then, by

Lemma 7, L(pi) = 1 and

χ(M) =
1
2

( n∑
i=1

(
L(pi) − 1

))
= 0.
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Therefore, there are exactly two ends for M , and its topology is unique.
This completes the proof.

§4. Orthogonal projection of the asymptotic curves

In this section, we use the index method on the orthogonal projections
of the asymptotic curves and get an inequality on the χ(M), where M is a
negatively curved surface. Brandt (see [10]) used the projection to show that
there is no smooth asymptotic loop beginning and ending at the isolated
parabolic point on a smooth surface with K ≤ 0. Now, we apply Brandt’s
method to the graph of functions on an xy-plane and give a proof of nonex-
istence of smooth asymptotic loop at infinity of a graph end.

Consider a graph of a function f(x, y) on a domain in R2 with K < 0.
Let Θi (i = 1,2) be the angle between the x-axis and the projection of the
ith asymptotic line on (x, y)-plane, which is determined up to a multiple of
π. Define the map Φ from (x, y)-plane to (x′, y′) by

Φ : (x, y) 
→ (fy, −fx).

Since K < 0, det(dΦ) < 0. Let Θ′
i be the angle between the x′-axis and the

image of the ith asymptotic line on the x′y′-plane.

Lemma 8. Θi = Θ′
i.

Proof. For a graph (x, y, f(x, y)), the first fundamental form is

ds2 = (1 + f2
x)dx2 + 2fxfy dxdy + (1 + f2

y )dy2,

and the second fundamental form is

II =
1√

1 + f2
x + f2

y

(fxx dx2 + 2fxy dxdy + fyydy2).

Let (a, b) be the asymptotic line; then

(a, b)
(

fxx fxy

fyx fyy

)(
a

b

)
= 0;

that is, fxxa2 + 2fxyab + fyyb
2 = 0. We are going to show that dΦ((a, b)) is

in the same direction as (a, b). Now (b, −a) · (a, b) = 0. Also

(b, −a) · dΦ
(
(a, b)

)
= (b, −a)

(
fyx fyy

−fxx −fxy

)(
a

b

)
= 0;
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that is, dΦ((a, b)) = c(a, b), where c is a nonzero function. Therefore, Θi =
Θ′

i, since K < 0. This completes the proof.

We can assume that a local domain of a C3 surface is given by a graph of
a function z(x, y) of class C3 in a certain circle x2 + y2 < a2. Assume that
the surface is with K ≤ 0 and each parabolic point p0 is isolated. Brandt
[10] defined an asymptotic loop as regular at a point p0, if its tangent tends
to a limiting position at p0 on each of the two ends of the loop, where p0

is an isolated parabolic point in the nonpositive curvature surface. Brandt
[10] proved that if U(p0) of p0 is of class C1 and if U(p0)\p0 is of class C2,
then in a sufficiently small neighborhood U ′ of p0, asymptotic loops regular
at p0 do not exist.

Now, by modifying Brandt’s proof, we can prove Lemma 10 using a sim-
ilar argument on the graph end and under similar definitions of regular
at infinity. Let U be a graph end homeomorphic to a punctured disk in
R3 such that the Gauss map g : U → S2 converges to one point at infin-
ity; that is, limx→p g(x) = q, q ∈ S2. We can arrange by rotation so that
limx→p g(x) = (0,0,1) = P . If there is no confusion, let P be the xy-plane
and the unit vector (0,0,1). Let Π : R3 → P be the orthogonal projection.
We consider the projection on P from one family of asymptotic curves.

Definition 9. We call an asymptotic line regular at infinity if the tangent
vector of the asymptotic line viewed in R3 has a limit as t → ∞. We call a
graph end U perfectly regular if the projections of asymptotic curves from
one family near infinity satisfy the following.

(1) Any asymptotic curve tending to infinity is regular at infinity.
(2) There is a coordinate system near the infinity on a punctured disk so

that the asymptotic lines field is given by a C1 vector field, which vanishes
at infinity.

Lemma 10. Let U be a C3 perfectly regular graph end in R3 with K < 0
and the Gauss map converging to one point at infinity. There is, then, no
elliptic sector of asymptotic lines in U that means asymptotic lines coming
from, and going back to, infinity.

Proof. Assume that there is an elliptic sector for a graph end. That is
to say, there is a γ ∈ A such that both ends of γ regularly go to infinity.
γ cannot intersect itself, so γ divides R2 into two parts. Let γ(s) go in a
fixed direction.
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Let Φ(γ) be the image of γ of the map Φ. Since the Gauss map converges
to one point at infinity, Φ(γ) is a closed loop beginning and ending at (0,0)
on the x′y′-plane.

For each q′ ∈ Φ(γ(s)), let O = (0,0), let φ′ be the angle from Ox′ to Oq′,
and let β′ be the angle from Oq′ to the tangent vector Φ(γ)′ |q. Let ΔΘ′,Δβ′,
and Δφ′ be the increments of the angle Θ′, β′, and φ′ after a single positive
circuit of Φ(γ). By smoothness of the asymptotic lines at infinity and the
property of the map Φ, we have

(4) ΔΘ′ = Δβ′ + Δφ′, Δβ′ = π, Δφ′ > 0.

For each q ∈ γ(s), let O = (0,0), let φ be the angle between Ox and Oq, and
let β be the angle between Oq and the vector γ′ |q. Let ΔΘ,Δβ, and Δφ be
the increments of the angle Θ, β, and φ after a single positive circuit of γ.
By smoothness of the loop γ at infinity, we have

(5) ΔΘ = Δβ + Δφ.

By Lemma 7 and (4), we have ΔΘ = ΔΘ′ > π.
Let N be the degree of the Gauss map of U . We consider the mapping

Ψ : (x′, y′) → (x′ ′, y′ ′) defined by

(6) x′ ′ + iy′ ′ = |N |
√

x′ + iy′,

where i =
√

−1. The composition of the mapping Ψ ◦ Φ gives a homeomor-
phism (x, y) → (x′ ′, y′ ′) of degree −1, so γ is mapped into a curve Ψ(Φ(γ))
traversed in the opposite direction.

On the (x′ ′, y′ ′)-planes, we introduce the angles to φ′ ′, β′ ′, and Θ′ ′, distin-
guishing them by two primes. The increments of these angles corresponding
to a positive circuit of γ are denoted by Δφ′ ′, . . . ,ΔΘ′ ′.

The mapping Ψ is conformal if (x′)2 + (y′)2 	= 0 and reduces the polar
angles to the vertex x′ = y′ = 0 by the factor |N |. Thus,

ΔΘ = ΔΘ′ = Δφ′ + Δβ′ = |N |Δβ′ ′ + Δφ′ ′,

Δφ′ ′ < 0, Δβ′ ′ = −π.

Then , −π > ΔΘ > π. This is a contradiction. This completes the proof.

Theorem 11. Suppose that M is a complete, connected, orientable C3

surface immersed in R3 with a finite number of perfectly regular graph ends,
and that K < 0 in R3. If the Gauss map converges to a point at infinity of
each end, then χ(M) ≤ 0.
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Proof. By Lemma 10, there is no elliptic sector. Then, for each end Ui,
along some Jordan curves looping around the end near infinity, we have

L(Ui) = 1 + ni
e − ni

h = 1 − ni
h,

where ei
h ≥ 0. Now, by Theorem 6, we have

2χ(M) =
∑(

L(Ui) − 1
)

=
∑

−ni
h ≤ 0.

This completes the proof.

Therefore, we can have the following nonexistence corollary.

Corollary 12. There is no class C3 graph (x, y, f(x, y)) over R2 with
K < 0 whose Gauss map converges to a point at infinity and whose end is
perfectly regular.

§5. Application

Theorem 1 may have applications to problems of visualization of two-
dimensional slices of solutions of the Einstein-Maxwell equation of gravi-
tation and electromagnetism in source-free space during momentarily sta-
tionary symmetry on general relativity ([9], [1], [2]). Those two-dimensional
slices can be considered as models of black holes. Any slice of the solutions
of the Einstein-Maxwell equations of gravitation and electromagnetism in
source-free space can be considered as a Cn-Riemannian surface (n ≥ 2)
M = (Ω, ds2), where Ω is a fundamental domain on the uv-plane R2 and

(7) ds2 = E du2 + 2F dudv + Gdv2

is the metric on Ω. The fundamental domain indicates the region over R2

and the topology. For example, the slice of the Schwarzschild solution is
MSch = (R2\{(0,0)}, ds2), where

(8) ds2 =
(
1 +

ms√
u2 + v2

)4
(du2 + dv2)

and ms > 0. The Schwarzschild surface MSch is a special case of the Brill-
Lindguist (BL) surfaces such that MSch = MBL

l=1. Let MBL
l = (R2\{(ui,

vi)|li=1}, ds2
l ), where

(9) ds2
l = φ4

l {du2 + dv2},
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with

(10) φl(u, v) := 1 +
i=l∑
i=1

mi√
(u − ui)2 + (v − vi)2

,

where l is a positive integer and mi > 0 is the mass. The topology is
χ(MBL

l ) = 1 − l.
Next, we define the Misner function as

(11) ϕ(u, v) :=
n=∞∑

n=− ∞

1√
cosh(u + 2μn) − cosv

,

where μ is a nonzero constant. ϕ(u, v) is a periodic function at u and v.
Now, we define the Misner surface with multiply connected topology.

Let T1 = R2/Λ be a torus with Λ = 2μZ ⊕ 2πZ as the rectangular lat-
tices. Let Ω1 = T1\{p1} = {(u, v) ∈ R2 | −μ ≤ u ≤ μ, −π ≤ v ≤ π}\{(0,0)}
be the fundamental domain of ϕ(u, v). Let MMis

1 = (Ω1, ds2) be a Misner
surface, where ds2 = a2ϕ4{du2 + dv2} and a is a nonzero constant. Then
MMis

1 is homeomorphic to a one-point-punctured torus. Let T2 = R2/Λ
and Λ = 4μZ ⊕ 2πZ be another torus. Let Ω2 = T2\{p1, p2} = {(u, v) ∈ R2 |
−μ ≤ u ≤ 3μ, −π ≤ v ≤ π}\{(0,0), (2μ,0)} be another fundamental domain
for ϕ(x, y). Then MMis

2 = (Ω2, ds2) is another abstract surface, and M2 is
homeomorphic to a two-points-punctured torus. In fact, MMis

2 is a double-
covering surface for MMis

1 . We can extend the same idea to the surfaces
MMis

l , l > 0. We may call MMis
l Misner surfaces, and the topology is

χ(MMis
l ) = −l.

Misner surfaces MMis
l (l > 0) and BL surfaces MBL

l (l > 0) have the
following intrinsic properties [1].

(1) Their Gaussian curvatures are negative, and their total curvatures
are finite,

∫
|K| dA < ∞.

(2) A closed geodesic curve loops around each singularity, and the end U

is defined as the region between the closed geodesic curve and the singularity.
Thus,

∫
U K = −2π for each end.

Also, for each end K → 0 and the vanishing rate is the reciprocal of dis-
tance to the power 3 as points tend toward the singularity from all directions,
so the intrinsic properties of the ends of Misner surfaces and BL surfaces
are exactly the same.

A complete Schwarzschild surface MSch can be C2-isometrically embed-
ded in R3. Price and Romano [9] gave evidence by numerical computation
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that the Misner surface MMis
1 could not be isometrically embedded as a

surface which, at large radius, had the paraboloidal shape of a standard
embedding of Schwarzschild geometry. In [2], we discussed the explicit rea-
sons, besides the Schwarzschild one, why other slices with a multiply con-
nected topology cannot be visualized to any degree of completeness. The
end of a Schwarzschild surface in R3 is under the condition of

∫
|B|2 < ∞

extrinsically. Theorem 1 gives rigorous proof that rules out the possibility
of C2-isometrically embeddedness in R3 of Misner surfaces and BL sur-
faces, except the embeddedness of the Schwarzschild surface because of the
topological uniqueness.
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