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GRADED RINGS OF RANK 2 SARKISOV LINKS

GAVIN BROWN AND FRANCESCO ZUCCONI

Abstract. We compute a class of Sarkisov links from Fano 3-folds embedded

in weighted Grassmannians using explicit methods for describing graded rings

associated to a variation of geometric invariant theory (GIT) quotient.

§1. Introduction

This paper describes a class of Sarkisov links from Fano 3-folds embedded
in weighted Grassmannians w Grass(2,5). Altınok [Alt98] lists 69 families of
such Fano 3-folds. These are listed in [BDK+] with the projection calculus
of their K3 sections in [Bro07]. They are discussed from the point of view
of weighted Grassmannians in [CR02]. The general member of each family
lies in weighted projective space (WPS) as a codimension 3 quasi-smooth
variety defined by the five maximal Pfaffians of a skew 5 × 5 matrix.

We make a detailed study of links from Type I centres on these Fano 3-
folds. (A Type I centre is a terminal cyclic quotient singularity (1/r)(n1, n2,

n3) on X for which the weights n1, n2, n3 of the Z/rZ action are those
of independent global variables (see Definition 3.1 below). The Kawamata
blowup is then simply the weighted blowup with weights n1, n2, n3.) Of
Altınok’s 69 families, 64 have a member with a Type I centre. Members of
the remaining five families do not have a Type I centre (two of them have no
projections at all, and the rest have more complicated projections that will
need a new analysis starting with [Rei02] and generalisations of [Pap06]),
and we do not study those cases here.
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Theorem 1.1. Let X be a general member of one of the 64 families of
codimension 3 Pfaffian Fano 3-folds admitting a Type I centre, and let p ∈ X

be a Type I centre. Suppose that the three quasi-linear equations defining
the orbifold tangent space at p have weights a1 ≤ a2 ≤ a3. Then there is a
Sarkisov link that starts with the Kawamata blowup of p followed by a flop:

X ←− Y ��� Y1.

The link is completed in one of four ways:

a1 = a2 = a3 : Y1 = Y ′ → P2 is a conic bundle;
a1 < a2 = a3 : Y1 = Y ′ → X ′ is a divisorial contraction to a line on a

Fano 3-fold X ′;
a1 = a2 < a3 : Y1 ��� Y ′ → P1 is a Mori flip followed by a del Pezzo fibra-

tion;
a1 < a2 < a3 : Y1 ��� Y ′ → X ′ is a Mori flip followed by a divisorial con-

traction to a point on a Fano 3-fold X ′.

Theorem 1.1 is a concise statement of the result. Its proof, given in Sec-
tions 3.1 and 3.2, provides more detailed information about each of the four
cases; this is given in Section 3.3, and it includes a list of conic bundles that
occur and, in Table 1, a list of del Pezzo fibrations that occur. A great deal
of additional intricate information about the links is gained by embedding
them in toric links, and this is described in Sections 4 and 5.

Sarkisov links are a tool to study the birational rigidity (or lack thereof)
of Fano 3-folds and Mori fibre spaces. In every link arising in Theorem 1.1,
the 3-fold at the end of the link (either X ′ or Y ′, depending on the link) is
not isomorphic to the 3-fold X at the beginning. Thus we have the following.

Corollary 1.2. Let X be a general member of one of the 64 families of
codimension 3 Pfaffian Fano 3-folds that admit a Type I centre. Then X is
not birationally rigid.

1.1. Explicit Sarkisov links in the literature
Theorem 1.1 is a descendent of other explicit calculations in the literature.

We describe some of these; we do not discuss work, such as that of Grinenko
[Gri01] or Abramovich et al. [AKMW02], which is very relevant but proceeds
by other methods.

For general weighted hypersurfaces X ⊂ P4, the full analysis of Sarkisov
links from X was completed in [CPR00]. It is shown there that all such links
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are birational involutions and therefore that a general Fano hypersurface is
birationally rigid. In this context, Type I centres are those centres which lead
to quadratic involutions (QI). Hypersurfaces also admit elliptic involutions
(EI) that one might naturally define as Type II1 centres (see [Rei02] and
[Pap06]).

In codimension 2, Corti and Mella [CM04] work out examples of links
from X ⊂ P5 in detail and explain how to carry out calculations of links
on any example. The main part of [CM04] is devoted to the ‘exclusion’
methods that show that particular Fano 3-folds have no other links. The
following result is implicit in [CM04], and we phrase it as the prototype for
Theorem 1.1.

Theorem 1.3 (Corti and Mella [CM04]). Let X ⊂ P5 be a codimension 2
Fano 3-fold, and let p ∈ X be a Type I centre. Suppose that the equations
defining the tangent space at p have weights a1 ≤ a2. Then there is a Sarkisov
link that starts with the Kawamata blowup of p followed by a flop:

X ← Y ��� Y ′.

The link continues in one of two ways:

a1 = a2 : Y ′ → P1 is a del Pezzo fibration;
a1 < a2 : Y ′ → X ′ is a divisorial contraction to a point on a Fano 3-fold

X ′.
In the second case, the divisor contracts to a singular point p′ on a Fano
3-fold X ′ and the index of p′ ∈ X ′ is a2 − a1.

The results mentioned so far typically concern Fano 3-folds with rather
small anticanonical systems. At the other end of the spectrum, Takagi
[Tak06, Section 8.2], describes links from Fano 3-folds with large anticanon-
ical systems to other Mori fibre spaces.

1.2. Graded rings of blowups
We construct links using variations of GIT. These methods were first dis-

cussed by Dolgachev and Hu [DH98], Reid [Rei92], and Thaddeus [Tha96].
They were used to construct Mori flips as toric hypersurfaces in [Bro99],
and some of those flips appear in the links of Theorem 1.1. The more recent
notion of Mori dream space of Hu and Keel [HK00] is very close to our needs
here. The difference is that our computations are explicit : as discussed by
Corti and Reid [CR00, introduction], we seek descriptions of every aspect
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of these links by equations or something equally concrete. We work directly
with graded rings associated to the problem. One could define many rings,
and during calculations there are two main considerations: we can work only
with rings that are reasonably small, and we cannot always be certain that
we have computed the whole ring under consideration. So, while the theory
of [HK00] is comprehensive, we need other detailed information to make our
calculations.

Let X be a Fano 3-fold, and let p ∈ X . For an extremal contraction
f : Y → X contracting a divisor E ⊂ Y to a point p ∈ X , we follow Cox
[Cox95], Hu and Keel [HK00], Kawakita [Kaw02], and others and describe
the graded ring

M(f) =
⊕
n∈Z

⊕
m≥0

H0
(
Y, −(mKY + nE)

)
(see Definition 5.2).

We use this graded ring to compute steps in a 2-ray game (see Section 2.1
below for details of 2-ray games).

Theorem 1.4. Let f be an extremal extraction from a point p ∈ X. If
M(f) is finitely generated as a C-algebra, then there is a 2-ray game Φ
from p ∈ X starting with f .

Of course, the finite generation condition on M is the essential point. To
check it is tantamount to describing the link, and we do this for certain links
from anticanonically embedded Fano 3-folds in codimension 3. We restate
and prove this theorem as Theorem 5.4 below. The method of proof together
with the explicit study of toric links in Section 4 gives us a way to analyse
the steps in the Sarkisov links that appear.

This method describes other phenomena, such as Ryder’s elliptic and K3
fibrations [Ryd06] and the ‘bad’ links of Corti et al. [CPR00]. The methods
we describe are also used in [BCZ04] to compute links from Mori fibre spaces
and in [CS05] to compute birational modifications.

Throughout this paper we work over the field k = C.
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§2. Rank 2 links

In the spirit of [CPR00], we consider explicit Fano 3-folds X embedded
in WPS X ⊂ Pn for small values of n: we denote the weights of the WPS
Pn by Pn(a0, . . . , an) when we know them, but even without this indication
the symbol Pn always denotes some WPS. By definition, a Fano 3-fold has
minimal Picard rank, ρX = 1. There are well-known lists of such Fanos:
Reid’s famous 95 hypersurfaces, Iano-Fletcher’s [IF00] 85 families in codi-
mension 2, and Altınok’s [Alt98] lists of 70 and 142 Fanos in codimensions 3
and 4. These lists, and others in higher codimension, are in [BDK+]. We
sometimes assume that X is quasi smooth, that is, that the weighted affine
cone on X is singular only at the origin. Quasi-smooth varieties in WPS
have only quotient singularities.

Birational links and the Sarkisov program are already well discussed (see
e.g., [Cor00]), so we are brief. We recall that a 3-fold X is Q-factorial if
every Weil divisor on X admits some multiple that is a Cartier divisor.
When this condition fails for a divisor D, there is a projective morphism
Y → X that is an isomorphism in codimension 1 so that the strict transform
of D is a (relatively ample) Cartier divisor (see [Kaw88, Lemma 3.1] for a
more detailed explanation).

2.1. The 2-ray game and rank 2 links
The key observation is that if a projective and Q-factorial variety Y

has Picard rank ρ(Y ) = 2, then up to isomorphism it admits at most two
projective morphisms, each of relative Picard rank 1. There are two instant
sources of such varieties: fibrations Y → S and blowups Y → X , where in
each case the base is assumed Q-factorial with ρ = 1 and the map is extremal
in the sense that ρ(Y/S) = 1 or ρ(Y/X) = 1. Each of these descriptions of
Y accounts for one of the two possible extremal morphisms that could exist
from Y . If Y admits a second morphism, Y → Z, say, then one of two things
may happen. If Z is Q-factorial, then the game is over. On the other hand,
if Z is not Q-factorial, then the morphism is necessarily small and one looks
to make a flip

Y → Z ← Y1,
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meaning that the rational map Y ��� Y1 is an isomorphism in codimen-
sion 1 but is not an isomorphism, and that the flipped variety Y1 is again
Q-factorial with ρ = 2. And so the 2-ray game proceeds: we switch attention
to Y1, look for its second morphism Y1 → Z2—again, one of the two possi-
ble morphisms from Y1 is already accounted for—and terminate or flip as
required. From either of our starting configurations, there is never a choice
to be made as long as the necessary morphisms and flips exist. However, the
game can break down by encountering either a Yi with only one morphism
or a flipping contraction Yi → Zi+1 that does not flip.

The expression 2-ray game refers to this procedure, whether or not it
breaks down. Successful games are called 2-ray links.

Definition 2.1. A 2-ray link is a diagram

(2.1)
Y = Y0 ��� Y1 ��� . . . ��� Yk = Y ′

↙ ↘ ↙ ↘
X Z1 X ′

of projective varieties and projective morphisms, in which each Yi is Q-
factorial with ρ(Yi) = 2, X and X ′ are Q-factorial with ρ = 1, and each Zi

has ρ(Zi) = 1 but is not Q-factorial. Moreover, the rational maps Yi ��� Yi+1

are isomorphisms in codimension 1 but are not isomorphisms.

2.2. The Sarkisov program
Now we discuss the category in which we play a 2-ray game. Many are

appropriate, but we consider the Mori ‘category’ of projective, Q-factorial,
terminal 3-folds and extremal morphisms. As is familiar, such 3-folds occur
naturally in the minimal model program in three dimensions, even if one
starts with nonsingular 3-folds (see [KM98] for a general introduction). We
refer to [Rei87] for the definition of terminal singularities, since we do not
use it directly.

Definition 2.2. (1) A morphism f : Y → X is extremal if f∗ OY = OX

and ρ(Y/X) = 1.
(2) An extremal contraction is an extremal (projective) morphism f : Y →

X between projective, Q-factorial varieties such that −KY is relatively
ample for f . We say that f is of divisorial type if dimX = dimY and that
f is of fibre type if dimX < dimY .

(3) A 2-ray link—with notation as in (2.1) of Definition 2.1—is said to
take place in the Mori category if
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(i) each Yi is a 3-fold with terminal singularities;
(ii) dimX ≤ 3, and if dimX = 3, then X has terminal singularities, and

the same conditions for X ′;
(iii) Y → X and Y ′ → X ′ are extremal contractions; and
(iv) all morphisms Yi → Zj (for j = i or i + 1 and Zj 	= X,X ′) are extremal

and small.

If f is an extremal contraction of divisorial type, then necessarily f con-
tracts an irreducible divisor E ⊂ Y to a subvariety of codimension at least
2 in X .

Definition 2.3. A Mori fibre space (MFS) is an extremal contraction
V → S of fibre type with dimV = 3 in which V has terminal singularities.

There are three cases of MFS V → S, defined as follows:

if dimS = 0, then V is a Fano 3-fold ;

if dimS = 1, then V is a del Pezzo fibration;

if dimS = 2, then V is a conic bundle.

Definition 2.4. A Sarkisov link between two MFS V → S and V ′ → S′

is a 2-ray link that takes place in the Mori category in which both V and
V ′ appear.

Of course, in Definition 2.4 the two MFS necessarily appear at the two
ends of the 2-ray link. But we can be more specific. There are four configu-
rations—named Types I–IV in [Cor00, Section 2.2] in which V and V ′ can
appear in a 2-ray link, depending on the dimensions of S and S′:

Type I, V and V ′ are Fano 3-folds;
Type II, V is a Fano 3-fold and V ′ → S′ is of fibre type;

Type III, V → S is of fibre type and V ′ is a Fano 3-fold;
Type IV, V → S and V ′ → S′ are of fibre type.

There is only one way that each type can fit into a link: comparing with
the link (2.1) of Definition 2.1, for Type I, V = X and V ′ = X ′; for Type II,
V = X and (V ′ → S′) = (Y ′ → X ′); and so on. The links in Theorem 1.1 all
start with (V → S) being a Fano 3-fold (X → pt.), and the first step being
a blowup Y → X of a Fano 3-fold, so they are all of Type I or II.
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We have given these definitions over Spec(k). They also make sense over
arbitrary base scheme U , with all notions replaced by their relative counter-
parts: ρ(Y ) = 2 is replaced by ρ(Y/U) = 2, and so on. This is done carefully
in [Cor00].

§3. General Fano 3-folds in codimension 3

3.1. The equations of Fano 3-folds
3.1.1. Weighted Grassmannians and Pfaffian equations. We consider explic-
it Fano 3-folds X ⊂ P6 = P6(a0, . . . , a6) other than the standard complete
intersection X2,2,2 ⊂ P6. There are 69 families of such Fano 3-folds, and
they are listed in [BDK+] with their degrees, baskets, and Hilbert numera-
tors (see [ABR02, Section 4.6] or [Bro07, Section 2.1] in the context of K3
surfaces, for an account of these notions).

A general member of each family is quasi smooth and has singularities
equal to those of the basket. It has equations that are the five maximal
Pfaffians of a skew 5 × 5 matrix of homogeneous forms, and it is easy to
construct a general member by writing down such a matrix; this matrix
is also the first syzygy matrix of the equations, so the degrees of forms
appearing are determined by the Hilbert numerator. When focusing on a
particular singular point of such a Fano, we can usually make coordinate
changes to fix a large proportion of the free parameters since this does not
change the loci where the matrix drops rank. We illustrate this with Family
No. 10 of [BDK+].

Family No. 10. Here X ⊂ P6(1,1,1,2,2,2,3 with degree = 13/6 and bas-
ket = {3 × 1/2(1,1,1),1/3(1,1,2)}). This example has Hilbert numerator
1 − 3t4 − 2t5 + 2t6 + 3t7 − t11, so we construct the five Pfaffian equations to
include three of degree 4 and two of degree 5. Let x,x1, x2, y, y1, y2, z be the
weighted homogeneous coordinates of P6, in that order. We consider each
type of singularity in turn as a centre.

We move a singularity of type 1/2(1,1,1) at the coordinate point Py by
a change of coordinates. To ensure Py ∈ X is quasi smooth, the equations
near Py must eliminate the variables y1, y2 and one other. This is easily
arranged by writing the syzygy matrix as⎛⎜⎜⎝

y A3 B3 C2

D2 E2 F1

z y2

y1

⎞⎟⎟⎠ ,
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where A, . . . ,F are general forms of the degrees indicated. By row and col-
umn operations on the matrix, we assume further that y does not appear in
A, . . . ,E and that F1 = x. Apart from being quasi smooth, the only appeal
to generality is that the 3–4 entry of the syzygy matrix is z rather than xy.
(In [CPR00], this kind of assumption that a particular monomial appears
in the equations is called starred monomial. It is needed for the vanishing
calculation of Lemma 3.6 below, and omitting the starred monomial will
typically change the link.)

The link from the 1/3(1,1,2) point can be best computed by presenting
the equations of a general X by the syzygy matrix⎛⎜⎜⎝

z A′
3 B′

2 C ′
2

D′
3 E′

2 F ′
2

y1 y

x

⎞⎟⎟⎠
for general forms A′, . . . , F ′. It is possible to write the syzygy matrix so that
both of the links above can be ‘seen’ in its format, but we do not attempt
to do this.

3.1.2. Type I singularities. If X ⊂ Pn is quasi smooth at p ∈ X , then there
must be n − 3 polynomials in the ideal of OX,p that vanish and are inde-
pendently linear near p. If, as is typical, p = pw is at a coordinate point of
Pn, then the ideal of X must contain n − 3 equations of the form

wk� = wk−1mk−1 + · · · + m0,

with � containing at least one term that is a linear variable—that is, �

is a quasi-linear form—and polynomials mi in the other variables. The
n − 3 homogeneous quasi-linear polynomials like � are called the tangent
polynomials at p.

Definition 3.1 ([ABR02, Section 5.5]). Let X ⊂ Pn be a Fano 3-fold,
and let p ∈ X be a quasi-smooth point of X ; in particular, p ∈ X is a
quotient singularity of type (1/r)(1, a, r − a) for some coprime 0 < a < r.
Then p ∈ X is a Type I point if and only if p lies at one of the coordinate
points p = pw of Pn and there are coordinate functions x, y, z on Pn that
vanish at p, have weights 1, a, r − a, respectively, and are independent in
mp/m

2
p modulo the tangent polynomials.

A Type I point p ∈ X is a Type I centre if and only if

−K3
X > 1/

(
ra(r − a)

)
.
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This definition is perfect for our calculations, although it would be slightly
awkward to use more generally: the term centre usually applies to a compo-
nent of the base locus of a linear system which is determined by a birational
map, and this definition is anticipating such a map.

We illustrate the definition with a nonexample. The Fano 3-fold

X66 : (x66 + xy13 + z11 + t3 − u2 = 0) ⊂ P(1,5,6,22,33)

(with variables x, y, z, t, u in that order) is quasi smooth. It contains the
point p = (0,0,0,1,1) as a quotient singularity of type (1/11)(1,5,6). But
p ∈ X is not a Type I point according to the definition, because it does not
(and cannot even after coordinate changes) lie at a coordinate point.

Proposition 3.2. Let X ⊂ P6 be a general member of the 64 codimen-
sion 3 families of Fano 3-folds that admit a Type I centre p ∈ X. We may
choose coordinates so that p lies at a coordinate point pt ∈ P6. Then the
syzygy matrix of X ⊂ P6 can be written as⎛⎜⎜⎝

t A B C

D E F

y3 y2

y1

⎞⎟⎟⎠
where y1, y2, y3 are the tangent polynomials at p and A, . . . ,F are forms
(of degree determined by the Hilbert numerator of X) in all the variables.
Without loss of generality, y1, y2, y3 are three distinct coordinate functions
on P6.

Proof. All claims in this proposition come from direct observation of the
list of codimension 3 Fanos. The form of the syzygy matrix follows from the
definition of Type I point after one has checked that the equations are of
the form tyi = · · · rather than t2yi = · · · or even higher powers of t in the
tangent monomial.

Notation 3.3. Let p ∈ X be a Type I centre on a Fano as in Proposi-
tion 3.2, and suppose that p ∈ X is a singularity of type (1/r)(a, b, c). We
choose coordinates so that

• X ⊂ P6(a, b, c, r, a1, a2, a3) with coordinates x, y, z, t, y1, y2, y3, in that
order;

• p = pt ∈ X is the t-coordinate point;
• x, y, z are the eigencoordinates of the Z/r stabiliser at p;
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• y1, y2, y3 are the tangent polynomials at p; and
• the weights of the tangent polynomials satisfy a1 ≤ a2 ≤ a3.
The variables x, y, z are also called the polarising variables at p.

Corollary 3.4 (of Proposition 3.2). Using Notation 3.3, let Π be the
locus t = y1 = y2 = y3 = 0 in P6. Then Π ∼= P2(a, b, c) and X ∩ Π is the locus
defined by the three 2 × 2 minors(

2∧(
A B C

D E F

)
= 0

)
⊂ Π = P2(a, b, c),

which is a finite reduced set of nonsingular points of P2(a, b, c).
In fact, setting d = degA − degD (which equals degB − degE and degC −

degF ) and

di =
1
2

(
(−1)id +

3∑
j=1

(aj + r)
)

for i = 1,2,

the number of points of X ∩ Π is N =
∑

i �=j(ai + r)(aj + r) − d1d2.

Proof. The finiteness of X ∩ Π is automatic since otherwise the displayed
minors would define a divisor in X contradicting ρX = 1. The extra claim
is that the degrees of these minors are sufficiently high and divisible in each
case such that they determine free linear systems on P2(a, b, c), from which
it follows that, for general X , these minors have common solutions only
away from the toric strata of P2(a, b, c). This is checked for each of the 64
cases in turn.

The counting argument is standard use of the Hilbert-Burch theorem. If
Z = X ∩ Π, then there is an exact sequence of O = OΠ-modules

0 → O(−d1) ⊕ O(−d2) →
3⊕

i=1

O
(

−(ai + r)
)

→ O → OZ → 0

(for suitable d1, d2), where the two nontrivial maps are given by the matrix

M =
(

A B C

D E F

)
and the vector of its (signed) 2 × 2 minors, respectively. We compute chern
classes to conclude. The equality of c1 for the third and fourth terms gives
the formula for di; that is, comparison of degrees in the exact sequence.
Then computing the Hilbert polynomial of Z, or equivalently c2, gives the
required number.
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3.2. The proof of Theorem 1.1
Let Y −→ X be the Kawamata blowup of p with exceptional divisor

E ⊂ Y ; note that ρY = 2. Define Fi ⊂ Y to be the birational transform on
Y of (yi = 0) ⊂ X .

Lemma 3.5. The intersection Γ = F1 ∩ F2 ∩ F3 is a reduced union of
disjoint rational curves Γ = ∪Γi. For each i,

EΓi = 1 and AΓi = 1/r,

so BΓi = 0 and Γi
num∼ Γj for all i, j. (The number of components Γi ⊂ Γ is

the number of points, N , computed in Corollary 3.4.)

Proof. By Corollary 3.4, ΓX = (y1 = y2 = y3 = 0) ⊂ X is the cone on a
finite set of reduced points with vertex at p—in particular, its components
are irreducible rational curves. The Kawamata blowup is the blowup of the
ideal at p generated by the polarising variables, so E ⊂ Y , the preimage of
p, is isomorphic to P(a, b, c), and the birational transform of ΓX intersects
E in the same Hilbert-Burch locus as X ∩ Π.

Thus EΓi = 1, and AΓi = 1/r because rA ∩ Γ computed on Y is the
same as Π ∩ ΓX . The numerical equivalence of Γi follows since ρY = 2 implies
that the pair A,E spans NE1(Y ).

We denote A = −KX and B = −KY , and we record that on Y

B = A − (1/r)E and E3 = r2/(abc),

so Lemma 3.5 shows that BΓi = 0.
Any function f of weight k on X with f(p) = 0 vanishes to order at least

k/r on E when pulled back to Y . For the polarising variables x, y, z, as
functions on Y we have

(3.1) x ∈ OY

(
aA − a

r
E

)
, y ∈ OY

(
bA − b

r
E

)
, z ∈ OY

(
cA − c

r
E

)
(see, e.g., [CPR00, Proposition 3.4.6]). By the next lemma, the tangent
polynomials yi vanish on E exactly once more than generic functions of
their degree.

Lemma 3.6. For each i = 1,2,3, we have

Fi ∼Q aiA −
(
(ai + r)/r

)
E = aiB − E,

where ∼Q denotes Q-linear equivalence (and so a fortiori numerical equiv-
alence).
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Proof. By Proposition 3.2, t does not vanish near p ∈ X and

yi =
ith minor

t
∈ O(aiA).

Pulling this back to Y , the minor has degree ai + r, so it vanishes to order
at least (ai + r)/r along E. But in each case, the minor includes a non-
trivial monomial in the polarising variables x, y, z—by generality of X in
its family—so that by (3.1) the vanishing is exactly (ai + r)/r along E as
claimed.

According to this lemma, we can sketch in N1(Y ) ∼= R2 the rays through
the various divisors as follows (noting that rays through the Fi may coin-
cide):

�������

����������

���������

��������

E · R+ A · R+

B · R+

F3 · R+

F2 · R+

F1 · R+

Corollary 3.7. The divisor B is nef on Y , and it supports an extremal
ray of NE(Y ); in the notation of Lemma 3.5, that ray is R+[Γ], and it is a
flopping ray.

Proof. Lemma 3.6 implies that (ai + r)B = Fi + rA, so if Bγ < 0 then
γ ⊂ ∩Fi. So B is nef since each BΓi = 0, and moreover it supports the ray
R+[Γ].

Let Y −→ Z be the contraction of the ray R+[Γ]. Then Z has Picard rank
1 and B is the ample generator, so in particular Z is a (non-Q-factorial)
Fano 3-fold.

Lemma 3.8. Let Z ←− Y1 be the flop of Y −→ Z. Then on Y1,
(a) the intersection F1 ∩ F2 ∩ F3 is empty.
(b) F3 is nef.
(c) F1 ∩ F2 is a nonempty union of curves, and F3C = 0 for every curve

C ⊂ F1 ∩ F2.
(d) The second extremal ray of the Mori cone NE(Y1) equals R+[C],

where C is any reduced and irreducible component of F1 ∩ F2. This ray
is supported by F3, and it is contracted by the extremal morphism ϕF3 given
by a positive multiple of F3.
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Proof. (a) The flop Z ← Y1 restricted to E ∼= P(a, b, c) is the blowup of
the locus of points (y1 = y2 = y3 = 0) ⊂ E ⊂ Z. This is the same locus as
computed in Corollary 3.4 since the yi are equal to the minors on E. To
make the flop is to blow up this locus, and by construction, the generators
of the blowup ideal have no common solutions on the blowup.

(b) If on Y1 a curve γ has F3γ < 0, then also Fiγ < 0 for i = 2,3, since
a3 ≥ ai, so γ ⊂ F1 ∩ F2 ∩ F3. But there are no such curves, so F3 is nef on
Y1.

(c) The intersection of any pair Fi ∩ Fj does not contain a surface (since
Y ��� Y1 is an isomorphism in codimension 1), so it is at most one-
dimensional. We compute F1 ∩ F2 on X—the map to Y1 is a blowup of
p ∈ X followed by a flop, so the result follows. Setting y1 = y2 = 0 in the
equations of X cuts out the flopping curves ΓX together with the distinct
locus

(C = F = y3t − AE + BD = 0) ⊂ P4(r, a, b, c, a3).

This latter locus is not empty and is at least one-dimensional. Its birational
transform on Y1 is the locus F1 ∩ F2 in question, and its intersection with
F3 is trivial by (a).

(d) Follows immediately from (a)–(c).

The continuation of the link from Y1 depends on strictness of the inequal-
ities a1 ≤ a2 ≤ a3.

Proposition 3.9. Suppose that a2 = a3. Then the contraction of the
extremal ray by ϕF3 : Y1 → X ′ determines a morphism to a Q-factorial vari-
ety X ′. There are two subcases:

• if a1 = a2, then dimX ′ = 2 and ϕF3 is a conic bundle;
• if a1 < a2, then dimX ′ = 3 and ϕF3 is a divisorial contraction that con-

tracts an irreducible divisor to a line in X ′.

Proof. By assumption, F2 ∼ F3, so by Lemma 3.8(a) the restriction of F3

to F1 contains a free pencil on F1, and so it is in fact a multiple of a free
pencil. In particular, there are effective curves γ with F3γ = 0. Since F3 is
nef, any such curve generates an extremal ray, so the map ϕF3 contracts F1

to a line.
Now the classification of extremal contractions completes the proof. First,

ϕF3 is not small, so its image is Q-factorial. If a1 = a2, then ϕF3 also con-
tracts each of F2 and F3 to a line, so ϕF3 can only be a conic bundle. If
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a1 < a2, then on Y1

F 3
3 = F3F2

(
F1 + (a3 − a1)B

)
= (a3 − a1)BF3F2 > 0,

since F1F2 = 0 on Y2, where the final strict inequality holds because F2 ∩ F3

contains nonflopping curves. Thus the image of ϕF3 is a 3-fold, and the only
possibility is that ϕF3 is a divisorial contraction to a line.

Proposition 3.10. Suppose that a2 < a3. Then the contraction of the
extremal ray by ϕF3 : Y1 → Z2 is a flipping contraction and the flip Z2 ← Y2

exists.
The second extremal ray of the Mori cone NE1(Y2) is supported by the

divisor F2, and the contraction of this extremal ray ϕF2 : Y2 → X ′ determines
a morphism to a Q-factorial variety X ′. There are two subcases:

• if a1 = a2, then dimX ′ = 1 and ϕF2 is a del Pezzo fibration;
• if a1 < a2, then dimX ′ = 3 and ϕF2 is a divisorial contraction that con-

tracts an irreducible divisor to a point in X ′.

Proof. Since a2 < a3, any curve γ with F3γ = 0 has F2γ < 0 and F1γ < 0
and so lies in F1 ∩ F2. There are only finitely many such curves, so the
extremal neighbourhood supported by F3 is isolated; it is flipping because
B is nef on Y1 and so is strictly positive on the ray.

The flip exists because the exceptional locus is cut out by two divisors and
Mori’s easy flip theorem ([Kol92, Theorem 20.11]) applies. Furthermore, by
Mori’s theorem, the intersection F1 ∩ F2 is empty on the flipped variety Y2.
(Of course, because it resolves the ‘weighted pencil’ F1 : F2, Mori’s theorem
requires the two divisors to be proportional in Pic(Y1), whereas F1 and F2

may not be. But they are proportional in a neighbourhood of the flipping
locus. For instance, if we set F ′

1 = (a3 − a2)F1 +(a2 − a1)F3, which is linearly
equivalent to (a3 − a1)F2, then F ′

1 ∩ F2 equals F1 ∩ F2 set-theoretically away
from F3 because the flop cleared that triple intersection. Thus on Y2 we
have that F1 ∩ F2 = ∅ off F3, but again, because of the flop, this is also true
on F3.)

Let Y2 be the flipped variety. As for F3 in Lemma 3.8, F2 is nef. In fact,
F2 supports the second extremal ray on Y2, because it is trivial on any
curve contained in F1. Moreover, the extremal contraction ϕF2 contracts F1

and so is not small. Once again, the classification of extremal contractions
finishes the proof. First, the image of ϕF2 is Q-factorial. If a1 = a2, then
ϕF2 contracts any surface in the pencil |F1| to a point and so must be a del
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Pezzo fibration. If a1 < a2, then

F 3
2 = F2

(
F1 + (a2 − a1)B

)2 = (a2 − a1)2F2B
2 > 0,

the positivity holding because B is ample. Thus the image of ϕF2 is a 3-fold
and the only possibility is that ϕF2 is a divisorial contraction to a point.

3.3. Numerical properties of the end of the link
The calculations in the proof of Theorem 1.1 can also be used to compute

detailed information about the varieties at the end of the link in each of the
four cases. We use the notation of Theorem 1.1 throughout.

Proposition 3.11 (Divisorial contraction to a point). If a1 < a2 < a3,
then the image of the contracted divisor is a singular point p′ on a Fano
3-fold X ′ and the index of p′ ∈ X ′ is an integer multiple of a2 − a1.

Proof. The map ϕ : Y ′ → X ′ is given by (multiples of) the linear system
of the divisor F2, and it contracts the divisor F1 to a point q ∈ X ′. Moreover,
X ′ is a Fano 3-fold, so denoting A′ = −KX′ , we have

ϕ∗(A′) = B +
a′

r′ F1,

where r′ is the index of q ∈ X ′ and a′ is some positive integer. Since ρX′ = 1,
the divisor ϕ∗(A′) must be some positive multiple, possibly rational, of F2,
say, ϕ∗(A′) = λF2. So since F2 = F1 + (a2 − a1)B on Y ′, then

λF1 + λ(a2 − a1)B = B +
a′

r′ F1.

But B and F1 are linearly independent in Pic(Y ′), so r′ = a′(a2 − a1) is a
positive integral multiple of a2 − a1.

Notice that, in the notation of the proof, if F1 ⊂ Y ′ is Cartier, then the
index is exactly a2 − a1: in that case, we can use an argument of Kawamata
[Kaw96] to show that a′ = 1. Let V

g→ Y ′ → X ′ be a resolution of singular-
ities, with composition denoted f . If a′ 	= 1, then there is a divisor G ⊂ V

with discrepancy 1/r′ over X ′. But then, away from all exceptional divisors
other than G and F1, we have f ∗(−KX′ ) = −KV +(a′/r′)F1 +(1/r′)G while
also

f ∗(−KX′ ) = g∗(
−KY ′ + (a′/r′)F1

)
= g∗(−KY ′ ) + (a′/r′)F1 + mG,
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where m ≥ a′/r′. Equating these two expressions shows that Y ′ does not
have terminal singularities, which is not true. Kawakita’s analysis of divi-
sorial contractions (see [Kaw05]) distinguishes between cases when F1 is
Cartier or not, but we have not carried out the additional calculations to
see which cases occur.

Proposition 3.12 (Conic bundle). If a1 = a2 = a3, then the conic bundle
Y ′ → P2 has discriminant Δ ⊂ P2 of degree

degΔ = 12 − a1 deg(X) +
(a1 + r

r

)( 1
a(r − a)

)
.

Proof. We know that (−KF1)
2 = 8 − degΔ since F1 is a conic bundle

with degΔ singular fibres over a line in P2. On the other hand, (−KF1)
2 =

(−KY ′ − F1)2F1 = (B − F1)2F1 = B2F1 − 2B(F1)2. Since (F1)2 is numeri-
cally equivalent to a fibre l of Y ′ → P2, we have B(F1)2 = −KY ′ l = 2. Thus
the degree of the discriminant is equal to degΔ = 12 − B2F1 when computed
on Y ′; this is standard, seen already in [MM82], for example.

We can equally well compute on Y , since the map Y ��� Y ′ is a B-flop.
Computing on Y , we see that AE2 = A2E = 0, so

B2F1 =
(
A − 1

r
E

)2
(

a1A −
(a1 + r

r

)
E

)
= a1A

3 −
(a1 + r

r3

)
E3

= a1A
3 −

(a1 + r

r

)( 1
a(r − a)

)
as required.

In fact, only the following three links from the 69 families result in a conic
bundle:

Family No. 2. Here X ⊂ P6(1,1,1,1,1,1,2), which has degree 13/2 and
basket {1/2(1,1,1)}. (The equations of X have degrees 2,3,3,3,3 and Y ���
Y ′ flops seven irreducible rational curves.)

Thus a1 = a2 = a3 = 1 and the discriminant has degree

degΔ = 12 − 13/2 + 3/2 = 7.



18 G. BROWN AND F. ZUCCONI

Family No. 3. Here X ⊂ P6(1,1,1,1,1,2,3), which has degree 14/3 and
basket {1/3 × (1,1,2)}. (The equations of X have degrees 3,3,4,4,4 and
Y ��� Y ′ flops six irreducible rational curves.)

Thus a1 = a2 = a3 = 1 and the discriminant has degree

degΔ = 12 − 14/3 + 4/3 × 1/2 = 8.

Family No. 8. Here X ⊂ P6(1,1,1,2,2,2,2), which has degree 5/2 and
basket {5 × 1/2(1,1,1)}. (The equations of X have degrees 4,4,4,4,4 and
Y ��� Y ′ flops 12 irreducible rational curves.)

So a1 = a2 = a3 = 2 and the discriminant has degree

degΔ = 12 − 2 × 5/2 + 4/2 = 9.

Proposition 3.13 (Del Pezzo fibration). If a1 = a2 < a3, then the degree
of fibres of the del Pezzo fibration Y ′ → P1 is

(−KF1)
2 =

1
(a3 − a1)2

(
a1a

2
3 deg(X) − (a1 + r)(a3 + r)2

ra(r − a)
+ N

)
,

where N is the number of curves flopped by Y1 ��� Y ′, which is the same
number N computed in Corollary 3.4.

Proof. Computing on Y2, we choose F1 as a fibre to work on and find its
degree as

(−KF1)
2 = (B − F1)2|F1

= B2F1 =
1

(a3 − a1)2
(F3 − F1)2F1

=
1

(a1 − a3)2
F1F

2
3 ,

where equalities come from F 2
1 = 0 on Y2. We compute this number on X .

The flip Y1 ��� Y2 is an F3-flop, so the expression F1F
2
3 is the same

whether computed on Y1 or Y2. The flop Y ��� Y1 is a true B-flop, so the
expression F1F

2
3 = F1(F2 + (a3 − a2)B)F3 differs only in the term F1F2F3

when computed on Y rather than Y1. This intersection defines exactly the
reduced flopping curves, which are contracted to nonsingular points on F1

considered in Y1. So F1F
2
3 computed on Y1 equals F1F

2
3 +N computed on Y .

Now Fi = aiB − E = aiA − ((ai + r)/r)E, so AE2 = A2E = 0 and E3 =
r2/(a(r − a)) completes the calculation.
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Table 1: Sarkisov links that result in a del Pezzo fibration. The link com-
prises the Kawamata blowup of the Type I centre p ∈ X followed by the
standard flop of the indicated number of curves, completed by a flip to the
total space of the fibration.

No. Fano 3-fold X p ∈ X A3 a3, a2, a1 # [n] d

4 X34,4 ⊂ P(15,22) 1
2(1,1,1) 5 2,1,1 8 [2] 4

6 X42,52,6 ⊂ P(14,2,3,4) 1
4(1,1,3) 11/4 2,1,1 7 [3] 3

7 X3,43,5 ⊂ P(14,2,2,3) 1
3(1,1,2) 19/6 2,1,1 7 [2] 3

10 X43,52 ⊂ P(13,23,3) 1
2(1,1,1) 13/6 3,2,2 14 [3] 3

12 X4,5,62,7 ⊂ P(13,22,3,5) 1
5(1,2,3) 17/10 2,1,1 5 [2] 2

16 X4,52,62 ⊂ P(12,23,32) 1
3(1,1,2) 7/6 3,2,2 11 [2] 2

17 X62,72,8 ⊂ P(12,22,3,4,5) 1
5(1,1,4) 4/5 3,2,2 10 [4] 2

21 X63,72 ⊂ P(12,2,33,4) 1
3(1,1,2) 3/4 4,3,3 15 [4] 2

43 X5,63,7 ⊂ P(12,22,32,4) 1
4(1,1,3) 11/12 3,2,2 10 [3] 2

55 X8,9,102,11 ⊂ P(1,2,32,4,5,7) 1
7(1,2,5) 3/14 4,3,3 8 [2] 1

56 X8,92,102 ⊂ P(1,2,3,42,52) 1
5(1,2,3) 1/5 5,4,4 11 [2] 1

Notation: # denotes the number of flopped curves; A3 is the degree of X ; d is the degree of

the del Pezzo fibre. The column [n] describes the flip: [n] indicates the toric hypersurface flip of
n − 1 irreducible P1s meeting in the quotient singularity (1/n)(1,1, n − 1) flipped to a single curve

passing through no singularities (see the classification in [Bro99, Theorem 8.1(I)(1)] with a1 = n
and a2 = b1 = 1).

In fact, 11 of the links from the 69 families result in del Pezzo fibra-
tions. We list them in Table 1. The description of the del Pezzo fibration
is rather coarse, giving only the degree of the general fibre according to
Proposition 3.13. Computing the link in detail, using the methods of Sec-
tion 5.2.1, for instance, one sees that some of these fibrations are standard
in a neighbourhood of each fibre in the sense of Corti [Cor96, Definitions 1.8
and 1.13]. For instance, the cubic fibration resulting from Fano family no. 6
is embedded as a hypersurface in a P3 scroll over P1: the transforms of the
variables of weights 3 and 4 can be eliminated in every fibre if the equations
of X are sufficiently general. In the notation of [BCZ04, Table 2 and Sec-
tion 4.4.3], this link is the reverse of the link 8a—a link arising as a special
member of the linear system |3M − L| on F(1,1,2). Family no. 17 gives
another example: the end of the link is a relative degree 4 hypersurface in a
P(1,1,1,2) scroll over P1. These are the only two such straightforward cases
whose resulting fibration is a hypersurface.
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In contrast, the link from Fano family no. 7 (and equally no. 10) results
in a cubic fibration described as a relative (2,3) complete intersection Y ′

2,3

in a P(14,2) scroll over P1: the equation of degree 2 eliminates the weight 2
fibre variable in most fibres, leaving only the cubic, but in one of the fibres
(or two in the case of no. 10) it does not. This is to be expected from a count
of the singularities as follows. The general element X3,43,5 of family no. 7
has singularities 1/3(1,1,2) and 1/2(1,1,1). The initial Kawamata blowup
of the index 3 point leaves 2 × 1/2(1,1,1), the flop leaves those unchanged,
and the final Francia flip removes one of these quotient singularities. The
resulting cubic fibration is not Gorenstein and so does not appear in [BCZ04,
Table 2]—the analysis there starts with a Gorenstein model. From the point
of view of rigidity and Corollary 1.2, this is enough, since the end of the
link is certainly a different Mori fibre space. However, one can simplify the
model of the cubic fibration in a neighbourhood of the bad fibre following
Corti [Cor96] and Kollár [Kol97]: after blowing up the remaining 1/2(1,1,1)
singularity and contracting a divisor, the result is an element of the linear
system |3M − 2L| on F(1,1,2). This identifies the square birational type of
the cubic fibration in the geography of [BCZ04], but nothing more is gained,
for all elements of that system are already known to be nonrigid following
the flop of the negative section into a Type III link.

§4. The 2-ray game for toric varieties

The following result is well known: it follows from [HK00, Corollary 2.10],
for instance, or equally from both [Rei83] and [FS04]. To get detailed infor-
mation about the geometry of each step, which we apply in Section 5, we
trace a proof with an explicit commentary. Note that there are no conditions
on the singularities of X or Y in this theorem.

Theorem 4.1. Let X be a Q-factorial toric variety with ρX = 1, and
let Y0 → X be the contraction of a divisor corresponding to the inclusion
of a new element in the 1-skeleton of the fan ΔX . Then there is a unique
sequence of projective toric maps:

Y0 ��� Y1 ��� . . . ��� Y ′

↙ ↘ ↙ ↘
X Z1 X ′

At each step, the map Yi ��� Yi+1 is an isomorphism in codimension 1. The
morphism Y ′ → X ′ is either a divisorial contraction or a fibration to a toric
variety of lower dimension.
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4.1. The Cox ring and the proof of Theorem 4.1
We describe the 2-ray game for a rank 2 toric variety in terms of its

homogeneous coordinate ring. Compare the explicit calculations with Cox’s
description of the homogeneous coordinate ring in [Cox95] and with [Rei97,
Lecture 2].

4.1.1. A rank 2 torus action. Let R0 = C[x1, . . . , xN ], and let A = SpecR0.
Let G = C∗ × C∗ with coordinates λ,μ. An action of G on A is determined
by N characters,

χi ∈ CG = HomZ(G,C∗), for i = 1, . . . ,N,

by defining g∗(xi) = χi(g) · xi for i = 1, . . . ,N . Of course, the isomorphism
Z ⊕ Z → CG taking (a, b) to the character (λ,μ) �→ λaμb makes this explicit:
if χi corresponds to (ai, bi), then (λ,μ) ∈ G acts on A by

(x1, . . . , xn) �→ (λa1μb1x1, . . . , λ
aN μbN xN ).

We leave this isomorphism implicit for the remainder of this article, and we
write χi = (ai, bi). Once and for all, we fix such an action: we fix a choice
of N characters χi = (ai, bi) ∈ Z ⊕ Z, and we insist that these characters
rationally span Z ⊕ Z.

In order to apply GIT, we consider the trivial line bundle L → A, with
fibre coordinate t, by the embedding R0 ⊂ R = C[x1, . . . , xN , t]. To extend
the action compatibly from A to L is just a matter of choosing another
character χ ∈ CG and defining

g∗(t) = χ(g)−1 · t.

As usual, we regard χ as a parameter, and we emphasise this choice in the
notation by writing g∗,χ for the action of g ∈ G on L. Again, we can be more
explicit: if χ corresponds to (a, b) ∈ Z ⊕ Z, then (λ,μ) ∈ G acts on L by

(x1, . . . , xn) �→ (λa1μb1x1, . . . , λ
aN μbN xN , λ−aμ−bt).

We denote the invariant ring under this action on L by

RG,χ =
{
f ∈ R : g∗,χ(f) = f

}
.

If f ∈ RG,χ, then we define Df = {P ∈ L : f(P ) 	= 0}. A point (p1, . . . , pN ) ∈
A is χ-semistable if and only if there exists f ∈ RG,χ, with f /∈ R0, and s ∈ C∗

such that (p1, . . . , pN , s) ∈ Df . The set of χ-semistable points is denoted Ass
χ .



22 G. BROWN AND F. ZUCCONI

Finally, the GIT quotient of A by G (associated to the choice of χ)
is denoted A//χG and is defined to be the categorical quotient Ass

χ //G.
As explained in [Dol03, Theorem 8.1], this quotient is locally of the form
Df//G = Spec O(Df )G, where f is a G-equivariant function and Df is the
corresponding principal open affine set.

4.1.2. Projective description of the quotient. Each choice of χ determines
a Z ⊕ Z grading on R as described above. It is convenient to introduce
another grading on R (and its subrings) to carry line bundles on the various
quotients. The new N grading is by powers of t or, equivalently, by setting
deg(xi) = 0 for each i and deg(t) = 1. We denote the piece of R in degree
m ≥ 0 by Rm (notation consistent with the earlier use of R0 ⊂ R). Clearly,
this grading survives taking invariants: (RG,χ)m = (Rm)G,χ for each degree
m ≥ 0.

We can form ProjR with respect to this grading, and it can be regarded
as the C∗ quotient

π : SpecR \ SpecR0 → ProjR.

Of course, ProjR = A = SpecR0 is affine in this case, and the map π above
is just the restriction away from the zero section of the projection L → A,
which is a geometric quotient. We can do the same for subrings of R, and
we denote the quotient maps corresponding to any χ by

πG,χ : SpecRG,χ \ SpecRG,χ
0 → ProjRG,χ.

The degree 0 inclusion RG,χ → R induces maps ρ below:

SpecR \ SpecR0
ρ−→ SpecRG,χ \ SpecRG,χ

0

↓ π ↓ πG,χ

Ass
χ

j
↪→ ProjR

ρ��� ProjRG,χ

Proposition 4.2. The map ρ ◦ j = πχ : Ass
χ → ProjRG,χ is a surjective

morphism and it induces an isomorphism A//χG ∼= ProjRG,χ.

Proof. Both the surjectivity of πχ and the fact that it is defined at geo-
metric points are straightforward: at a point in ProjRG,χ there is a (non-
trivial, invariant) function that does not vanish there, which is the same as
the condition for semistability. Indeed, πχ is expressed in coordinates as a
choice of generators for RG,χ as an RG,χ

0 -algebra, and a point lies in Ass
χ if

and only if some polynomial in these generators does not vanish there.
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To check that πχ is set-theoretically injective, consider p1, p2 ∈ A lying
in G-orbits whose closures are disjoint. There is an invariant function f

which vanishes on the orbit G · p1 and is not identically zero on G · p2. This
function then separates the image of the points on ProjRG,χ.

Finally, we match scheme structures by considering local patches. An
affine patch on ProjRG,χ is Spec of the ring of homogeneous rational func-
tions of total degree 0 in t which have expressions only in f in the denomi-
nator. But this ring is exactly OG

Df
, and its spectrum is an affine patch on

A//χG by construction of the quotient.

4.1.3. Notation: The effective cone of characters. The characters χi : G →
C�, (λ,μ) �→ λaiμbi , i = 1, . . . ,N span a convex cone denoted Σeff ⊂ CG ⊗ R ∼=
R2. Let r0, . . . , rM ⊂ Σeff be the distinct rays generated by the characters
χi ∈ R2. Reordering if necessary, we may assume that the rays rα are ordered
clockwise from one boundary of Σeff to the other. Two characters can gen-
erate the same ray, and so we may assume, again after reordering, for each
rα there are integers lα ≤ mα such that

χi ∈ rα if and only if lα ≤ i ≤ mα.

The collection of rays {r0, . . . , rM } divides Σeff into M chambers and we
denote by Cα these open chambers; in particular, ∂Cα = rα ∪ rα+1, α =
0, . . . ,M − 1:

�
�

�
�

�

�������

r0 C0

r1

rM −1

CM −1
rM

·
·

·
= Σeff ⊂ CG ⊗ R

For the rest of this article, a character χ is identified with the correspond-
ing (a, b) ∈ R2 by the isomorphism CG ⊗ R ∼= R2 which sends χ �→ (a, b).
For any two rays r, r′ ⊂ Σeff (not necessarily among the ri) we say that
r ≤ r′ if and only if r is contained in the convex span of r0 and r′. We
extend this partial order to elements of CG by saying (a, b) ≤ (a′, b′) when
(a, b)R≥0 ≤ (a′, b′)R≥0 (i.e., we simply put elements of Σeff in clockwise par-
tial order).
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4.1.4. Stability and geometric quotients. Let (a, b) ∈ Σeff . We define a G-
invariant open affine subset B(a,b) = A \ V (J(a,b)) ⊂ A, where J(a,b) ⊂ R0 is
the homogeneous ideal

J(a,b) =
(

{xi : (ai, bi) ≤ (a, b)}
)

∩
(

{xi : (ai, bi) ≥ (a, b)}
)

and where x1, . . . , xN are the coordinates on A. (Note that ({xi : (ai, bi) ≤
(a, b)}) ⊂ R0 is the ideal generated by those xi on the anticlockwise side of
(a, b) in Σeff .)

Recall, from [Dol03, (8.1)] for instance, that a point p ∈ A is χ-stable
if and only if the following three conditions hold: it is χ-semistable, its
stabiliser Gp ⊂ G is finite, and, if f ∈ RG,χ is as in the definition of χ-
semistable, then for every q ∈ Df the orbit G · q is closed in Df .

Proposition 4.3. Fix a character χ corresponding to a primitive inte-
gral vector (a, b) ∈ Σeff ∩ CG. Then Ass

χ = B(a,b). If, moreover, (a, b) is in
the interior of some chamber Cj , then As

χ = Ass
χ , so the quotient A//χG is

geometric.

Proof. A point p ∈ A lies in B(a,b) if there exist both a variable xi with
(ai, bi) ≤ (a, b) for which xi(p) 	= 0 and another xj (possibly equal to xi) with
(aj , bj) ≥ (a, b) for which xj(p) 	= 0. Let m,mi,mj ∈ N such that m(a, b) =
mi(ai, bi) + mj(aj , bj). If F = xmi

i x
mj

j tm, then F ∈ R
Gχ
m and F (p,1) 	= 0. In

particular, p ∈ Ass
χ and B(a,b) ⊂ Ass

χ .
Conversely, if p ∈ Ass

χ , then for some m > 0 there exist F ∈ R
Gχ
m and

τ ∈ C� such that F (p, τ) 	= 0. Any monomial appearing in F is of the form
xi1

1 · · · xiN
N tm. After evaluating t at τ , such a monomial is in J(a,b), so F|t=τ

is also in J(a,b). Since F|t=τ (p) 	= 0, Ass
χ ⊂ B(a,b) and the two sets are equal.

Suppose now that χ = (a, b) is the interior of some chamber. We show
that Ass

χ ⊂ As
χ. Let p ∈ Ass

χ = B(a,b). Fix i, j such that the two components
xi(p), xj(p) are nonzero and

(ai, bi) < (a, b) < (aj , bj).

In particular, Df ⊂ Ass
χ for f = xixj . If (λ,μ) ∈ Gp, then λaiμbi = 1 and

λajμbj = 1; these equations have only finitely many solutions, so Gp is finite.
By the same token, Gq is finite for any q ∈ Df . Thus all orbits in this set
are closed, and p ∈ As

χ.
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4.1.5. Affine patches on the quotients. It is convenient to record here the
natural affine patches on these geometric quotients, although we do not need
them yet. Suppose that χ corresponds to (a, b) and does not lie on any ray
rα, α = 1, . . . ,M . Then, by Proposition 4.3,

Ai,j = A \ (xixj = 0),

for any i < j with (ai, bi) < (a, b) < (aj , bj), is an open affine G-invariant set
contained in Ass

χ , and moreover, Ass
χ is covered by such sets Ai,j .

If the two characters (ai, bi) and (aj , bj) are a Z-basis for Z ⊕ Z, then the
usual identification of affine patches on Pn with Cn shows that Ai,j//χG ∼=
CN −2 and that the variables x1, . . . , x̂i, . . . , x̂j , . . . , xN (omitting xi and xj)
serve as coordinates on this patch: the two degrees of freedom in the group
action can be used to fix values for the ith and jth coordinates of a point,
leaving the other coordinates free. If instead (ai, bi) and (aj , bj) span a sub-
lattice of CG of index r, then the patch is a Z/rZ quotient of CN −2 in the
same way as for patches on WPS.

4.1.6. Extremal morphisms between the quotients. Fix a chamber Cα with
its boundary rays rα and rα+1. By Proposition 4.3, the polarisations χ ∈ Cα

give isomorphic geometric quotients (by well-defined isomorphisms), so set

Yα = ProjRG,χ for some χ ∈ Cα.

Equally, the strictly semistable polarisations (a, b) ∈ rα give isomorphic cat-
egorical quotients, so set

Zα = ProjRG,χ for some χ ∈ rα.

Lemma 4.4. Let α ∈ {0, . . . ,M − 1}.
(a) Here Yα is Q-factorial of dimension N − 2 and Picard rank ρ ≤ 2.
(b) Here Yα admits two morphisms

Yα

Fα ↙ ↘ Gα

Zα Zα+1,

either of which may be an isomorphism.

The task in (b) is to describe the degree 0 homomorphism of graded rings
that is induced by the inclusion map of subsets of A. We take advantage
of the freedom in which graded ring we actually use as the homogeneous
coordinate ring of Yα.



26 G. BROWN AND F. ZUCCONI

Proof. (a) The dimension count dim Yα = dim Ass
χ − dimG holds because

the quotient is geometric. The Q-factoriality follows from [HK00, Lem-
ma 2.1]; to confirm the hypotheses of that Lemma, invariant Cartier divisors
on As

χ are supported on the hyperplanes xi = 0 and so can be linearised as
required. Again following [HK00, Lemma 2.1], the map

Pic(Yα)Q −→ PicG(As
χ)Q

is an isomorphism. If there is exactly one character lying strictly on one side
of rα ⊂ Σeff—that character would have to be either χ0 or χN—then the
codomain of this map is Q. Otherwise, there are at least two characters on
each side of rα, and the codomain is Q2.

(b) We describe G0 : Y0 → Z1; other cases are similar. Choose characters
χ0, χ1 lying in the rays r0, r1, respectively. Pick a set of generators f1, . . . , fv

of R1 = RG,χ1 , the homogeneous coordinate ring of Z1. Let g ∈ RG,χ0
m be

any nonzero polynomial of positive degree m > 0 (in t) in the homogeneous
coordinate ring of Z0.

The elements Fi = fig
degt(fi) all lie in R = RG,χ, where χ = χm

0 χ1 lies
in the interior of the chamber C0. So we use (some truncation of) R as
the homogeneous coordinate ring of Y0, and the map R1 → R induced by
fi �→ Fi is the required degree 0 graded k-algebra homomorphism.

4.1.7. Divisors on the quotients and exceptional loci. For a homogeneous
element x ∈ R0 define the basic divisor Dx to be the divisor x = 0 in each
quotient. (The notation is birational, and the variety on which Dx is cur-
rently being considered will be mentioned explicitly if it matters. Of course,
Dx only makes sense on quotients Ass

χ //G for which x does not generate a
component of the irrelevant ideal.)

Intersections of basic divisors describe the base locus of linear systems.
Define

Fα =
⋂

χi<rα−1

Dxi ⊂ Yα and Gα =
⋂

χi>rα+1

Dxi ⊂ Yα.

(As usual, χi is the character associated to variable xi.) Also, let

Bα =
⋂

χi ∈rα

Dxi ⊂ Zα.

The maps Fα and Gα from Yα are defined in Lemma 4.4.
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Lemma 4.5. Let α ∈ {0, . . . ,M − 1}.
(a) The exceptional locus of the morphism Fα is Fα, and the restriction

of Fα to the exceptional locus Fα : Fα → Bα exhibits Fα as a weighted pro-
jective bundle over Bα. Similarly, Gα : Gα → Bα+1 is a weighted projective
bundle over Bα+1.

(b) The map Yα ��� Yα+1 in the diagram

Yα ��� Yα+1

Gα ↘ ↙ Fα+1

Zα+1

is a Dx-flop for any x whose character lies in the ray rα.

Proof. We prove the requirements for Fα. To prove (a), consider first
the case F0 : Y0 → Z0. In this case, Z0 coincides with B0 and is a WPS
(possibly just a point), and the map F0 has effective C∗ quotients of affine
space punctured at the origin as its fibres. The general case follows, since
Fα : Fα → Bα is of the same form as the F0 just considered.

To prove (b), note that any such x has as its zero locus a divisor in
Bα and so is certainly trivial on the fibres of Fα. The exceptional loci are
irreducible, so the relative Picard rank is one.

4.1.8. Localisation and flips. To understand the birational map Yα ��� Yα+1

better, we realise it as a variation of C∗ action in a neighbourhood of a point
in the base Zα. If xl, xl+1, . . . , xl+k are the variables whose characters lie in
rα, we consider the case of the point xl+1 = · · · = xl+k = 0 in Bα ⊂ Zα and
that χl is a primitive vector in CG. (This is not quite the general case, but
in our applications it is enough.) The quotient map CG → Z with kernel
generated by χ maps characters χ′ < χ to the negative integers and maps
χ′ ′ > χ to the positive integers. These are weights for a C∗ action on CN −k.
The variation of that action (e.g., as in [Bro99]) describes a (generalised)
flip in an affine patch in Zα.

In more complicated cases later, when we consider equations inside the
toric flip, we have to shrink this affine neighbourhood to an analytic neigh-
bourhood of the point to describe a flip.

4.1.9. The proof of Theorem 4.1. Given Y −→ X , let N = C(Y) be the
Cox ring of Y ; by construction, this is a polynomial ring (with N variables,
say) with a grading by Z ⊕ Z. Moreover, the left-hand ray r0 of Σeff con-
tains a single character, corresponding to the new element of the 1-skeleton.
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The variation of this quotient described above produces a link diagram as
required. (We must omit the quotient by characters in the first chamber C0;
it is isomorphic to X , because the left-hand ray r0 contains only a single
character, and its two morphisms are the structure map from X to a point
and an isomorphism X ∼= Z1. Similarly, we omit the quotient in the final
chamber if the previous map is also a divisorial contraction.) The maps are
isomorphisms in codimension 1 because the contracted loci, as described by
Lemma 4.4, are geometric quotients of (a stable set in) Ck for k ≤ N − 2 by
C∗ × C∗ and so have dimension at most N − 4, which is codimension 2 in the
quotients. The possible behaviour at the two ends is completely determined
by the 2-ray game.

4.2. Examples
For calculations, it is convenient to summarise the action by a matrix of

integers (
a1 a2 · · · aN

b1 b2 · · · bN

)
.

The lemmas above can then be summarised by a sketch of the layout of this
matrix χ near Yα:⎛⎝ IFα Yα IGα

Zα | Zα+1

x1 · · · xmα−1 xlα · · · xmα | xlα+1 · · · xmα+1 xlα+2 · · · xN

⎞⎠ ,

where xlα , . . . , xmα are the generators of N whose characters lie in the ray
Rα.

4.2.1. Standard flop between two scrolls. Consider the graded polynomial
ring

N = C[x1, x2, y, z1, z2] with weights
(

0 0 1 1 1
1 1 1 0 0

)
.

That is, x1, . . . , z2 are eigencoordinates on C5 for the action of G = C∗ × C∗

in which x1 is in the (0,1)-eigenspace, y is in the (1,1)-eigenspace, and so
on. Setting

B0 = C5 \
{
(x1 = x2 = 0) ∪ (y = z1 = z2 = 0)

}
,

A0 = C5 \
{
(x1 = x2 = y = 0) ∪ (y = z1 = z2 = 0)

}
,

B1 = C5 \
{
(x1 = x2 = y = 0) ∪ (z1 = z2 = 0)

}
,
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write
Y = B0/G, Z = A0//G, Y ′ = B1/G.

These three varieties fit in the rank 2 link

Y ��� Y ′

↙ ↘ ↙ ↘
P1 Z P1

in which the map Y ��� Y ′ is the standard flop. This link is one of the 3-fold
analogues of P1 × P1 with its two fibration structures.

A different choice of weights such as(
1 1 1 1 1
1 1 0 −1 −1

)
is more symmetric and certainly does determine the same link as that of the
original. It has the advantage that one can see immediately that the flip is
the C∗ flip by quotients of C4 by the C∗ action (1,1, −1, −1)—the bottom
row of the matrix ‘localised’ at a point in the base. But the disadvantage is
that it presents the flopping variety Z ′ embedded with quasi reflections for

Z ′ = ProjC[y,x1z1, x1z2, x2z1, x2z2] ⊂ P(1,2,2,2,2).

4.2.2. Francia antiflip. Consider the action of G on C[x1, x2, y, z1, z2] given
by weights (

0 1 1 1 1
1 0 −1 −2 −3

)
.

Calculating the quotients this time describes a Sarkisov link

Y ��� Y ′

↙ ↘ ↙ ↘
P3 Z P(1,1,2,3)

in which one end is the (1,2,3)-blowup of a point of P3, the other is the
(1,1,2)-blowup of a nonsingular point of P(1,1,2,3), and the map Y ��� Y ′

is the opposite of the Francia flip.
We describe this in terms of toric geometry. Start with the usual fan for

P3 in Z3. After introducing the ray (1, −1,2) and subdividing minimally,
giving the fan ΔY , the convex cone

〈(1, −1,2), (0,1,0), (1,0,0), (0,0,1)〉
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is divided into two simplexes by the face joining (1,0,0) and (0,0,1). The
Francia antiflip is the operation on fans ΔY � ΔY ′ that removes this edge
and replaces it by the edge joining (1, −2,1) and (0,1,0); indeed, in the
notation of [Rei83],

1 × (1, −1,2) + 1 × (0,1,0) = 1 × (1,0,0) + 2 × (0,0,1).

Since in ΔY ′

(0,0,1) = 1 × (1, −1,2) + 1 × (−1, −1, −1) + 2 × (0,1,0),

we can remove the ray (0,0,1), the opposite of a (1,1,2)-blowup of a non-
singular point. The result is P(1,1,2,3) because

1 × (1,0,0) + 1 × (1, −1,2) + 2 × (−1, −1, −1) + 3 × (0,1,0) = (0,0,0).

As another example, the action(
0 1 1 1 1
1 0 −1 −2 −5

)
is similar: the corresponding link starts with the (1,2,5)-blowup of P3, makes
the antiflip of type (1,1, −1, −4), and finishes with (the inverse of) the
Kawamata blowup of 1/3(1,1,2) in P(1,3,4,5). One can check that these
are the only two such examples of Sarkisov links starting from P3: more
precisely, any other calculation with N = 5 and ordinary P3 at one end has
nonterminal singularities emerging from the antiflip.

4.2.3. Change of structure. The action(
0 1 1 1 1
1 2 0 −1 −1

)
is similar to the first example, being

Y Y ′

↙ ↘ ↙ ↘
P3 Z P1,

where Y ��� Y ′ is the Francia flip—the toric flip with weights (1,2, −1, −1)
as in [Bro99, Section 1]—and Y ′ → P1 has fibres P(1,1,3). (In fact, the
3-folds here each have a line of canonical singularities, so this is not a Sark-
isov link: the map Y → P3 is the (2,3,3)-blowup of a point, as one sees
immediately by localising.)

In the toric fan after this flip, the plane spanned by the new edge com-
prises cones of the fan, so the variety Y ′ admits a toric morphism to P1.
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§5. Embedding 3-fold links in toric links

5.1. Finitely generated extremal extractions
Let X be a Fano 3-fold, and let p ∈ X be a point.

Definition 5.1. A morphism f : Y → X is an extremal extraction of p

if and only if it is an extremal contraction of a divisor E on Y with centre
p ∈ X and there is a member in |−KY | that has only Du Val singularities.

We use the notation of [CPR00]: A = −KX and B = −KY = f ∗A −
a(KX ,E)E. The main case we consider is when p ∈ X is a nontrivial termi-
nal quotient singularity, in which case it is well known that there is exactly
one extremal extraction of p, the Kawamata blowup (see [Kaw96]).

We define a global version of the algebras considered by Kawakita in
[Kaw02].

Definition 5.2. Let f : Y → X be an extremal extraction of p, and
define a k-algebra B =

⊕
m≥0 H0(Y,mB) that is graded by m. The graded

ring of f is the Z-graded B-algebra

M = M(f) =
⊕
n∈Z

Mn

whose nth graded piece for each integer n is the graded B-module

Mn =
⊕
m≥0

H0(Y,mB − nE).

We consider only cases for which B =
⊕

m≥0 H0(Y,mB) is a finitely gen-
erated k-algebra graded by m. The ring M is defined as a B-algebra to
emphasise its grading by n—the order of vanishing of functions on E, and
ultimately the action responsible for flips in the links—but it is usually
regarded as a k-algebra having two gradings by m and n. In particular, ref-
erences to generators of M mean generators as a k-algebra unless specified
otherwise. The ring structure of M is determined by multiplication in k(Y ).
For fixed values of m,n ∈ Z, there are k-subalgebras

R(Y,mB − nE) =
⊕
k≥0

H0
(
Y,k(mB − nE)

)
⊂ M,

and these are zero if m < 0 or if m = 0 and n > 0. We consider such subrings
only of M for m and n coprime.
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Definition 5.3. An extremal extraction f is finitely generated if and
only if M(f) is finitely generated (as a k-algebra).

If f is finitely generated and the 2-ray game on Y plays out to a link Φ
from p ∈ X , then loosely speaking we refer to M(f) as the graded ring of the
link Φ. But this is an abuse of terminology: the ring M(f) exists even if the
link does not, and when the link does exist its graded ring, even considered
only up to isomorphism, depends on which end is taken to be the start of
the link. In any case, M(f) is of finite index in the Cox ring of Y .

We give an elementary proof of the following.

Theorem 5.4. Let f : Y → X be a finitely generated extremal extraction.
Then the 2-ray game on Y determines a rank 2 link from X.

In fact, this follows from [HK00, Proposition 2.9]. Our proof is suited
to making calculations in explicit situations, because we do not apply the
variation of GIT directly to Y , but simply follow the birational transforms
of Y through an ambient toric link. The main point is that the link con-
tinues to an end and does not fail because some contraction or flip does
not exist. We use the ambient toric link to guarantee that such maps exist.
A less important point, but one that is interesting from the point of view
of calculation, is that the toric link contains only one link from X and not
a sequence of links.

Proof. Let f : X −→ Y be a finitely generated extremal extraction with
exceptional divisor E ⊂ Y from a Fano 3-fold X . Let M = M(f) be the
graded ring of f . By assumption, one can choose generators for M and write
M = N /I for a doubly graded polynomial ring N and a homogeneous ideal
I ⊂ N .

Claim 5.5. The generators of M can be chosen so that none lie in
H0(Y,aA + bE) with both a, b > 0.

First, the generating set must include a basis of H0(Y,E) ∼= k: for any
c, d > 0, H0(Y, −cB +dE) = 0 (since (−cB +dE)C < 0 for all curves C ⊂ Y

that miss E), so H0(Y,E) lies on a boundary edge of the cone Σeff . Now
let H = H0(Y,aA + bE) be a graded piece of M with a, b > 0. Since A is
numerically trivial on E, aA + bE is negative and the cohomology of

0 → OY

(
aA + (b − 1)E

)
→ OY (aA + bE) → OE(aA + bE) → 0
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shows that any element of H is divisible by the generator of H0(Y,E). Thus
elements of H are generated by those of H0(Y,E) and H0(Y,aA+(b − 1)E),
and repeating this process proves the claim.

For such a choice of generators, let

(5.1)
Y0 ��� Y1 ��� . . . ��� Yk

↙ ↘ ↙ ↘
Z0 Z1 Zk+1

be the toric link arising from the grading on N ; assume that the trivial
left-hand map (which would come from the basis of H0(Y,E)) is removed,
so that Z0 ← Y0 is a birational toric blowup. Furthermore, all Yi have the
same dimension, and we may assume that Yk → Zk+1 is either a (birational)
divisorial contraction or a map to a toric variety of lower dimension but not
a point (again by omitting a trivial right-hand map if necessary).

Claim 5.6. Without loss of generality, X embeds in Z0 and intersects
the open toric stratum of Z0 nontrivially.

Certainly X embeds into some quotient of A = Spec N , and the choice
of generators means that both X and Z0 are the quotients polarised by a
character in the first nontrivial ray in Σeff , which is along multiples of A in
each case, so X ↪→ Z0.

If the image of this embedding misses the open stratum, then there are
generators of N that map to sections in M that vanish on X . That is,
we have chosen a generator zi ∈ N that is contained in the ideal I . Such
generators are redundant and can be omitted (although we must recompute
the sequence (5.1)).

Claim 5.7. The map X ← Y embeds in the map Z0 ← Y0.

Similarly, using (a suitable multiple of) A − εE for small ε > 0 shows
that Y ↪→ Y0. The maps between quotients are the same since they are
defined by (the restriction of) the same linear system. (Many generators
may lie between A and B in Σeff , and some choices of polarisation defining
Y will embed it naturally in other Yi; nevertheless, characters very close to
A polarise the quotients of both Y and Y0.)

Claim 5.8. The birational images Yi ⊂ Yi of Y in each Yi are equal to
ProjRi, where Ri =

⊕
j≥0 H0(Y, j(miB + niE)) for some integers mi > 0

and ni ∈ Z. Moreover, each of these varieties Yi is normal.
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Each Yi is Proj of some N-graded subring of N given by the positive
multiples of polynomials in N of bidegree (mi, ni), for any fixed integer
pair (mi, ni) lying in the chamber of Σeff corresponding to Yi. The graded
subring of M comprising the summands of these same degrees defines the
image Yi ⊂ Yi of Y . Since Y meets the open torus of Y0, and since all
transformations occurring in (5.1) take place on toric strata, each Yi is
birational to Y . (We also denote Y0 = Y .) The Yi are normal because they
are Proj of the ring of all multiples of an ample divisor; this is Zariski
projective normalisation, as in [Rei87], for example.

Similarly, one can define varieties Zi ⊂ Zi. Again, these are 3-folds bira-
tional to Y , with the possible exception of Zk+1—in fact, Zk+1 is birational
to Y if and only if Yk → Zk+1 is birational, again because birationality is
detected on the intersection with the open toric stratum. The result is an
array of varieties and morphisms similar to (5.1) but composed of Yi and
Zi. The theorem then follows by showing that this array is a complete 2-ray
link from X .

Inductively, we assume that Yi is Q-factorial with ρYi = 2; these properties
hold for Y = Y0.

Claim 5.9. If i < k − 1 and the morphism Yi → Zi+1 is an isomorphism,
then Zi+1 ← Yi+1 is also an isomorphism.

Since Zi+1 is isomorphic to Yi, aB − bE is an ample Q-Cartier divisor on
Zi+1 for some a, b > 0, so the same is true for aB − (b + ε)E for sufficiently
small and rational ε > 0. Multiples of this divisor embed Zi+1 ↪→ Yi+1. In
particular, this map is an isomorphism to its image when restricted to the
open toric stratum, so it is the birational map Zi+1 ��� Yi+1, but this is an
isomorphism, which is the claim.

Claim 5.10. Suppose that Yi→Zi+1 is not an isomorphism and is small—
that is, no divisor is contracted. Then i < k, Zi+1 ← Yi+1 is small, and the
birational map Yi ��� Yi+1 is a flip, flop, or antiflip that corresponds to a
step in a 2-ray link.

Let D = miB + niE be an ample divisor on Zi+1. (This divisor will
polarise the resulting flip.) Then on Yi, the divisor D +εE is positive on the
contracted locus for small ε > 0 (because it is at the level of toric varieties
in (5.1)) and

Yi
∼= ProjZi+1

⊕
n≥0

H0
(
Zi+1, nN(D + εE)

)
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for suitable fixed (and divisible) N > 0. Since it is a quotient of some subring
of N , the OZi+1 -algebra

⊕
n≥0 H0(Zi+1, nN(D − εE)) is finitely generated;

its ProjZi+1
is the required flip, and it embeds the flip in Yi+1. In particular,

Yi+1 is also Q-factorial with ρYi+1 = 2.

Claim 5.11. Suppose that Yi → Zi+1 is birational and contracts a divisor.
Then this map is an extremal divisorial contraction that completes the link
and all further maps Zj ← Yj → Zj+1 are isomorphisms.

Since ρYi = 2 and since Zi+1 is projective, ρ(Zi+1) = 1; this contraction
is extremal, and Zi+1 is also Q-factorial. Thus, if i < k, then Zi+1 ← Yi+1

must be an isomorphism, as in Claim 5.9 above. Now, inductively for any
j > i, Zi+1

∼= Yj and Yj → Zj+1 is an isomorphism (because Yj has ρ = 1);
and again, as in Claim 5.9 above, the ‘flip’ of this is an isomorphism.

Claim 5.12. Suppose that Yi → Zi+1 is not birational. Then this map is
an extremal fibration that completes the link, and i = k.

The map is certainly extremal, as usual, since ρYi = 2, so it does complete
the link. Since Yi meets the big torus of Yi, this map can fail to be birational
only if the toric map Yi → Zi+1 is not birational. This can occur only if
i = k.

5.2. Further explicit details of the 3-fold links
Here we apply the proof of Theorem 5.4 to analyse further the steps in

the birational links of Theorem 1.1. For these links, the finite generation
assumption by Hu and Keel (see [HK00]) holds since the Kawamata blowup
of p ∈ X is a weak Fano 3-fold and so is Mori dream space. But it is inter-
esting that the method of proof of Theorem 5.4 also applies to calculations
where finite generation is not yet known. We can construct an algebra M′

using bases of linear systems on X that appear naturally (including an
ample system, so that X embeds in the resulting toric variety) and then
follow X through the toric link associated to a 2-ray game for M ′. This
may break down altogether if we have not selected enough linear systems
to start with, but very often either it works or it is clear how to choose a
better toric link.

Sections 5.2.1 and 5.2.2 explain the further analysis we do for the links
of Theorem 1.1. In particular, these methods compute the flips that occur
in the links to del Pezzo fibrations listed in Table 1. The remaining sections
sketch calculations for which we do not start out with finite generation but
instead compute a link from limited information, correcting it if necessary.
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5.2.1. Calculations in the ambient toric 2-ray link. The key point in all of
the cases here is that by Lemma 3.6 the generators of the unprojection ideal
all vanish to order 1 along the unprojection divisor. This is a consequence
not of the Type I definition but of the form of the Pfaffian equations. (The
same holds for Type I in codimension ≤ 3. However, this cannot be expected
in higher codimension; in codimension 4, [BKR] includes examples with
vanishing of order 2.)

We generate a subring of the graded ring of the link. (We use notation here
that is convenient for this calculation only, and it should not be confused
with that of Notation 3.3.) Recall that the link starts with the Kawamata
blowup of a terminal quotient singularity p ∈ X of type (1/r)(1, a, r − a)
followed by a flopping contraction: X ← Y → Z ⊃ E, where E ⊂ Z is the
image of the exceptional divisor of the blowup. Let IE⊂Z = (y1, y2, y3) and
x1, x2, x3 be coordinates on E ∼= P(1, a, r − a). The weights ai, bj of the vari-
ables yi, xj translate on Y as

xi ∈ H0(Y, biB), yi ∈ H0(Y,aiB − E),

where a1 ≤ a2 ≤ a3, as usual. Including a generating section e ∈ H0(Y,E)
and the projection variable z ∈ H0(Y, cB + E), we have the subring

M ′ := C[e, z, x1, x2, x3, y3, y2, y1] ⊂ M.

Of course, the given generators of M ′ are subject to relations. Writing
M ′ = N /I for a polynomial ring N with generators in the same bidegrees
as those of M ′, we recover a toric link. We do not concern ourselves with
whether M ′ = M because, in the cases we consider, the toric link is enough
to describe the Sarkisov link from X .

Family No. 10. Here (X ⊂ P6(1,1,1,2,2,2,3) with degree = 13/6 and
basket = {3 × 1/2(1,1,1),1/3(1,1,2)}). We describe M ′ = N /I in this case
together with the action of C∗ × C∗ given by a matrix of weights. The link
that starts by projecting from the 1/3(1,1,2) singularity determines the
(ordered) character matrix

χ =
(

0 3 1 1 2 2 2 1
−1 −1 0 0 0 1 1 1

)
,

which determines an action of G = C∗ × C∗ on C8. The coordinates have
bidegrees given by the columns of the matrix, and we name them as e, z, x1,
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x2, x3, y1, y2, y3, in that order. The ideal I is generated by the maximal
Pfaffians of the skew 5 × 5 matrix⎛⎜⎜⎝

z A3,0 B2,0 C2,0

D3,0 E2,0 F2,0

y1 −y2

y3

⎞⎟⎟⎠ ,

where A = A(x1, x2, x3, ey1, ey2, ey3) has bidegree (3,0), and analogous state-
ments for B, . . . ,F . Let A = V (I) ⊂ C8.

The quotient A//(3,−1)G gives X , although not in the embedding in P6

above since that is polarised by A = B + 1/3E, which is not an element
of N /I . It is easier to see that the quotient A//(1,0)G is the projection of
X from its 1/3 point: each term zyi is eliminated by one of the Pfaffian
equations.

We could compute a graded ring on X ′, the end of the link, but again
it would appear in some Veronese embedding. The unprojection calculation
below is a better method for computing X ′.

The link that starts by projecting from one of the 1/2(1,1,1) singularities
determines the (ordered) character matrix

χ =
(

0 2 1 1 1 3 2 2
−1 −1 0 0 0 1 1 1

)
.

A row operation on the character matrix renders it as(
3 5 1 1 1 0 −1 −1

−1 −1 0 0 0 1 1 1

)
,

and equations for y1z and y1xi for some i eliminate two of the variables in
a neighbourhood of Py1 , so after the usual flop we see a toric hypersurface
flip of type (3,1,1, −1, −1; 2), where the 2 indicates the weight of the hyper-
surface. The resulting 3-fold has a fibration to P1, given by the ratio of the
last two variables, with cubic surfaces as the fibres—these can already be
seen in the syzygy matrix.

The flip occurring in the example above was one of the hypersurface flips
of [Bro99, Theorem 8.1]. In fact, every flip that appears in Theorem 1.1 is
either a toric flip or a hypersurface flip. This seems to be simply an artifact
of working in fairly low codimension. The proof of Theorem 1.1 shows that
the subalgebra M ′ that we work with is sufficient to describe the link on X ,
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so the flip is at most codimension 3. Using the notation of Proposition 3.2,
the fact that the variable t appears linearly in the syzygy matrix of X means
that there is at least one linear equation in a neighbourhood of the flipping
locus, and this reduces the codimension of the flip to at most 2. Finally,
a case-by-case check on the degrees of the forms C and F in the same
syzygy matrix confirms that there is at least one further independent linear
equation in a neighbourhood of the flipping locus when these forms are
chosen to be general. All the same, it is amazing how effective the ambient
toric links are for describing the various generalised flips that occur in these
links.

5.2.2. Unprojection and the equations at the end of the link. When the link
ends with another Fano 3-fold, we can compute its equations by adapting
Reid and Takagi’s example of a so-called Type III unprojection (see [Rei00,
Example 9.16]). We sketch the general approach and then give a typical
example of the method.

Consider C10 with coordinates t, x,x1, x2, A,B,C,D,E,F . Let V ⊂ C10

be the 7-fold defined by the five maximal Pfaffians of the following 5 × 5
skew matrix (where, as usual, we omit the diagonal of zeros and the skew
lower triangular half): ⎛⎜⎜⎝

t A B C

D E F

x2 x1

x

⎞⎟⎟⎠ .

Of course, V ∼= C Grass(2,5), the cone on the Grassmannian in its Plücker
embedding, and the equations are neatly expressed in terms of matrix entries
mij by

ϕ� = mhimjk − mhjmik + mhkmij

for the five ways of choosing {h, i, j, k, �} = {1,2,3,4,5} with h, i, j, k in
increasing order.

The elimination of t (which appears only in Pfaffians ϕ3,ϕ4,ϕ5) from
these equations determines a birational map from V to

W : (ϕ1 = ϕ2 = 0) ⊂ C9.
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The locus (x = 0) in W splits into two components E ∪ F , where the ideals
of these loci in C9 are

IE = (x,x1, x2) and IF =

⎛⎝x,
2∧⎛⎝B C

E F

x2 −x1

⎞⎠⎞⎠
and ∧2M denotes the three 2 × 2 minors of a matrix M . In fact, E is the
unique exceptional divisor of W ��� V , and the unprojection construction
we describe next produces another birational map W ��� U—the so-called
Type III unprojection—for which F is the unique exceptional divisor.

Unprojections can be computed by comparing free resolutions, so setting
O = OC9 , we write

0 ← OF ←− O M0←− 4O M1←− 5O M2←− 2O ← 0
↑ ‖ J1 ↑ J2 ↑

0 ← OX ←− O (ϕ2,−ϕ1)←− 2O
t(ϕ1,ϕ2)←− O ← 0

where the free resolution of OF is computed by M0 = (−x,ϕ1,ϕ2,ϕ3) and

M1 =

⎛⎜⎜⎝
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

x 0 0 −C B

0 x 0 −F E

0 0 x −x1 x2

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎜⎜⎝
B C

E F

x2 x1

0 x

−x 0

⎞⎟⎟⎟⎟⎠ ,

and the comparison maps are

J1 =

⎛⎜⎜⎝
0 0
1 0
0 1
0 0

⎞⎟⎟⎠ , J2 =

⎛⎜⎜⎜⎜⎝
A

D

0
−x2

−x1

⎞⎟⎟⎟⎟⎠ .

The unprojection is then the solution of the equation

(5.2) J2(−1) = M2

(
s1

s2

)
,

where s1, s2 are the standard basis of 2O, the domain of M2, and −1 is the
basis of O, the domain of J2. (Note that s1, s2 both have a simple pole along
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the divisor F , as usual for unprojection variables.) That is, we consider C11

with new variables s1, s2 and define U ⊂ C11 by the five equations (5.2).
Of course, two of the equations are x1 = xs1 and x2 = xs2, so one would
usually eliminate these two variables to get

U : (A + Bs1 + Cs2 = D + Es1 + Fs2 = 0) ⊂ C9.

Two twists make this applicable for us. First, the whole construction can
be graded with weights chosen on the variables for which the Pfaffians are
homogeneous. In that case, the resolutions are also graded, and one can
take Proj of the rings appearing to give birational maps between varieties
in WPS. Second, the variables can be specialised to give calculations in
lower dimensions; typical for us is to set A, . . . ,F to be functions of three
new variables together with the x variables so that we work with projective
3-folds.

Family No. 9. Here (X ⊂ P6(1,1,1,3,4,5,6) with degree = 5/6 and bas-
ket = {1/6(1,1,5)}). The link from the 1/6(1,1,5) point will be a Kawamata
blowup, a flop, and a hypersurface flip of type (4,1,1, −3, −1; 2) followed by
the contraction of a divisor to a point on a Fano 3-fold X ′. The unprojection
method computes the equations of X ′ from the syzygy matrix of X . In
variables x,x1, x2, y, z, t, u, this matrix is⎛⎜⎜⎝

u A7 B5 C4

t E3 F2

z y

x

⎞⎟⎟⎠ ,

where A, . . . ,F are general forms of the indicated degrees.
The projection X ��� Z from Pu works by eliminating u as usual. To

continue the link, we introduce two new variables, s1 and s2 of weights 2
and 3, respectively, subject to relations⎛⎜⎜⎜⎜⎝

A7 B5 C4

t E3 F2

0 z y

−z 0 x

−y −x 0

⎞⎟⎟⎟⎟⎠
⎛⎝ 1

s1

s2

⎞⎠ = 0,

where the big matrix is the final three columns of the syzygy matrix. We
use these equations to eliminate y, z, and also t, so the resulting variety is

X ′ : (A7 + s1B5 + s2C4 = 0) ⊂ P4(1,1,1,2,3)
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given by an equation of degree 7 in variables x,x1, x2, s1, s2 (after substi-
tuting for y, z, t).

Notice that X ′ contains the s1s2 line P(2,3) and that for general A it
has a single node in the interior of this line—this point is the image of
the contracted divisor. Thus X ′ is very far from being a general element of
the family of all such hypersurfaces. This is typical and already observed
in [CM04]. Another point is that the model case of Type III unprojection
in [Rei00] is a (rational) divisorial contraction to a line, so this example
exhibits something new.

5.2.3. Missing generators. The calculations above apply to many other sit-
uations. It can happen that one does not compute the full graded ring M at
first attempt. For example, in the del Pezzo fibrations of Brown, Corti, and
Zucconi (see [BCZ04]), birational links are started without enough genera-
tors of M(f) to realise them. The typical indication of missing generators is
when a flipping contraction of Yi is not completed to a flip by the ambient
toric flip—rather than extracting a new curve on Yi+1, the toric transfor-
mation may extract a surface (leaving Yi+1 non-Q-factorial). Unprojection
is the key to identifying the missing generator. This is explained in [BCZ04,
Section 4.4.3].

5.2.4. Elliptic and K3 fibrations of Ryder. Ryder [Ryd02] (and similar
results in [Ryd06]) shows that the general Fano 3-fold X = X22 ⊂ P(1,1,3,
7,11) is birational to a variety fibred over P1 in K3 surfaces by computing a
2-ray link. Although we do not know finite generation automatically in this
case (since B = −KY is not nef on the Kawamata blowup Y of X), we can
still apply the proof of Theorem 5.4, working on a rank 2 toric variety that
we guess by knowing some linear systems on X ; again, we make no attempt
to compute the full ring M(f) for the Kawamata blowup f but compute
just enough of it to see the link.

Given the matrix of weights of a G = C∗ × C∗ action on C6,(
0 3 11 7 1 1
1 1 3 1 0 0

)
,

consider the general hypersurface of bidegree (22,6). One can check that
the quotient linearised by χ = (3,1) is the Fano X . The link proceeds by
blowing up the 1/3(1,1,2) quotient singularity X ← Y . The first toric mod-
ification (a toric flip with base the quotient C6/G linearised by (11,3))
happens away from Y , because if z is the variable of weight (11,3), the
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equation of Y includes a z2 term. But the second toric modification induces
an antiflip of hypersurface type (−7, −4, −10,1,1; −20). Writing down equa-
tions shows that the flipping curve passes through the two singularities
1/7(1,3,4),1/2(1,1,1) ∈ Y . The antiflip Y ��� Y ′ results in a nonsingular
variety that has a morphism to P1. Again, the equations show that the fibre
is a hypersurface of degree 6 in P(1,1,1,3); the general fibre is nonsingular
and so is a K3 surface.

The weight matrix used here could be deduced using calculations sim-
ilar to [CPR00, Section 4.10], computing the vanishing of the coordinates
on P(1,1,3,7,11) on the exceptional divisor of X ← Y . However, in this
case it is likely that we have not calculated the full graded ring M, since
presumably other generators are coming from the linear systems of 10B +
2E,13B + 3E,16B + 4E,19B + 5E. But we already have enough sections
to compute the link, so we do not look for these extra generators.
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Vol. II, Progr. Math., 36, Birkhäuser Boston, Boston, 1983, 395–418.

[Rei87] M. Reid, “Young person’s guide to canonical singularities” in Algebraic
Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure
Math., 46, Amer. Math. Soc., Providence, 1987, 345–414.

[Rei92] M. Reid, What is a flip? unpublished manuscript of Utah seminar, 1992.



44 G. BROWN AND F. ZUCCONI

[Rei97] M. Reid, “Chapters on algebraic surfaces” in Complex Algebraic Geometry
(Park City, Utah, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc.,
Providence, 1997, 3–159.

[Rei00] M. Reid, “Graded rings and birational geometry” in Proceedings of Algebraic
Geometry Symposium (Kinosaki), 2000, 1–72.

[Rei02] M. Reid, Quasi-Gorenstein unprojection, unpublished manuscript, 2002.
[Ryd02] D. Ryder, Elliptic and K3 fibrations birational to Fano 3-fold weighted hyper-

surfaces, Ph.D. dissertation, University of Warwick, Coventry, 2002.
[Ryd06] D. Ryder, Classification of elliptic and K3 fibrations birational to some Q-

Fano 3-folds, J. Math. Sci. Univ. Tokyo, 13 (2006), 13–42.
[Tak06] H. Takagi, Classification of primary Q-Fano threefolds with anti-canonical

Du Val K3 surfaces, I, J. Algebraic Geom., 15 (2006), 31–85.
[Tha96] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc., 9

(1996), 691–723.

Gavin Brown

School of Mathematics

Loughborough University

Leicestershire LE11 3TU

United Kingdom

G.D.Brown@lboro.ac.uk

Francesco Zucconi

Dipartimento di Informatica e Matematica

Università di Udine
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