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Abstract. A domain D ⊂ Cz admits the circular slit mapping P (z) for a, b ∈
D such that P (z) − 1/(z − a) is regular at a and P (b) = 0. We call p(z) =

log |P (z)| the L1-principal function and α = log |P ′(b)| the L1-constant, and

similarly, the radial slit mapping Q(z) implies the L0-principal function q(z)

and the L0-constant β. We call s = α − β the harmonic span for (D,a, b). We

show the geometric meaning of s. Hamano showed the variation formula for

the L1-constant α(t) for the moving domain D(t) in Cz with t ∈ B := {t ∈
C : |t| < ρ}. We show the corresponding formula for the L0-constant β(t) for

D(t) and combine these to prove that, if the total space D =
⋃

t∈B(t,D(t)) is

pseudoconvex in B × Cz, then s(t) is subharmonic on B. As a direct application,

we have the subharmonicity of log coshd(t) on B, where d(t) is the Poincaré

distance between a and b on D(t).

§1. Introduction

Let R be a bordered Riemann surface with boundary ∂R = C1 + · · · +Cν

in a larger Riemann surface R̃, where Cj is a Cω smooth contour in R̃.
Fix two points a, b with local coordinates Ua : |z| < r0 and Ub : |z − ξ| < r1,
where a and b correspond to 0 and ξ, respectively (where Ua and Ub have
no relations). Among all harmonic functions u on R \ {a, b} with logarith-
mic singularity log(1/|z|) at a and log |z − ξ| at b normalized limz→0(u(z) −
log(1/|z|)) = 0, we have two special functions p and q with the bound-
ary conditions that, for each Cj , p satisfies p(z) = constant cj on Cj and
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Cj

∂p(z)
∂nz

dsz = 0 (where ∂
∂nz

is the outer normal derivative and dsz is the

arc length element at z of Cj), while q satisfies ∂q(z)
∂nz

= 0 on Cj . We consider
the constant terms α := limz→ξ(p(z) − log |z − ξ|) and β := limz→ξ(q(z) −
log |z − ξ|). We call p(z) the L1-principal function and α the L1-constant
for (R,a, b) with respect to local coordinates Ua and Ub or, simply, for
(R,0, ξ), and similarly, we call q(z) the L0-principal function and β the
L0-constant (see, [1, Chapter III, Section 3]). Now let B = {t ∈ C : |t| < ρ},
and let R : t ∈ B → R(t) � R̃ be a smooth variation of Riemann surfaces
R(t) in R̃ with t ∈ B such that ∂R(t) is Cω smooth in R̃ and R(t), t ∈ B

contains z = 0 in Ua and ξ(t), which vary holomorphically in Ub. Then each
R(t), t ∈ B admits the L1-principal function p(t, z) and L1-constant α(t)
for (R(t),0, ξ(t)) and, similarly, the L0-principal function q(t, z) and the
L0-constant β(t).

Hamano [9] showed the variation formula of the second order for α(t) (see
Lemma 2.1 below), which implies that, if the total space R =

⋃
t∈B(t,R(t))

is a pseudoconvex domain in B × R̃, then α(t) is subharmonic on B. Contin-
uing on [9], we show the variation formula for β(t) (see Lemma 2.2 below),
which continues on [10]. To prove the formula for β(t), we add a new idea
to Hamano’s proof for α(t). In fact, the formula for α(t) does not concern
the genus of R(t), but the formula for β(t) does concern it. The formula
for β(t) implies that, if R is pseudoconvex in B × R̃ and if R(t), t ∈ B

is planar, then β(t) is superharmonic on B. This contrast between the
subharmonicity of α(t) and the superharmonicity of β(t) is unified with
the notion of the harmonic span s(t) := α(t) − β(t) for (R(t),0, ξ(t)) intro-
duced by Nakai (see, [13, Chapter II, Section 3]): if R is pseudoconvex in
B × R̃ and R(t), t ∈ B is planar, then s(t) is subharmonic on B; this implies
Corollary 4.1. Assume, moreover, that each R(t), t ∈ is simply connected.
Let ξi :=

⋃
t∈B(t, ξi(t)), i = 1,2 be two holomorphic sections of R over B,

and let d(t) denote the Poincaré distance between ξ1(t) and ξ2(t) on R(t).
Then δ(t) := log coshd(t) is subharmonic on B. Further, δ(t) is harmonic
on B if and only if R is fiber-preserving biholomorphic to the product
B × R(0).

§2. Variation formulas for L0-principal functions

Let B = {t ∈ C : |t| < ρ}, and let π : R̃ → B be a holomorphic family such
that R̃ is a complex 2-dimensional manifold, π is a holomorphic projection



VARIATION FORMULAS FOR PRINCIPAL FUNCTIONS, II 21

from R̃ onto B, and each fiber R̃(t) = π−1(t), t ∈ B is irreducible and non-
singular in R̃. We put R̃ =

⋃
t∈B(t, R̃(t)), and we call R̃(t) the fiber of R̃

over t ∈ B. Let R =
⋃

t∈B(t,R(t)) be a subdomain in R̃ such that we have
the following conditions:
(1) R̃(t) � R(t) �= ∅, t ∈ B, and R(t) is a connected Riemann surface of

genus g ≥ 0 such that ∂R(t) in R̃(t) consists of a finite number of Cω

smooth contours Cj(t), j = 1, . . . , ν;
(2) the boundary ∂R =

⋃
t∈B(t, ∂R(t)) of R in R̃ is Cω smooth and ∂R is

transverse to each fiber R̃(t), t ∈ B.
Note that g and ν are independent of t ∈ B. Each Cj(t) is oriented by
∂R(t) = C1(t)+ · · · +Cν(t). We regard the complex manifold R as a variation
of Riemann surfaces R(t) with parameter t ∈ B,

R : t ∈ B → R(t) � R̃(t).

We denote by Γ(B, R) the set of all holomorphic sections of R over B.
Assume that there exist Ξ0,Ξξ ∈ Γ(B, R) with Ξ0 ∩ Ξξ = ∅ such that there
exist π-local coordinates U0 := B × {|z| < r0} and Uξ := B × {|z − ξ(t)| < r1}
of neighborhoods V0 of Ξ0 and Vξ of Ξξ in R such that Ξ0 corresponds
to z = 0 and Ξξ corresponds to z = ξ(t), t ∈ B. Let t ∈ B be fixed. Then
R(t) admits the functions p(t, z) and q(t, z) such that both functions are
continuous on R(t) and harmonic on R(t) \ {0, ξ(t)} with poles log(1/|z|) at
z = 0 and log |z − ξ(t)| at z = ξ(t) normalized limz→0(p(t, z) − log(1/|z|)) =
limz→0(q(t, z) − log(1/|z|)) = 0 at z = 0, and p(t, z) and q(t, z) satisfy the
following boundary conditions (L1) and (L0), respectively: for j = 1, . . . , ν,

(L1) p(t, z) = constant cj(t) on Cj(t) and
∫

Cj(t)

∂p(t, z)
∂nz

dsz = 0;

(L0)
∂q(t, z)

∂nz
= 0 on Cj(t).

We have

p(t, z) = log
1

|z| + 0 + h0(t, z) on U0(t),
(2.1)

q(t, z) = log
1

|z| + 0 + h0(t, z) on U0(t),

where h0(t, z), h0(t, z) are harmonic for z on U0(t) such that h0(t,0),h0(t,
0) ≡ 0 on B, and
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p(t, z) = log |z − ξ(t)| + α(t) + hξ(t, z) on Uξ(t),
(2.2)

q(t, z) = log |z − ξ(t)| + β(t) + hξ(t, z) on Uξ(t),

where α(t), β(t) are the constant terms and where hξ(t, z),hξ(t, z) are har-
monic for z on Uξ(t) such that hξ(t, ξ(t)),hξ(t, ξ(t)) ≡ 0 on B. We call p(t, z)
the L1-principal function, or simply L1-function, and α the L1-constant for
(R(t),0, ξ(t)), and similarly, we call q(t, z) the L0-function and β(t) the
L0-constant.

The following variation formula is for the second order for α(t).

Lemma 2.1 ([9, Lemma 1.3]). We have

∂2α(t)
∂t∂t̄

=
1
π

∫
∂R(t)

k2(t, z)
∣∣∣∂p(t, z)

∂z

∣∣∣2 dsz +
4
π

∫ ∫
R(t)

∣∣∣∂2p(t, z)
∂t̄∂z

∣∣∣2 dxdy.

Here

k2(t, z) =
( ∂2ϕ

∂t∂t̄

∣∣∣∂ϕ

∂z

∣∣∣2 − 2	
{ ∂2ϕ

∂t̄∂z

∂ϕ

∂t

∂ϕ

∂z̄

}
+

∣∣∣∂ϕ

∂t

∣∣∣2 ∂2ϕ

∂z∂z̄

)/∣∣∣∂ϕ

∂z

∣∣∣3
on ∂R, where ϕ(t, z) is a C2 defining function of ∂R.

Note that k2(t, z) on ∂R does not depend on the choice of defining func-
tions ϕ(t, z) of ∂R. We call k2(t, z) the Levi curvature for ∂R (see [11, (1.3)],
[12, (7)]).

We give the variation formulas for β(t). In the case where R(t) is of
genus g ≥ 1, we need the following consideration, which was not neces-
sary for the variation formulas for α(t). We draw, as usual, A,B cycles
{Ak(t),Bk(t)}1≤k≤g on R(t), which vary continuously in R with t ∈ B with-
out passing through 0, ξ(t):

Ak(t) ∩ Bl(t) = ∅ for k �= l, Ak × Bk = 1 for k = 1, . . . , g,
(2.3)

Ak(t) ∩ Al(t) = Bk(t) ∩ Bl(t) = ∅ for k �= l.

Here Ak(t) × Bk(t) = 1 means that Ak(t) crosses Bk(t) once from the right-
hand side to the left-hand side of the direction Bk(t). On R(t), t ∈ B we put
∗dq(t, z) = − ∂q(t,z)

∂y dx + ∂q(t,z)
∂x dy, the conjugate differential of dq(t, z).
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Lemma 2.2. We have

∂2β(t)
∂t∂t

= − 1
π

∫
∂R(t)

k2(t, z)
∣∣∣∂q(t, z)

∂z

∣∣∣2 dsz − 4
π

∫∫
R(t)

∣∣∣∂2q(t, z)
∂t∂z

∣∣∣2 dxdy

− 2
π

�
g∑

k=1

( ∂

∂t

∫
Ak(t)

∗ dq(t, z)
)

·
( ∂

∂t

∫
Bk(t)

∗ dq(t, z)
)
.

Proof. We divide the proof into two steps.
Step 1. The formula does not depend on the choice of either π-biholo-

morphic mappings or π-local coordinates.
In fact, let π̃ : D̃ → B be a holomorphic family, and let a subdomain D of D̃

satisfy conditions (1) and (2). We write π̃−1(t) = D̃(t) and D =
⋃

t∈B(t,D(t)),
where D(t) � D̃(t). Assume that there exists a π-biholomorphic mapping

T : (t, z) ∈ R̃ → (t,w) =
(
t,F (t, z)

)
∈ D̃

such that T (R) = D. Thus, R(t) and D(t) are equivalent as Riemann sur-
faces. We write Ξ̃0, Ξ̃ξ̃

∈ Γ(B, D), which correspond to Ξ0,Ξξ ∈ Γ(B, R)

by T . We put Ãk(t) = F (t,Ak(t)), and we put B̃k(t) = F (t,Bk(t)) on D(t).
Since

∫
Ak(t) ∗ dq(t, z) =

∫
Ãk(t)

∗ dq̃(t,w), we have

(i)
∂

∂t

∫
Ãk(t)

∗ dq̃(t,w) =
∂

∂t

∫
Ak(t)

∗ dq(t, z) for t ∈ B,

and similarly for B̃k(t) and Bk(t). Let π̃-local coordinates Ũ0 := B × {|w| <

ρ0} and Ũ
ξ̃
:= B × {|w − ξ̃(t)| < ρ1} of neighborhoods Ṽ0 of Ξ̃0 and Ṽ

ξ̃
of Ξ̃

ξ̃

in D. Each D(t), t ∈ B admits the L0-function q̃(t,w) and the L0-constant
β̃(t) for (D(t),0, ξ̃). We have

q̃(t,w) = log
1

|w| + 0 + h̃0(t,w) on
{

|w| < ρ0

}
,

q̃(t,w) = log |w − ξ̃(t)| + β̃(t) + h̃
ξ̃
(t,w) on

{
|w − ξ̃(t)| < ρ1

}
,

where h̃0(t,w) is harmonic on {|w| < ρ0} such that h̃0(t,0) ≡ 0 on B, and
h̃

ξ̃
(t, z) is harmonic on {|w − ξ̃(t)| < ρ1} such that h̃

ξ̃
(t, ξ(t)) ≡ 0 on B. Then

we have the biholomorphic mappings T0 : (t, z) ∈ U0 → (t,w) = (t, f0(t, z)) ∈
Ũ0 such that f0(t,0) = 0, and Tξ : (t, z) ∈ Uξ → (t,w) = (t, fξ(t, z)) ∈ Ũ

ξ̃
such

that fξ(t, ξ(t)) = ξ̃(t). For t ∈ B, we put a0(t) := ∂f0(t,z)
∂z |z=0 and aξ(t) :=
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∂fξ(t,z)
∂z |z=ξ(t), so that a0(t), aξ(t) are nonvanishing holomorphic functions

on B. We have

β(t) = β̃(t) − log |a0(t)| + log |aξ(t)| on B,

which implies that

(ii)
∂2β(t)
∂t∂t

=
∂2β̃(t)
∂t∂t

for t ∈ B.

If we write k̃2(t,w) for the Levi curvature for ∂D, then we have

k̃2(t,w) = k2(t, z)
∣∣∣∂F (t, z)

∂z

∣∣∣
for w = F (t, z) and (t, z) ∈ ∂R, and hence

k̃2(t,w)
∣∣∣∂q̃(t,w)

∂w

∣∣∣2|dw| = k2(t, z)
∣∣∣∂q(t, z)

∂z

∣∣∣2|dz|,

which implies that

(iii)
∫

∂D(t)
k̃2(t,w)

∣∣∣ ∂q̃

∂w
(t,w)

∣∣∣2 dsw =
∫

∂R(t)
k2(t, z)

∣∣∣∂q

∂z
(t, z)

∣∣∣2 dsz

for t ∈ B. Since

(iv)
∫ ∫

D(t)

∣∣∣ ∂2q̃

∂t∂w
(t,w)

∣∣∣2 dudv =
∫

R(t)

∣∣∣ ∂2q

∂t∂z
(t, z)

∣∣∣2 dxdy

for t ∈ B, equations (i)–(iv) imply Step 1.
Step 2. Lemma 2.2 is true.
In fact, it suffices to prove the lemma at t = 0. If necessary, take a smaller

disk B of center 0. Then by the standard use of the immersion theorem for
the open Riemann surfaces due to Nishimura [14] (see also [7]), we have a π-
biholomorphic mapping from R̃ to an unramified (Riemann) domain D̃ over
B × Cw such that, if we write T (R) = D, then the holomorphic sections Ξ0

and Ξξ of R over B correspond to the constant sections Ξ0 := B × {w = 0}
and Ξ1 := B × {w = 1} of D over B. By Step 1, it suffices to show the lemma
for the unramified domain D over B × Cw and the sections Ξ0,Ξ1 ∈ Γ(B, D).
For the sake of convenience, we use anew the notation R̃ and R for D̃
and D. By condition (1), the boundary ∂R of R in R̃ is Cω smooth, and



VARIATION FORMULAS FOR PRINCIPAL FUNCTIONS, II 25

each R̃(t), t ∈ B is a Riemann surface sheeted over Cz without ramification
points. By condition (2), R(t) is a relatively compact subdomain of R̃(t) with
Cω smooth boundary ∂R(t) and R(t) � 0,1. We have R =

⋃
t∈B(t,R(t))

and ∂R =
⋃

t∈B(t, ∂R(t)), which is transverse to each fiber R̃(t). Under
these situations we find a neighborhood V =

⋃ν
j=1 Vj (disjoint union) of

∂R(0) =
⋃ν

j=1 Cj(0) such that (B × V ) ∩ (Ξ0 ∪ Ξ1) = ∅; Vj is a thin tubular
neighborhood of Cj(0) with Vj ⊃ Cj(t) for t ∈ B, and q(t, z) is harmonic on
(R(0) ∪ V ) \ {0,1}. We write R̂(0) := R(0) ∪ V , so that q(t, z) is defined in
the product B × R̂(0). Then, (2.2) becomes

(2.4) q(t, z) = log |z − 1| + β(t) + h1(t, z) on U1(t),

where h1(t,1) ≡ 0 on B. For t ∈ B we put u(t, z) := q(t, z) − q(0, z) on R̂(0) \
{0,1}. By putting u(t,0) = 0 and u(t,1) = β(t) − β(0), u(t, z) is harmonic
on R̂(0).

Let 0 < ε � 1, let γε(0) = {|z| < ε}, and let γε(1) = {|z − 1| < ε}. Then,∫
∂R(0)−∂γε(0)−∂γε(1)

u(t, z)
∂q(0, z)

∂nz
dsz − q(0, z)

∂u(t, z)
∂nz

dsz = 0.

Letting ε → 0, we have from ∂q(0,z)
∂nz

= 0 on Cj(0), j = 1, . . . , ν,

(2.5) β(t) − β(0) =
−1
2π

ν∑
j=1

∫
Cj(0)

q(0, z)
∂q(t, z)

∂nz
dsz =:

−1
2π

ν∑
j=1

Ij(t).

We take a point z0
j (t) on each Cj(t), t ∈ B such that z0

j (t) continuously moves
in ∂R with t ∈ B, and we choose a harmonic conjugate function q∗

j (t, z) of

q(t, z) in Vj such that q∗
j (t, z

0
j (t)) = 0. Since ∂q(t,z)

∂nz
= 0 on Cj(t), q∗

j (t, z) is
single valued in Vj and

(2.6) q∗
j (t, z) = 0 for z ∈ Cj(t).

Since dq∗
j (t, z) = ∂q(t,z)

∂nz
dsz , dq(0, z) = − ∂q∗

j (0,z)

∂nz
dsz along Cj(0), we have

Ij(t) =
∫

Cj(0)
q(0, z)dq∗

j (t, z) =
∫

Cj(0)
d
(
q(0, z)q∗

j (t, z)
)

− q∗
j (t, z)dq(0, z)

=
∫

Cj(0)
q∗
j (t, z)

∂q∗
j (0, z)
∂nz

dsz.
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Differentiating both sides by t and t at t = 0, we have

(2.7)
∂2Ij

∂t∂t
(0) =

∫
Cj(0)

∂2q∗
j

∂t∂t
(0, z)

∂q∗
j (0, z)
∂nz

dsz.

We recall the following.

Proposition 2.1 ([9, (1.2)]). Let u(t, z) be a C2 function for (t, z) in
a neighborhood Vj =

⋃
t∈B(t, Vj(t)) of Cj =

⋃
t∈B(t,Cj(t)) over B × Cz such

that u(t, z), t ∈ B is harmonic for z in Vj(t) and u(t, z) = a certain constant
cj(t) on Cj(t). Then

∂2u

∂t∂t

∂u

∂nz
dsz = 2k2(t, z)

∣∣∣∂u

∂z

∣∣∣2dsz +
∂2cj(t)
∂t∂t

∂u

∂nz
dsz

+ 4�
{∂u

∂t

∂2u

∂t∂z
dz

}
− 4�

{∂cj(t)
∂t

∂2u

∂t∂z
dz

}
along Cj(t).

We apply this for u(t, z) = q∗
j (t, z) with (2.6) to (2.7) and obtain

∂2Ij

∂t∂t
(0) = 2

∫
Cj(0)

k2(0, z)
∣∣∣∂q∗

j (0, z)
∂z

∣∣∣2 dsz + 4�
∫

Cj(0)

∂q∗
j

∂t
(0, z)

∂2q∗
j

∂t∂z
(0, z)dz.

We put

ak(t) =
∫

Ak(t)
∗ dq(t, z), bk(t) =

∫
Bk(t)

∗ dq(t, z).

We fix a point z0( �= 0,1) such that B × {z0} ⊂ R. On R(t), t ∈ B we choose
a branch q∗(t, z) of a harmonic conjugate function of q(t, z) on R̂(0) \ {0,1}
such that q∗(t, z0) = 0. Since

∫
Cj(0) ∗ dq(t, z) = 0, we have

q∗(t, z′) = q∗(t, z′ ′) mod
{
2π,ak(t),bk(t)(k = 1, . . . , g)

}
for any z′, z′ ′ over the same point z ∈ R̂(0) \ {0,1}. We also have q∗

j (t, z) −
q∗(t, z) = cj(t) on Vj , where cj(t) is a certain constant for z ∈ Vj . It follows
that ∫

Cj(0)

∂q∗
j

∂t
(0, z)

∂2q∗
j

∂t∂z
(0, z)dz

=
∫

Cj(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz +

∂cj

∂t
(0)

∫
Cj(0)

∂2q∗

∂t∂z
(0, z)dz.
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The function f(t, z) := q∗(t, z) − iq(t, z) belongs to Cω(B × Vj), and f(t, z),
t ∈ B is a single-valued holomorphic function in Vj . Hence,∫

Cj(0)

∂2q∗

∂t∂z
(0, z)dz =

1
2

[ ∂

∂t

(∫
Cj(0)

f ′
z(t, z)dz

)]
t=0

= 0.

Therefore,

∂2Ij

∂t∂t
(0) = 2

∫
Cj(0)

k2(0, z)
∣∣∣∂q∗(0, z)

∂z

∣∣∣2 dsz

+ 4�
{∫

Cj(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

}
.

It follows from (2.5) that

∂2β

∂t∂t
(0) = − 1

π

∫
∂R(0)

k2(0, z)
∣∣∣∂q∗(0, z)

∂z

∣∣∣2 dsz

− 2
π

�
{∫

∂R(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

}
.

We divide the proof into two cases.
Case 1: R(t) is planar (i.e., g = 0). In this case, each q∗(t, z), t ∈ B is

determined up to additive constants mod 2π. By (2.1) and (2.4), ∂q∗(t,z)
∂t , t ∈

B is a single-valued harmonic function on R̂(0), and ∂2q∗(t,z)
∂t∂z

, t ∈ B is a
single-valued holomorphic function on R̂(0). Then,∫

∂R(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz = 2i

∫ ∫
R(0)

∣∣∣ ∂2q∗

∂t∂z
(0, z)

∣∣∣2 dxdy.

Therefore,

∂2β

∂t∂t
(0) = − 1

π

∫
∂R(0)

k2(0, z)
∣∣∣∂q(0, z)

∂z

∣∣∣2 dsz − 4
π

∫ ∫
R(0)

∣∣∣ ∂2q

∂t∂z
(0, z)

∣∣∣2 dxdy,

which is desired.
Case 2: R(t) is of genus g ≥ 1. We put R′(0) = R(0) \

⋃g
k=1(Ak(0) ∪

Bk(0)), and we put R̂′(0) = R′(0) ∪ V , so that R′(0) and R̂′(0) are planar
Riemann surfaces such that

∂R′(0) = ∂R(0) +
g∑

k=1

(
A+

k (0) + A−
k (0)

)
+

g∑
k=1

(
B+

k (0) + B−
k (0)

)
.
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Here A+
k (0) is of the same direction of Ak(0), A−

k (0) is of the opposite direc-
tion, and B+

k (0) and B−
k (0) are similar. For t ∈ B, if we restrict the branch

q∗(t, z) with q∗(t, z0) = 0 to R′(0) \ {0,1}, then q∗(t, z′) = q∗(t, z′ ′) mod 2π
for z′, z′ ′ over the same point z ∈ R̂′(0). Hence, ∂q∗

∂t (0, z) and ∂2q∗

∂t∂z
(0, z) are

single-valued harmonic functions on R̂′(0), so that∫
∂R(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

=
∫∫

R′(0)
d
(∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

)
−

g∑
k=1

∫
A±

k (0)+B±
k (0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

=: J1 − J2.

Since ∂q∗

∂t∂z
(0, z) is holomorphic on R′(0), we have

J1 = 2i
∫∫

R(0)

∣∣∣ ∂2q

∂t∂z
(0, z)

∣∣∣2 dxdy;

J2(Ak) :=
∫

A±
k (0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

=
∫

Ak(0)

(∂q∗

∂t
(0, z+) − ∂q∗

∂t
(0, z−)

) ∂2q∗

∂t∂z
(0, z)dz.

By (2.3) and
∫
Cj(0) ∗ dq(t, z) = 0, it holds that, for z± over any z ∈ Ak(0),

q∗(t, z+) − q∗(t, z−) =
∫

Bk(0)
∗ dq(t, ζ) mod2π.

Therefore,
∂q∗

∂t
(t, z+) − ∂q∗

∂t
(t, z−) =

∂

∂t

∫
Bk(0)

∗ dq(t, ζ),

independent of z ∈ Ak(0). By ∂q∗(t,z)
∂z dz = (1/2)(∗dq(t, z) − i dq(t, z)),

J2(Ak) =
[ ∂

∂t

(∫
Bk(0)

∗ dq(t, ζ)
)]

t=0
·
[ ∂

∂t

(∫
Ak(0)

∂q∗(t, z)
∂z

dz
)]

t=0

=
1
2

∂bk

∂t
(0) · ∂ak

∂t
(0).
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By Bk(0) × Ak(0) = −1, it similarly holds that J2(Bk) = −(1/2)∂ak
∂t (0) ·

∂bk

∂t
(0), so that J2(Ak) + J2(Bk) = −i� { ∂ak

∂t (0) · ∂bk

∂t
(0)}. Therefore,

�
{∫

∂R(0)

∂q∗

∂t
(0, z)

∂2q∗

∂t∂z
(0, z)dz

}
= �

{
J1 −

g∑
k=1

(
J2(Ak) + J2(Bk)

)}

= 2
∫ ∫

R(0)

∣∣∣ ∂2q

∂t∂z
(0, z)

∣∣∣2 dxdy + �
{ g∑

k=1

∂ak

∂t
(0) · ∂bk

∂t
(0)

}
.

This completes Step 2.

As noted in [9], since R is pseudoconvex in R̃ if and only if k2(t, z) ≥ 0
on ∂R, Lemma 2.1 implies that, if R is pseudoconvex in R̃, then the L1-
constant α(t) for (R(t),0, ξ(t)) is Cω subharmonic on B, while Lemma 2.2
makes the following contrast with it.

Theorem 2.1. If R is pseudoconvex in R̃ and R(t), t ∈ B is planar, then
the L0-constant β(t) for (R(t),0, ξ(t)) is Cω superharmonic on B.

Remark 2.1. There are examples of π : R → B such that R(t), t ∈ B is
not planar and β(t) is not superharmonic on B.

In fact, let π : R̂ → B be a holomorphic family such that R̂(t) = π−1(t), t ∈
B is a compact Riemann surface of genus g ≥ 1, and R̂(t) is irreducible and
nonsingular in R̂ (where R̂ may be the trivial B × R̂(0)). Let Ξ0,Ξξ ∈
Γ(B, R̂), and use the same notation U0,Uξ as in the proof of Lemma 2.2.
The compact Riemann surface R̂(t), t ∈ B admits a harmonic function p̂(t, z)
with poles log(1/|z|) at z = 0 and log |z − ξ(t)| at z = ξ(t) normalized
limz→0(p̂(t, z) − log(1/|z|)) = 0. We put

p̂(t, z) = log |z − ξ(t)| + α̂(t) + ĥ(t, z) on Uξ(t),

where ĥ(t, ξ(t)) ≡ 0 on B. Then ∂p̂(t,z)
∂z dz is a meromorphic differential of

the third kind on R(t) with poles −1/z at z = 0 and 1/(z − ξ(t)) at z = ξ(t).
If necessary, take a slightly different Ξξ ∈ Γ(B, R̂). Then, since R(t) is of
genus g ≥ 1, ∂p̂(t,z)

∂z dz is not holomorphic for t ∈ B; that is, ∂2p̂(t,z)
∂t∂z

dz �≡ 0
on R(t). We choose an η ∈ Γ(B, R̂) with η ∩ (Ξ0 ∪ Ξξ) = ∅ and a π-local
coordinate Uη := B × {|w| < r2} of a neighborhood Vη of η in R̂ such that
Vη ∩ (V0 ∪ Vξ) = ∅. For integer n ≥ 1 with 1/n < r2, we put

Rn = R̂ \ (B × {|w| ≤ 1/n}).
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Then π : Rn → B is a holomorphic family with conditions (1) and (2). Each
Rn(t), t ∈ B admits the L1-function pn(t, z) and the L1-constant αn(t) for
(Rn(t),0, ξ(t)), and the L0-function qn(t, z) and the L0-constant βn(t). Since
the Levi curvature kn2(t, z) for ∂Rn = B × {|w| = 1/n} vanishes on ∂Rn,
Lemmas 2.1 and 2.2 reduce to

∂2αn(t)
∂t∂t

=
4
π

∫ ∫
Rn(t)

∣∣∣∂2pn(t, z)
∂t∂z

∣∣∣2 dxdy,

∂2βn(t)
∂t∂t

= − 4
π

∫ ∫
Rn(t)

∣∣∣∂2qn(t, z)
∂t∂z

∣∣∣2 dxdy

− 2
π

�
q∑

k=1

( ∂

∂t

∫
Ak(t)

∗ dqn(t, z)
)

·
( ∂

∂t

∫
Bk(t)

∗ dqn(t, z)
)
.

It is known (see [1, Chapter III, Section 2]) that, for t ∈ B, both Dirichlet
integrals ‖d(pn(t, z) − p̂(t, z)‖2

Rn(t) and ‖d(qn(t, z) − p̂(t, z)‖2
Rn(t) converge to

0 as n → ∞, so that both pn(t, z) and qn(t, z) locally uniformly converge to
p̂(t, z) in R̂(t) \ {0, ξ(t)}, and hence both αn(t) and βn(t) converge to α̂(t).
We have

lim
n→∞

∂2αn(t)
∂t∂t

= lim
n→∞

∂2βn(t)
∂t∂t

=
∂2α̂(t)
∂t∂t

,

∂2α̂(t)
∂t∂t

=
4
π

∫ ∫
R̂(t)

∣∣∣∂2p̂(t, z)
∂t∂z

∣∣∣2 dxdy

= +
2
π

�
q∑

k=1

( ∂

∂t

∫
Ak(t)

∗ dp̂(t, z)
)

·
( ∂

∂t

∫
Bk(t)

∗ dp̂(t, z)
)
,

which implies that ∂2α̂(t)
∂t∂t

> 0 on B and ∂2βn(t)
∂t∂t

> 0 on B for sufficiently
large n. Thus, π : Rn → B is a desired example.

We show the following variation formulas of α(t) and β(t) of the first-
order ∂α(t)

∂t and ∂β(t)
∂t under the same situations for the unramified domain

R over B × Cz as in Step 2 in the proof of Lemma 2.2 for general Ξξ : t ∈
B → ξ(t) ∈ R(t) instead of Ξ1 := B × {z = 1}.

Lemma 2.3. We have

∂α(t)
∂t

=
1
π

∫
∂R(t)

k1(t, z)
∣∣∣∂p(t, z)

∂z

∣∣∣2 dsz + 2
∂hξ

∂z

∣∣∣
(t,ξ(t))

· ξ′(t),
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∂β(t)
∂t

= − 1
π

∫
∂R(t)

k1(t, z)
∣∣∣∂q(t, z)

∂z

∣∣∣2 dsz + 2
∂hξ

∂z

∣∣∣
(t,ξ(t))

· ξ′(t).

Here
k1(t, z) =

∂ϕ

∂t

/∣∣∣∂ϕ

∂z

∣∣∣ on ∂R,

and ϕ(t, z) is a C2 defining function of ∂R.

The function k1(t, z) on ∂R is due to Hadamard. We note that k1(t, z) on
∂R as well as k2(t, z) does not depend on the choice of the defining functions
ϕ(t, z) for ∂R. Contrary to the cases of ∂2β(t)

∂t∂t
and k2(t, z)| ∂q(t,z)

∂z |2dsz ,
∂α(t)

∂t

and k1(t, z)| ∂p(t,z)
∂z |2dsz (and similar to β(t)) depend on the π-biholomorphic

mappings and π-local coordinates.

Proof. Since the proofs for α(t) and β(t) are similar, we give the proof
for β(t). We divide it into two steps.

Step 1. Lemma 2.3 is true in the case where Ξξ is a constant section
on B.

In fact, we simply put Ξξ := B × {z = 1}. Similar to (2.7), we have

(2.8)
∂Ij

∂t
(0) =

∫
Cj(0)

∂q∗
j

∂t
(0, z)

∂q∗
j (0, z)
∂nz

dsz.

Under the same notation u(t, z) and Cj(t) as in Proposition 2.1, we similarly
have

∂u

∂t

∂u

∂nz
dsz = 2k1(t, z)

∣∣∣∂u

∂z

∣∣∣2 dsz +
∂cj(t)

∂t

∂u

∂nz
dsz along Cj(t).

We apply this for u(t, z) = q∗
j (t, z) with (2.6) to (2.8) and obtain

∂Ij

∂t
(0) = 2

∫
Cj(0)

k1(0, z)
∣∣∣∂q∗

j (0, z)
∂z

∣∣∣2 dsz.

Therefore,

∂β

∂t
(0) = − 1

π

∫
∂R(0)

k1(0, z)
∣∣∣∂q(0, z)

∂z

∣∣∣2 dsz by (2.5),

which proves Step 1.
Step 2. Lemma 2.3 is true for general Ξξ on B.
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In fact, it suffices to prove Lemma 2.2 at t = 0. If necessary, take a smaller
disk B of center 0. Then we find a biholomorphism T : (t, z) ∈ B × Pz �→
(t,w) = (t, f(t, z)) ∈ B × Pw such that f(t, z) is a linear transformation for
z, f(t,0) = 0, ∂f

∂z (t,0) = 1, f(t, ξ(t)) = constant c for t ∈ B, and D := T (R)
is an unramified domain over B × Cw. We write D(t) = f(t,R(t)), t ∈ B, so
that D =

⋃
t∈B(t,D(t)) and D has two constant sections Θ0 := B × {w =

0} and Θc := B × {w = c}. Thus, D : t ∈ B → D(t) is a case in Step 1.
For t ∈ B, we have the L0-function q̃(t,w) and the L0-constant β̃(t) for
(D(t),0, c), so that

q̃(t,w) = log
1

|w| + h̃0(t,w) in U0(t),

q̃(t,w) = log |w − c| + β̃(t) + h̃c(t,w) in Uc(t),

where h̃0(t,0), h̃c(t, c) ≡ 0 on B. We put Ãk(t) = f(t,Ak(t)) and B̃k(t) =
f(t,Bk(t)) on D(t), which continuously vary in D with t ∈ B without passing
through w = 0, c. Since

w = f(t, z) =

{
z + b2(t)z2 + · · · at z = 0,

c + a1(t)(z − ξ(t)) + a2(t)(z − ξ(t))2 + · · · at z = ξ(t),

where a1(t) �= 0, a2(t), . . . , b2(t), . . . are holomorphic on B, we have q(t, z) =
q̃(t, f(t, z)) in R; namely,

q(t, z) = log |f(t, z) − c| + β̃(t) + h̃c

(
t, f(t, z)

)
at z = ξ(t).

Therefore,

β(t) = β̃(t) + log |a1(t)|,

hξ(t, z) = h̃c

(
t, f(t, z)

)
+ log

∣∣∣1 +
a2(t)
a1(t)

(
z − ξ(t)

)
+ · · ·

∣∣∣.
Let ψ(t,w) be a Cω defining function of ∂D. Then ϕ(t, z) := ψ(t, f(t, z)) is
that of ∂R, so that we have for w = f(t, z)

k1(t, z) =
∂ϕ(t,z)

∂t

| ∂ϕ(t,z)
∂z |

=
k̃1(t,w)

| ∂f(t,z)
∂z |

+
∂f(t,z)

∂t

| ∂f(t,z)
∂z |

·
∂ψ
∂w (t,w)

| ∂ψ
∂w (t,w)|

, (t, z) ∈ ∂R.
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Therefore, ∫
∂R(0)

k1(0, z)
∣∣∣∂q(0, z)

∂z

∣∣∣2 dsz

=
∫

∂R(0)

k̃1(0,w)

| ∂f(0,z)
∂z |

∣∣∣∂q(0, z)
∂z

∣∣∣2 dsz

+
∫

∂R(0)

∂f
∂t (0, z)

| ∂f(0,z)
∂z |

·
∂ψ
∂w (0,w)

| ∂ψ
∂w (0,w)|

∣∣∣∂q(0, z)
∂z

∣∣∣2 dsz

=: J1 + J2.

Since ∂q̃(0,w)
∂w

f(0,z)
dz = ∂q(0,z)

∂z , we have, by Step 1,

J1 =
∫

∂D(0)
k̃1(0,w)

∣∣∣∂q̃(0,w)
∂w

∣∣∣2 dsw = −π
∂β̃

∂t
(0) = −π

(∂β

∂t
(0) − 1

2
a′

1(0)
a1(0)

)
.

If we put z = g(t,w) := f −1(t,w), t ∈ B; C̃j(0) = f(0,Cj(0)); and Ṽj = f(0,
Vj), then we have the single-valued conjugate harmonic function q̃ ∗

j (0,w) of
q̃(0,w) in Ṽj that vanishes on C̃j(0), and hence a function k(w) ∈ Cω(Vj)
such that q̃ ∗

j (0,w) = k(w)ψ(0,w) in Ṽj , so that

J2 = −
ν∑

j=1

∫
C̃j(0)

∂g
∂t (0,w)
∂g(0,w)

∂w

∂ψ(0,w)
∂w∣∣∂ψ(0,w)
∂w

∣∣ ∣∣∣∂q̃ ∗
j (0,w)
∂w

∣∣∣2 dsw

= i

∫
∂D(0)

∂g
∂t (0,w)
∂g(0,w)

∂w

(∂q̃ ∗(0,w)
∂w

)2
dw.

By the residue theorem,

J2 = 2π Resw=0,c

{ ∂g
∂t

(0,w)
∂g(0,w)

∂w

(
∂q̃(0,w)

∂w

)2}
= 2π

(∂hξ

∂z

(
0, ξ(0)

)
ξ′(0) − 1

4
a′

1(0)
a1(0)

)
.

Thus, J1 + J2 = −π
(∂β

∂t (0) − 2∂hξ

∂z (0, ξ(0))ξ′(0)
)
, which is identical with the

formula in Lemma 2.3.
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§3. Harmonic span and its geometric meaning

We recall the slit mapping theory in one complex variable. Let R be a
planar Riemann surface sheeted over Cz bounded by a finite number of
smooth contours Cj , j = 1, . . . , ν. Let a ∈ R, and let Ua := {|z| < r0} be a
local coordinate of a neighborhood Va of a in R. We denote by U (R) the set
of all univalent functions f on R such that f(z) − 1/z is regular at 0. For
w = f(z) ∈ U (R) we consider the Euclidean area E(f) of Cw \ f(R) and put

E (R) = sup
{
E(f) : f ∈ U (R)

}
.

Koebe (see [5, Chapter X]) constructed two special fi(z), i = 1,0 in U (R)
such that f1(R) is a vertical slit domain in Pw and f0(R) is a horizontal slit
domain. Grunsky [6, pp. 139–140] considered the function

g :=
1
2
(f1 + f0) on R

and showed that each Kj := −g(Cj), j = 1, . . . , ν bounds an unramified
domain Gj over Cw such that, if we denote by Ej(g) the Euclidean (mul-
tivalent) area of Gj and put E(g) =

∑ν
j=1 Ej(g), then E(g) ≥ E (R). Then,

Schiffer [16, p. 209] introduced the quantity S(R), called the span for R,

S(R) := 	 {a1 − b1},

where a1 and b1 are the coefficients of z (the first degree) of the Taylor
expansions of f1(z) − 1/z and f0(z) − 1/z at 0, respectively, and showed the
following beautiful results (see [16, p. 216]): g ∈ U (R), each Gj is a convex
domain in Cw, and

E(g) = E (R) =
π

2
S(R).

His proofs were rather intuitive and short. The precise proofs are found in
[1, Chapter III, Section 12].

Let b ∈ R,a �= b, and let Ub := {|z − ξ| < r1} be a local coordinate of a
neighborhood Vb of b in R. We denote by S(R) the set of all univalent
functions f on R such that f(z) − 1/z is regular at 0 and f(ξ) = 0, say,

f(z) = c1(z − ξ) + c2(z − ξ)2 + · · · at ξ.

We put c(f) = c1 ( �= 0). We draw a simple curve l on R from ξ to 0. Let
w = f(z) ∈ S(R). Then f(l) is a simple curve from 0 to ∞ in Pw, and
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each branch of log f(z) on R \ l is single valued and univalent. Fix one of
them, say, τ = log f(z). Consider the Euclidean area Elog(f)(≥ 0) of the
complement of log f(R \ l) in Cτ , and put

Elog(R) = sup
{
Elog(f) : f ∈ S(R)

}
.

Let p(z) and α be the L1-function and the L1-constant for (R,0, ξ), and
similarly, let q(z) and β be the L0-function and the L0-constant. We choose
the harmonic conjugate p∗(z) on R such that, if we put P (z) = ep(z)+ip∗(z) on
R, then P (z) − 1/z is regular at 0. Then P ∈ S(R), and w = P (z) is a circular
slit mapping with log |c(P )| = α and Elog(P ) = 0. Similarly, w = Q(z) =
eq(z)+iq∗(z) is the radial slit mapping with log |c(Q)| = β and Elog(Q) = 0.
We see in [1, Chapter III, Section 4] that P maximizes 2π log |c(f)| +Elog(f),
while Q minimizes 2π log |c(f)| − Elog(f) among S(R).

Nakai (see [13, Chapter II, Section 3]) expected that the quantity

(3.1) s(R) := α − β

will be important as Schiffer span S(R) and named s(R) the harmonic span
for (R,0, ξ). We show that s(R) has some significant properties not only in
one complex variable but in the several complex variables.

We write

P (z) = eα+iθ1(z − ξ) +
∞∑

n=2

an(z − ξ)n at ξ,

(3.2)

Q(z) = eβ+iθ0(z − ξ) +
∞∑

n=2

bn(z − ξ)n at ξ,

where θ1, θ0 are certain constants. We put

D1 := P (R) = Pw \
ν⋃

j=1

P (Cj) = Pw \
ν⋃

j=1

arc{A
(1)
j ,A

(2)
j },

D0 := Q(R) = Pw \
⋃
j=1

Q(Cj) = Pw \
ν⋃

j=1

segment{B
(1)
j ,B

(2)
j }.

Here

arc{A
(1)
j ,A

(2)
j } = {rje

iθ : θ(1)
j ≤ θ ≤ θ

(2)
j },

(3.3)
segment{B

(1)
j ,B

(2)
j } = {reiθj : 0 < r

(1)
j ≤ r ≤ r

(2)
j < ∞},

where 0 < θ
(2)
j − θ

(1)
j < 2π and rj , θ

(k)
j , θj , r

(k)
j (j = 1, . . . , ν;k = 1,2) are con-
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stants. We take the points a
(k)
j , b

(k)
j ∈ Cj such that

(3.4) P (a(k)
j ) = A

(k)
j , Q(b(k)

j ) = B
(k)
j .

Then,
√

P (z)Q(z) consists of two single-valued branches H(z) and −H(z)
on R, where H(z) has only one pole at z = 0 such that H(z) − 1/z is regular
at 0, and H(z) has 0 only at z = ξ. We write

H(z) =
√

P (z)Q(z) on R.

Each branch of logP (z) and logQ(z) is also single-valued and univalent on
R \ l, while logH(z) is single-valued but not univalent so far. We choose
three branches in R \ l such that

τ = logH(z) =
1
2
(
logP (z) + logQ(z)

)
.

We fix a tubular neighborhood Vj of each contour Cj with Vi ∩ Vj = ∅ (i �= j)
and Vj �� 0, ξ, so that logH(z) on Vj is single valued.

Then we have the following geometric meaning of s(R).

Theorem 3.1. We have the following.

(1) Each −(logH)(Cj), j = 1, . . . , ν is a convex curve in Cτ , and −H(Cj)
is a simple closed curve in Cw.

(2) H ∈ S(R), and Elog(H) = Elog(R) = (π/2)s(R).
(3) Assume that R is simply connected, and let d(0, ξ) denote the Poincaré

distance between 0 and ξ on R. Then

s(R) = 4 log coshd(0, ξ).

The proofs of Schiffer’s results (see [1, Chapter III, Section 12]) do not
seem to be available to prove (1) and (2) in Theorem 3.1. We prove them
by use of the Schottky double (compact) Riemann surface R̂ of R, which is
also useful to prove Corollary 4.1 for the variation of Riemann surfaces.

Proof of Theorem 3.1. Similarly to F := df1

df0
used in [1, p. 182] (see [16,

(25)]), we consider the function

(3.5) W = F (z) :=
d logQ

d logP
, z ∈ R ∪ ∂R,
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which is a single-valued meromorphic function on R such that 	F = 0
on ∂R, since logP (Cj) is a vertical segment and logQ(Cj) is a horizon-
tal segment in Cτ . It follows from the Schwarz reflexion principle that
F is meromorphically extended to the Schottky double Riemann surface
R̂ = R ∪ ∂R ∪ R∗ of R such that F (z∗) = −F (z), where z∗ ∈ R∗ is the
reflexion point of z ∈ R. Fix Cj , j = 1, . . . , ν. Since 	 logP (z) = p(z) and
	 logQ(z) = q(z) on R, we have

(3.6) logP (z) = u1(z) + iv1(z), logQ(z) = u0(z) + iv0(z), z ∈ Vj ,

where u1(z) = constant c1 and v0(z) = constant c0 on Cj . Then Cj :=
logH(Cj) is a closed (not necessarily simple so far) curve in Cτ

(3.7) τ =
1
2
(
c1 + u0(z)

)
+

i

2
(
c0 + v1(z)

)
, z ∈ Cj .

Using notation (3.4), we show that

(i) {a
(k)
j , b

(k)
j }k=1,2 are four distinct points, which necessarily line cycli-

cally, for example, (a(1)
j , b

(1)
j , a

(2)
j , b

(2)
j ) on Cj ;

(ii) the zeros of F (z) are {b
(k)
j }j=1,...,ν;k=1,2 of order 1, and the poles are

{a
(k)
j }j=1,...,ν;k=1,2 of order 1;

(iii) the curve Cj is locally nonsingular in Cτ ;
(iv) 	F (z) > 0 on R;
(v) at any τ ∈ Cj , the curvature 1/(ρj(τ)) of Cj is negative.

We divide the proof into two steps.
Step 1. If we admit (i), then (ii)–(v) hold.
In fact, (i) clearly implies (iii). Since P (z) is a circular slit mapping on

R, and Q(z) is a radial slit mapping on R, we have F (z) �= 0, ∞ on R ∪ R∗

and F (z) has zeros at most b
(k)
j and poles at most a

(k)
j , of order 1. It follows

that (i) implies (ii). Further, (i) implies that W = F (z) is locally one-to-one
in a neighborhood of at any z ∈ Cj even at a

(k)
j , b

(k)
j (k = 1,2), so that F is

a meromorphic function on R̂ of degree 2ν. Hence, for a fixed j = 1, . . . , ν, if
z travels Cj all once, then F (z) travels the imaginary axis all just twice. It
follows that F (R̂) is a 2ν sheeted compact Riemann surface over PW with
2(2ν + g − 1) branch points lying on PW \ {	W = 0}, and hence F (R̂) is
divided by ν closed curves F (Cj) into two connected parts over 	W > 0
and 	W < 0. Since F (0) = 1, we have 	F (z) > 0 on R and 	F (z) < 0 on
R∗, which is (iv). To prove (v), fix p0 ∈ Cj , and take a local parameter
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z = x + iy of a neighborhood V of p0 such that p0 corresponds to z = 0 and
the oriented arc Cj ∩ V corresponds to I := (−ρ, ρ) on the x-axis. Using this
parameter, we see from 	F (z) > 0 on R that

(3.8) �F ′(x) = � ∂F (x)
∂x

< 0 on I.

By (3.7), the subarc Γj := logH(I) of Cj in Cτ is of the form

τ = u(x) + iv(x) =
1
2
[(

c1 + u0(x)
)
+ i

(
c0 + v1(x)

)]
, x ∈ I.

Since the arc Γj is locally nonsingular by (iii), we calculate the curvature
1/ρj(x) at the point (u(x), v(x)) of Γj :

1
ρj(x)

=
v′ ′(x)u′(x) − v′(x)u′ ′(x)

(v′(x)2 + u′(x)2)3/2
=

v′ ′
1(x)u′

0(x) − v′
1(x)u′ ′

0(x)
(v′

1(x)2 + u′
0(x)2)3/2

.

On the other hand, by (3.6) we have, for x ∈ I ⊂ Cj ,

�F ′(x) = �
{

d

dx

( du0(x)
dx + idc0

dx
dc1
dx + idv1(x)

dx

)}
=

v′ ′
1(x)u′

0(x) − v′
1(x)u′ ′

0(x)
v′
1(x)2

.

Therefore,

1
ρj(x)

=
v′
1(x)2

(v′
1(x)2 + u′

0(x)2)3/2
· �F ′(x).

Since v′
1(0) = 0 if and only if x = a

(k)
j , (3.8) proves (v) for p0 �= a

(k)
j . For

p0 = a
(k)
j , since v′

1(0) = 0 and v′ ′
1(0), u′

0(0) �= 0 under (i), v′
1(x)2 · �F ′(x) is

regular and �= 0. Hence, 1/ρj(p0) < 0, which proves (v).
Step 2. Item (i) is true.
In fact, assume that R does not satisfy (i). It does not occur {a

(1)
j , a

(2)
j } =

{b
(1)
j , b

(2)
j } for any j, so that {a

(1)
j , a

(2)
j } ∩ {b

(1)
j , b

(2)
j } consists of one point

for some j, say, j = 1, . . . , ν ′(≤ ν). We denote by oj such a point on Cj .
Hence, each Cj := logH(Cj), j = 1, . . . , ν ′ is a closed curve in Cτ with only
one singular point at oj := logH(oj), and F is a meromorphic function
of degree 2ν − ν ′ on R̂. By the same reasoning as in Step 1, if z travels
Cj , j = 1, . . . , ν ′ all once, then F (z) travels the imaginary axis all just once
in Cτ , and 	F (z) > 0 on R and 	F (z) < 0 on R∗. This fact implies that
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1/ρj(τ) < 0 for τ ∈ Cj \ {oj }. To reach a contradiction, we focus to C1. We
may assume that o1 = 0 of C1(⊂ Cτ ) and that a

(1)
1 = b

(1)
1 = o1 on C1(⊂ Cz).

If we take a small subarc C ′
1 centered at o1 of C1 and identify C ′

1 with
I = (−r, r) on the x-axis such that o1 corresponds to 0 ∈ I , then the subarc
Γ := logH(C ′

1) of C1 is written

τ =
1
2
[(a2x

2 + a3x
3 + · · · ) + i(b2x

2 + b3x
3 + · · · )], x ∈ I,

where all ak, bk are real and a2, b2 �= 0. The other cases being similar, we
assume that a2, b2 > 0. We put Γ′ = {logH(x) ∈ Γ : x travels from 0 to r},
and similarly, we put Γ′ ′ from 0 to −r, so that Γ = −Γ′ ′ +Γ′. Since 1/ρ1(τ) <

0 for τ ∈ C1 \ {o1}, C1 has a cusp singularity at o1 such that Γ′ starts
at o1 whose tangent decreases from b2/a2 > 0 as x travels from 0 to r,
and similarly for Γ′ ′. We put a = logH(a(2)

1 ), and we put b = logH(b(2)
1 ).

Since the tangent T (τ) of C1 at τ = logH(z) is T (τ) = v′
1(z)/u′

0(z), we have
T (a) = 0, |T (b)| = ∞ and vice versa. This contradicts that C1 is a closed
curve with 1/ρ1(τ) < 0 for any τ ∈ C1 \ {o1}, which proves (i).

The first assertion in Theorem 3.1(1) follows (v). Using notation (3.3),
we have

Maxz∈Cj

{
� logH(z)

}
− Minz∈Cj

{
� logH(z)

}
≤ 1

2
(θ(2)

j − θ
(1)
j ) < π.

It follows that the first assertion implies the second assertion in Theo-
rem 3.1(1). To prove (2), given w′ ∈ Cw \

⋃ν
j=1 H(Cj), we write N(w′) for

the number of z in R such that H(z) = w′. If we denote by Wj(w′) the
winding number of H(Cj) about w′, then we have Wj(w′) ≤ 0 by the sec-
ond assertion in (1). Since H(z) has only one pole at z = 0 of order 1 on R,
we have by the argument principle

N(w′) − 1 =
ν∑

j=1

Wj(w′) ≤ 0,

so that N(w′) = 0 or 1. Hence, H(z) is univalent on R, which is the first
assertion in (2). To prove the other assertions in (2), let f ∈ S(R). We
put u(z) := log |f(z)|, and we put h(z) := log |H(z)| = (1/2)(p(z) + q(z)).
Then u(z) − h(z) is harmonic on the whole R, and its Dirichlet integral
DR(u − h) := ‖d(u − h)‖2

R ≥ 0 is written

DR(u − h) =
∫

∂R
udu∗ −

∫
∂R

udh∗ −
∫

∂R
hdu∗ +

∫
∂R

hdh∗.
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By
∫
Cj

du∗ = 0 and the boundary conditions for p(z) and q(z), we have∫
∂R

udh∗ =
1
2

∫
∂R

udp∗ − pdu∗ = π
(
log |c(f)| − α

)
,∫

∂R
hdu∗ =

1
2

∫
∂R

q du∗ − udq∗ = π
(
β − log |c(f)|

)
.

Therefore,

DR(u − h) =
∫

∂R
udu∗ + π(α − β) +

∫
∂R

hdh∗.

We put u = h, in particular, to obtain Elog(H) = −
∫
∂R hdh∗ = (π/2)(α −

β) = (π/2)s(R),Elog(H) − Elog(f) = DR(u − h) ≥ 0, which are desired.
To prove Theorem 3.1(3), we first prove it in the case where R is the disk

D = {|z| < r} in Cz . Let ξ ∈ D. We denote by p(z) and α the L1-function
and the L1-constant for (D,0, ξ), and similarly for q(z) and β. We write
P (z) and Q(z) the corresponding circular and radial slit mappings on D,
so that p(z) = log |P (z)| and q(z) = log |Q(z)|. We have (see [9, Section 5])

P (z) =
−1
ξ

· z − ξ

z
·
(
1 − z

r

ξ

r

)−1
, z ∈ D,

α = log
∣∣∣dP

dz
(ξ)

∣∣∣ = −2 log |ξ| − log
(

1 −
( |ξ|

r

)2
)

.

Putting θξ = arg ξ, we have

Q(z) =
1

reθξ

[( z

reiθξ
+

reiθξ

z

)
−

( |ξ|
r

+
r

|ξ|
)]

=
−1
ξ

· z − ξ

z
·
(
1 − z

r

ξ

r

)
,

β = log
∣∣∣dQ

dz
(ξ)

∣∣∣ = −2 log |ξ| + log
(

1 −
( |ξ|

r

)2
)

.

Hence, the harmonic span s(D) = α − β for (D,0, ξ) is

(3.9) s(D) = −2 log
(
1 − (|ξ|/r)2

)
.

Since the Poincaré distance d(0, ξ) between 0 and ξ in D is equal to (1/2) ×
log(1 + |ξ|/r)/(1 − |ξ|/r), we have s(D) = 4 log coshd(0, ξ).

For the general R, although α and β depend on the choice of local coordi-
nates Ua := {|z| < r0} and Ub := {|w − ξ| < r1} about a and b, the harmonic
span s(R) = α − β as well as Poincaré distance does not depend on it. Hence,
the first case R = D and the Riemann’s mapping theorem imply (3).
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Example 3.1. We check Theorem 3.1(1), (2) in the case where D = {|z| <

r} and ξ ∈ D. By the above formulas,

H(z) =
√

P (z)Q(z) = 1/z − 1/ξ, z ∈ D.

Thus, H(z) is univalent on D. Since C := ∂D = {reiθ : 0 ≤ θ ≤ 2π}, the
closed curve −H(C) = {(eiθ/r) − 1/ξ : 0 ≤ θ ≤ 2π} is simple and − logH(C)
is a convex curve. Further, we have Elog(H) = −π log(1 − |ξ/r|2). In fact, we
prove it for r = 1 and |ξ| < 1. Since each branch of log(1/z − 1/ξ) is single
valued and holomorphic in Cz \ D, we have by zz = 1 on C,

Elog(H) =
i

2

∫
−C

log(1/z − 1/ξ)dlog(1/z − 1/ξ)

=
−i

2

∫
C

log(1/z − 1/ξ)
dz

z − 1/ξ
= −π log(1 − |ξ|2),

which is desired. By (3.9), we have Elog(H) = (π/2)s(D).

Remark 3.1. (1) Let Ri, i = 1,2 be a planar Riemann surface such that
Ri � 0, ξ. If we denote by si the harmonic span for (Ri,0, ξ), then we have
by Theorem 3.1(2) that R1 ⊂ R2 induces s1 ≥ s2, even when R1 and R2 are
not homeomorphic to each other.

(2) Let R be a planar Riemann surface. As noted in the proof of The-
orem 3.1(3), the harmonic span sR(ξ, η) is a positive function for (ξ, η) ∈
(R × R) \

⋃
ξ∈R(ξ, ξ). Further, sR(ξ, η) = sR(η, ξ), and for a fixed ξ0 ∈ R,

limη→∂R sR(ξ0, η) = +∞. If we put sR(ξ, ξ) = 0 for ξ ∈ R, then sR(ξ, η) is a
C2 function on R × R, which satisfies, for a fixed ξ0 ∈ R, that there exist
K > 0 and δ > 0 such that

(3.10) |η − ξ0|2/K ≤ s(ξ0, η) ≤ K|η − ξ0|2 for |η − ξ0| < δ.

In fact, we may assume that R is a bounded domain in Cz and that
ξ0 = 0 ∈ R. We take Da := {|z| < a} � R � {|z| < b} := Db in Cz . By Re-
mark 3.1(1) and (3.9), we have, for η ∈ Da,

− log(1 − |η/b|2) =
sDb

(0, η)
2

≤ sR(0, η)
2

≤ sDa(0, η)
2

= − log(1 − |η/a|2),

which implies (3.10).
We call the function sR(ξ, η) on R × R the S-function for R.
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§4. Variation formulas for the harmonic spans

We return to the variation of Riemann surfaces R : t ∈ B → R(t)(� R̃(t))
in R̃ =

⋃
t∈B(t, R̃(t)) with conditions (1) and (2) in Section 2. Then Lem-

mas 2.1 and 2.2 immediately imply the following variation formulas of the
harmonic span s(t).

Lemma 4.1. We have

∂s(t)
∂t

=
1
π

∫
∂R(t)

k1(t, z)
(∣∣∣∂p(t, z)

∂z

∣∣∣2 +
∣∣∣∂q(t, z)

∂z

∣∣∣2)dsz,

∂2s(t)
∂t∂t

=
1
π

∫
∂R(t)

k2(t, z)
(∣∣∣∂p(t, z)

∂z

∣∣∣2 +
∣∣∣∂q(t, z)

∂z

∣∣∣2)dsz

+
4
π

∫ ∫
R(t)

(∣∣∣∂2p(t, z)
∂t∂z

∣∣∣2 +
∣∣∣∂2q(t, z)

∂t∂z

∣∣∣2)dxdy

+
2
π

�
g∑

k=1

( ∂

∂t

∫
Ak(t)

∗ dq(t, z)
)

·
( ∂

∂t

∫
Bk(t)

∗ dq(t, z)
)
.

We say, in general, that R : t ∈ B → R(t) is equivalent to a trivial variation
if there exists a π-biholomorphism from the total space R onto a product
space B × R0 (where R0 is a Riemann surface).

In the case where R(t) is planar, following (3.2), on R(t), t ∈ B we have
the circular and radial slit mappings

P (t, z) = ep(t,z)+ip(t,z)∗
and Q(t, z) = eq(t,z)+iq(t,z)∗

such that P (t, z) − 1/z and Q(t, z) − 1/z are regular at z = 0. We put D1(t) =
P (t,R(t)), and we put D0(t) = Q(t,R(t)), so that

D1(t) = Pw \
ν⋃

j=1

P
(
t,Cj(t)

)
= Pw \

ν⋃
j=1

arc
{
A

(1)
j (t),A(2)

j (t)
}
,

D0(t) = Pw \
⋃
j=1

Q
(
t,Cj(t)

)
= Pw \

ν⋃
j=1

segment
{
B

(1)
j (t),B(2)

j (t)
}
.

Theorem 4.1. Assume that R =
⋃

t∈B(t,R(t)) is pseudoconvex in R̃ and
that each R(t), t ∈ B is planar. Then
(1) s(t) is subharmonic on B;
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(2) if s(t) is harmonic on B, then
(i) s(t) is constant on B, and
(ii) R : t ∈ B → R(t) is equivalent to a trivial variation. More con-

cretely, R is π-biholomorphic to the product domain B × D̃1, where
D̃1 is a circular slit domain in Pw such that D̃1 = Pw \

⋃ν
j=1{Ãje

iθ :
0 ≤ θ ≤ Θj }, where Ã1 = 1 and each Ãj ( �= 0), j = 2, . . . , ν is con-
stant, by the holomorphic transformation T0 : (t, z) ∈ R �→ (t,w) =
(t, P̃ (t, z)) ∈ B × D̃1, where P̃ (t, z) = P (t, z)/A(1)

1 (t).

Proof. Lemma 4.1 implies (1). To prove (2), we may assume that R =⋃
t∈B(t,R(t)) is an unramified domain over B × Cz such that each R(t), t ∈ B

is contained in an unramified planar domain R̃ over Cz , and Ξ0, Ξξ are
constant sections B × {z = 0}, B × {z = 1}, respectively. Assume that s(t)
is harmonic on B. By Lemma 4.1, we have
(a) k2(t, z) ≡ 0 on ∂R, that is, ∂R is a Levi flat surface over B × Cz ;
(b) both ∂p(t,z)

∂z and ∂q(t,z)
∂z are holomorphic for t ∈ B.

By (b) and the normalization at z = 0, both w = P (t, z) and w = Q(t, z) are
holomorphic for two complex variables (t, z) in R except B × {0}. We put
D1(t) = P (t,R(t)) ⊂ Pw for t ∈ B, and D1 =

⋃
t∈B(t,D1(t)). Since D1 as well

as R over B × Cz is a pseudoconvex (univalent) domain in B × Pw, it follows
from [3, p. 352] that each edge point A

(k)
j (t) is holomorphic for t ∈ B and

that A
(2)
j (t) = A

(1)
j (t)eiΘj , where Θj is constant for t ∈ B. We consider the

map (t,w) ∈ D1 �→ (t, w̃) = (t,L(t,w)) ∈ B × Pw̃, where L(t,w) = w/A
(1)
1 (t),

and we put D̃1 =
⋃

t∈B(t, D̃1(t)), where D̃1(t) = L(t,D1(t)). Each D̃1(t), t ∈
B is a circular slit domain in Pw̃ \

⋃ν
j=1 C̃j(t) such that the first circular slit

C̃1(t) = {eiθ : 0 ≤ θ ≤ Θ1} is independent of t ∈ B, say, C̃1 := C̃1(t). Since R
is π-biholomorphic to D̃1, and each D̃1(t), t ∈ B has no ramification points,
it suffices for (2)(ii) to prove that the edge point Ã

(1)
j (t) := A

(1)
j (t)/A(1)

1 (t)

of each arc C̃
(1)
j (t), j = 2, . . . , ν does not depend on t ∈ B.

In fact, we see from (b) that the function F (t, z) defined in (3.5),

W = F (t, z) =
dz logQ(t, z)
dz logP (t, z)

, z ∈ R(t) ∪ ∂R(t),

is holomorphic for t ∈ B such that F (t,0) = 1 and 	F (t, z) = 0 on ∂R(t);
that is, F (t, z) is a meromorphic function for two complex variables (t, z) ∈
R such that 	F (t, z) = 0 on ∂R. We put Kj(t) = F (t,Cj(t)) in PW . In
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Step 1 of the proof in Theorem 3.1(1) we proved that Kj(t) rounds just
twice on the imaginary axis in PW . We put W (t) = F (t,R(t)), and we put
W =

⋃
t∈B(t,W (t)), so that ∂W =

⋃
t∈B(t,

⋃ν
j=1 Kj(t)), and R ≈ W (π-

biholomorphic) by T : (t, z) ∈ R �→ (t,W ) = (t,F (t, z)) ∈ W . Thus, W (t) has
6ν − 4 ramification points. Consider the following π-biholomorphic mapping
(t,W ) ∈ W → (t, w̃) = (t, G̃(t,W )) ∈ D̃1, where G̃(t,W ) := L

(
t,P (t,F −1(t,

W ))
)
. We use the following elementary fact.

(∗) Let B = {|t| < ρ} in Ct, and let E = {|z| < r} ∩ {	z ≥ 0} in Cz. If
f(t, z) is a holomorphic function for two complex variables (t, z) on B × E

such that |f(t, z)| = 1 on B × (E ∩ {	z = 0}), then f(t, z) does not depend
on t ∈ B.

We choose a point W0 on ∂K1(0) ⊂ ∂W such that G̃(0,W0) = eiθ0 ∈ C̃1

with 0 < θ0 < Θ1 and the direction of C̃1 at eiθ0 follows as θ0 increases.
Then we have a small disk B0 ⊂ B of center 0 and a small half-disk E =
{|W − W0| < r} ∩ {	W ≥ 0} in CW such that |G̃(t,W )| ≤ 1 on B0 × E and
|G̃(t,W )| = 1 on B0 × (E ∩ {	W = 0}). By (∗), G̃(t,W ) for W ∈ E ∩ {	W ≥
0} does not depend on t ∈ B0. By the analytic continuation, G̃(t,W ) on
W ∪ ∂W does not depend on t ∈ B.

Now assume that some Ã
(1)
j (t), 2 ≤ ∃j ≤ ν is not constant for t ∈ B. We

take a point W0 ∈ CW with 	W0 = 0. Since the component Kj(t) of ∂W (t)
winds twice around the imaginary axis in PW , for each t ∈ B we find four
points of Kj(t) over W0. We fix one of them, say, W0(t) ∈ Kj(t), where
the corresponding point zj(t) ∈ Cj(t) continuously varies in ∂R with t ∈ B.
Since C̃j(t) = G̃(t,Kj(t)) = {Ã

(1)
j (t)eiθ : 0 ≤ θ ≤ Θj }, where Θj is constant

for t ∈ B, we have G̃(t,W0) = Ã
(1)
j (t)eiθ(t), where θ(t) (0 < θ(t) < Θj) con-

tinuously varies with t ∈ B. Since |Ã(1)
j (t)| as well as Ã

(1)
j (t) is not constant

for t ∈ B, G̃(t,W0) does depend on t ∈ B, a contradiction, and (2)(ii) is
proved.

From Remark 3.1(2), the harmonic span s(t) for (R(t),0,1) is equal to
that for (D̃1(t), ∞,0). Since D̃1(t) = D̃1(0) for t ∈ B, s(t) is constant on B,
which proves (2)(i).

For Theorem 4.1(2)(ii), we cannot replace the condition of the harmonic-
ity of s(t) on B by that of α(t) or β(t) on B, in general. However, when
R(t), t ∈ B is simply connected, such replacement is possible by the proof
of (2)(ii).

Theorem 4.1 and Theorem 3.1(3) directly imply the following.
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Corollary 4.1. Assume that R =
⋃

t∈B(t,R(t)) is pseudoconvex in R̃
and that R(t), t ∈ B is simply connected. Let ξi ∈ Γ(B, R), i = 1,2, and let
d(t) denote the Poincaré distance between ξ1(t) and ξ2(t) on R(t). Then
δ(t) := log coshd(t) is subharmonic on B. Moreover, δ(t) is harmonic on B

if and only if R is equivalent to the trivial variation.

Brunella [4, p. 139] said that he could prove the stronger fact, that
“Logd(t) is subharmonic on B,” using [2] by the same idea.

Corollary 4.2. Assume that R =
⋃

t∈B(t,R(t)) is pseudoconvex in R̃
and that each R(t), t ∈ B is planar. Then the S-function s(t, ξ, η) for R(t),
t ∈ B is C2 plurisubharmonic on R2 :=

⋃
t∈B(t,R(t) × R(t)). In particular,

for a fixed t0 ∈ B, we simply put R(t0) = R and s(t0, ξ, η) = s(ξ, η). Then
s(ξ, η) is C2 plurisubharmonic on R × R such that, for any complex line l

except ξ = η in R × R, the restriction of s(ξ, η) on l ∩ (R × R) is strictly
subharmonic.

Proof. We may assume that R̃ as well as R is an unramified domain
over B × Cz . Let t ∈ B → (ξ(t), η(t)) ∈ R(t) × R(t) be any holomorphic
mapping from B into R2. We put s(t) := s(t, ξ(t), η(t)) for t ∈ B, and we
put B′ = B \ {t ∈ B : ξ(t) = η(t)}. Consider the translation T : (t, z) ∈ R �→
(t,w) = (t, z − η(t)) for t ∈ B′, and put R1 := T (R) and ξ1 = Tξ. Then
R1 is pseudoconvex over B′ × Cw and ξ1 ∈ Γ(B′, R̃). By Theorem 4.1, the
harmonic span s1(t) for (R1(t),0, ξ1(t)) is Cω subharmonic on B′, and so
is s(t) on B′. It follows from (3.10) that s(t) is C2 subharmonic on B. By
the same argument, we can prove the latter part under the second variation
formula in Lemma 4.1 and (3.10). Thus we have the corollary.

In conditions (1) and (2), if we replace Cω smooth by C∞ smooth, then
the results in Sections 2 and 3 hold by replacing Cω by C∞. In fact, Lemmas
2.1 and 2.2 hold for the C∞ category by not essentially changing the proofs
for the Cω category (see [11, Section 2] and [17, Section 3]).

§5. Approximation theorem for general
variations of planar Riemann surfaces

In this section we consider the general variation of Riemann surfaces
R : t ∈ Δ → R(t) with the conditions that (a) Δ is an open or a compact
Riemann surface; (b) π : R → Δ is a 2-dimensional holomorphic family such
that each fiber R(t) = π−1(t), t ∈ Δ is irreducible and nonsingular in R;
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(c) each R(t), t ∈ B is planar ; and (d) for every t ∈ Δ there exists a neigh-
borhood B ⊂ Δ of t such that π−1(B) is Stein.

In general, R(t) might be infinite ideal boundary components and R : t ∈
Δ → R(t) might not be topologically trivial. For the approximation condi-
tion for these variations R, we make the following.

Preparation
Let π : R → Δ be as above, and let B ⊂ Δ be a disk such that π−1(B) is

Stein. For the sake of convenience we write anew Δ := B and R := π−1(B).
Due to Oka-Grauert (see [15, Theorem 8.22]), R admits a Cω strictly
plurisubharmonic exhaustion function ψ(t, z). Let ξ : t ∈ B → ξ(t) ∈ R(t)
and η : t ∈ B → η(t) ∈ R(t) be holomorphic sections of R over B such that
ξ ∩ η = ∅. Let B � Δ be a small disk such that we find a continuous curve g(t)
connecting ξ(t) and η(t) on R(t), t ∈ B which continuously varies in R with
t ∈ B. We put R |B =

⋃
t∈B(t,R(t)); ξ|B =

⋃
t∈B(t, ξ(t));η|B =

⋃
t∈B(t, η(t)),

and g|B =
⋃

t∈B(t, g(t)). We take so large a � 1 that R(a)|B := {(t, z) ∈
R |B : ψ(t, z) < a} ⊃ g|B . Then we find a sequence {an}n with an > a and
limn→∞ an = ∞ such that

(5.1) Rn := the connected component of R(an)|B that contains g|B

satisfies (1) each Rn is a connected domain with real 3-dimensional Cω

surfaces ∂Rn in R |B (but each Rn(t), t ∈ B is not always connected); (2)
if we consider the set L of points t ∈ B such that there exists a point
(t, z(t)) ∈ ∂Rn with ∂ψ

∂z (t, z(t)) = 0, then L consists of two kinds of families
L ′, L ′ ′ of finite Cω arcs in B

L ′ = {l′
1, . . . , l

′
m}, L ′ ′ = {l′ ′

1 , . . . , l′ ′
μ},

which have the following property.
For L ′: for t0 ∈ L ′, except a finite set at which some l′

i and l′
j or l′

i itself
intersects transversally, say, t0 ∈ l′

i, ∂Rn(t0) (consisting of a finite number
of closed curves) has only one singular point at z(t0), and we find a bidisk
B0 × V of center (t0, z(t0)) in Rn+1 such that B0 � B and l′

i ∩ B0 divides
B0 into two domains B′

0 and B′ ′
0 in the manner that

(i) each ∂Rn(t), t ∈ B′
0 ∪ B′ ′

0 has no singular points;
(ii) each ∂Rn(t), t ∈ l′

i ∩ B0 has one singular point z(t) at which two subarcs
of ∂Rn(t) transversally intersect;

(iii) each Rn(t) ∩ V, t ∈ B′
0 ∪ (l′

i ∩ B0) consists of two (connected) domains,
while each Rn(t) ∩ V, t ∈ B′ ′

0 consists of one domain;
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For L ′ ′: for t0 ∈ L ′ ′, except a finite point set, say, t0 ∈ l′ ′
i , we find a unique

point (t0, z(t0)) ∈ ∂Rn with ∂ψ
∂z (t0, z(t0)) = 0, and a bidisk B0 × V of center

(t0, z(t0)) in Rn+1 such that B0 � B and l′ ′
i ∩ B0 divides B0 into two domains

B′
0 and B′ ′

0 and ∃ Cω mapping z: t ∈ l′ ′
i ∩ B0 → z(t) such that (t, z(t)) ∈ ∂Rn

with ∂ψ
∂z (t, z(t)) = 0 in the manner that

(i) [Rn(t) ∪ ∂Rn(t)] ∩ V = ∅ for t ∈ B′
0 ∪ (l′ ′

i ∩ B0);
(ii) Rn(t) ∩ V for t ∈ B′ ′

0 is a simply connected domain δn(t) such that,
for a given t0 ∈ l′ ′

i ∩ B0, δn(t) shrinkingly approaches the point z(t0) as
t ∈ B′ ′

0 → t0.
For the singular point z(t), t ∈ l′

i ⊂ L ′, we have the connected component
C(t) of ∂Rn(t) passing through z(t). Then C(t) consists of one closed curve,
or two closed curves Ci(t), i = 1,2, such that C(t) = C1(t) ∪ C2(t) and C1(t) ∩
C2(t) = z(t). For example, in (FIII) below, C(t) consists of one closed curve,
and in (FI) and (FII), C(t) consists of two closed curves.

For the singular z(t), t ∈ l′ ′
i ⊂ L ′ ′, (t, z(t)) ∈ ∂Rn but z(t) /∈ ∂Rn(t).

Fix t ∈ B and n ≥ 1, and consider the connected component R′
n(t) of

Rn(t) that contains g(t). We put R ′
n =

⋃
t∈B(t,R′

n(t)), and we put ∂R ′
n =⋃

t∈B(t, ∂R′
n(t)). The variation

R ′
n : t ∈ B → R′

n(t)

is no longer a smooth variation of R′
n(t) with t ∈ B; that is, R ′

n satis-
fies neither corresponding condition (1) nor (2) of R in Section 2. Since
R(t) is irreducible in R, we have R′

n(t) � R′
n+1(t), limn→∞ R ′

n = R |B , and
limn→∞ R′

n(t) = R(t) for t ∈ B. By (i) and (ii) for L′ ′, there exists a neigh-
borhood V of

⋃
t∈ L ′′ (t, z(t)) in Rn+1 such that [R ′

n ∪ ∂R ′
n] ∩ V = ∅, so that

L ′ ′ does not give any influence for the variation R ′
n (contrary to that for

the variation Rn). Each R(t), t ∈ Δ is assumed to be planar. We separate
the singular point z(t) of ∂Rn(t), t ∈ l′

i ⊂ L ′ such that z(t) ∈ ∂R′
n(t) into

the following two cases: let C(t) denote the connected component of ∂Rn(t)
passing through z(t); then
(c1) C(t) consists of two closed curves Ci(t), i = 1,2, and one of them, say,

C1(t), is one of the boundary components of R′
n(t), so that (C2(t) \

{z(t)}) ∩ ∂R′
n(t) = ∅;

(c2) C(t) is one of the boundary components of R′
n(t), so that two distinct

points of ∂R′
n(t) lie over z(t).

For example, if the shadowed part below is R′
n(t), then the singular point

z(t) is of case (c1) for (FI), and of case (c2) for (FII) or (FIII).
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B′
0

B′ ′
0

�iB0

(FI)

z(t)

(FII)

z(t)

(FIII)

Rn(t′), t′ ∈ B′
0 Rn(t), t ∈ �i Rn(t′ ′), t′ ′ ∈ B′ ′

0

z(t)

Figure 1: Variation R ′
n : t ∈ B0 → R′

n(t)

For t ∈ B we consider the L1-function pn(t, z), the L0-function qn(t, z),
and the harmonic span sn(t) for (R′

n(t), ξ(t), η(t)).

Lemma 5.1 (Hamano [8]). Let R be a Stein manifold, and each R(t), t ∈ Δ
is planar. Then we have the following.

(1) pn(t, z) and qn(t, z) are continuous for (t, z) in R ′
n, and sn(t) is con-

tinuous on B.
(2) Assume that at each singular point z(t) of ∂Rn(t), t ∈ l′

i ⊂ L ′ such that
z(t) ∈ ∂R′

n(t), case (c1) only occurs. Then
(i) pn(t, z) and qn(t, z) are of class C1 for (t, z) on R ′

n \ {ξ, η};
(ii) sn(t) is C1 subharmonic on B.

(3) In general, (2) does not hold in case (c2).

As an example of (FI) of L ′, let B = {|t| < 1/10}, let D = {|z| < 2}, let
ψ1 = (e−100+|t|2/|z − 1|2) − 1, let ψ2 = |z2 − 1| − (1 − 2	t − |t|2), let ψ3 =



VARIATION FORMULAS FOR PRINCIPAL FUNCTIONS, II 49

(e−100+|t|2/|z +1|2) − 1, and let R = {(t, z) ∈ B × D : ψ1 < 0,ψ2 < 0,ψ3 < 0}.
Then R is pseudoconvex in B × D, and the arc l′ = {t ∈ B : 2	t + |t|2 = 0}
divides B into two domains B′ ∪ B′ ′ such that ∂R(t), t ∈ l′ consists of two
circles ψ1(t, z) = 0, ψ3(t, z) = 0 and the leminiscate C : |z2 − 1| = 1 with
singular point z(t) = 0. We similarly have examples (FII), (FIII) of L′.

As an example of L ′ ′, let B,D be the same as above. Let ψ(t, z) := |z −
t|2 + |t|2 + 2	t, and put R = {(t, z) ∈ B × D : ψ(t, z) < 0}. Then the arc
l′ ′ = {t ∈ B : φ(t) = 0}, where φ(t) = −|t|2 − 2	t, divides B into two domains
B′ = {t ∈ B : φ(t) < 0} and B′ ′ = {t ∈ B : φ(t) > 0} such that ∂ψ

∂z (t, t) = 0
for t ∈ l′ ′, R(t) = ∅ for t ∈ B′ ∪ l′ ′ and R(t) = {|z − t|2 < φ(t)} for t ∈ B′ ′.
The mapping z : t ∈ l′ ′ → z(t) = t so that (t, t) ∈ ∂R but t /∈ ∂R(t), and
each R(t), t ∈ B′ ′ is a disk {|z − t| < φ(t)} that shrinkingly approaches the
singular point z = t0 as t → t0 ∈ l′ ′.

Since the Stein manifold carries a Cω strictly plurisubharmonic exhaus-
tion function, we immediately have the following.

Lemma 5.2. Let R : t ∈ Δ → R(t) satisfy (a)–(d). Let ξ, η ∈ Γ(Δ, R) such
that ξ ∩ η = ∅. Assume that
(�) R(t), t ∈ Δ is homeomorphic to a domain in Cw bounded by a finite

number, say, ν, of contours, where ν is independent of t ∈ Δ.
Then, for t0 ∈ Δ, there exists a disk B � Δ of center t0 such that we find
an increasing sequence {R ′

n}n of case (c1) with limn→∞ R ′
n = R |B.

Let R : t ∈ Δ → R(t) satisfy (a)–(d), and let ξ, η ∈ Γ(Δ, R) such that ξ ∩
η = ∅. We fix a small disk B � Δ so that we can fix local parameters (t, z) of
ξ|B and η|B in R |B and so that {Rn}n satisfies conditions in “Preparation”
to these Δ and B. Precisely, we define

Rn := the connected component of R(an)|B that contains g|B,(5.2)

which satisfies cases (1) and (2) for (5.1). We put Rn =
⋃

t∈B(t,Rn(t)), and
for t ∈ B we denote by R′

n(t) the connected component of Rn(t) that con-
tains g(t) (connecting ξ(t) and η(t)) and put R ′

n =
⋃

t∈B(t,R′
n(t)). Though

∂R′(t) may not be smooth, each R′
n(t) admits the L1-function pn(t, z) and

the L1-constant αn for (R′
n(t),0, η(t)), where B × {|z| < r1} and

⋃
t∈B(t,

{|z − η(t)| < r2) are π-local coordinates for ξ and η, and similarly for qn(t, z)
and βn(t). In one complex variable it is known (see [1, Chapter III, Sec-
tion 8]) that pn(t, z) uniformly converges to a certain function p(t, z) on
any compact set in R(t) \ {ξ(t), η(t)}. Thus, p(t, z) is harmonic on R(t) \
{ξ(t), η(t)} with the same pole as pn(t, z) at ξ(t) and η(t). Putting α(t) =
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limz→η(t)(p(t, z) − log |z − η(t)|), we have limn→∞ αn(t) = α(t). We also call
p(t, z) and α(t) the L1-function and the L1-constant for (R(t),0, η(t)). Sim-
ilarly, we define the L0-function q(t, z) and the L0-constant β(t), and call
s(t) := α(t) − β(t) the harmonic span for (R(t), ξ(t), η(t)). Since R(t) is pla-
nar, we have sn(t) ↘ s(t) as n → ∞. Their proofs in [1] imply that, for
K � R |B \ {ξ|B, η|B },

(5.3) pn(t, z), qn(t, z), p(t, z), q(t, z) are uniformly bounded on K.

Though p(t, z), q(t, z), α(t), β(t) depend on the choice of local coordinates
about ξ(t) and η(t), s(t) does not depend on it, so that s(t)(≥ 0) is a
function on B and on Δ.

Using this notation, we have the following approximation condition.

Theorem 5.1. Let R : t ∈ Δ → R(t) satisfy (b)–(d), where Δ is an open
Riemann surface. Let ξ, η ∈ Γ(Δ, R) such that ξ ∩ η = ∅, and let s(t) denote
the harmonic span for (R(t), ξ(t), η(t)). Assume that
(∗) for any t0 ∈ Δ, there exists a small disk B � Δ of center t0 such that we

find an increasing sequence {R ′
n}n of case (c1) such that limn→∞ R ′

n =
R |B.

Then
(1) s(t) is subharmonic on Δ;
(2) (simultaneous uniformization) if s(t) is harmonic on Δ, then R is π-

biholomorphic to a univalent domain in Δ × P.

Proof. To show (1), let t0 ∈ Δ. Then we have a disk B ⊂ Δ with condition
(∗). By Lemma 5.1(2)(ii), sn(t) is C1 subharmonic on B; hence, s(t) is
subharmonic on B and on Δ. To prove (2), we cover Δ by small disks
{Bi}i=1,2,... with condition (∗); that is, for fixed Bi, we find an increasing
sequence {R ′

n}n (depending on Bi) such that each R ′
n is of case (c1) and

limn→∞ R ′
n = R |Bi . We divide the proof into two steps.

Step 1. Each R |Bi , i = 1,2, . . . , is π-biholomorphic to a univalent domain
Di in B × P.

In fact, we simply write B = Bi. We put R ′
n =

⋃
t∈B(t,R′

n(t)), n = 1,2, . . . ,
and consider pn(t, z), qn(t, z) and sn(t) for each (R′

n(t),0, η(t)), t ∈ B as
above. We put

Pn(t, z) = epn(t,z)+ipn(t,z)∗
, P (t, z) = ep(t,z)+ip(t,z)∗

,
(5.4)

Qn(t, z) = eqn(t,z)+iqn(t,z)∗
, Q(t, z) = eq(t,z)+iq(t,z)∗

,
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which are all 0 at z = η(t) and normalized

(5.5)
1
z

+ (holomorphic function) near z = 0.

For t ∈ B, Pn(t, z) and Qn(t, z) uniformly converge to P (t, z) and Q(t, z) on
any compact set in R(t); w = Pn(t, z) is a circular slit mapping on R′

n(t),
and similarly w = Qn(t, z) is a radial slit one. Hence, P (t, z) and Q(t, z) are
univalent functions on R(t). We also call P (t, z) the circular slit mapping
for (R(t),0, η(t)), and similarly, we call Q(t, z) the radial slit mapping. For
Step 1 it suffices to show that

(a) the harmonicity of s(t) on B implies that P (t, z) is holomorphic for two
complex variables (t, z) in R |B \ {ξ|B }.

In fact, fix a point (t0, z0) in R |B \ {ξ|B , η|B }, and let B0 × V � R |B \
{ξ|B, η|B } be a bidisk centered at (t0, z0), a local coordinate of a neighbor-
hood of (t0, z0). We put f(t, z) := ∂p(t,z)

∂z for (t, z) ∈ B0 × V . From (5.5) it
suffices for (a) to prove that f(t, z) is holomorphic for (t, z) in B0 × V . Since
each f(t, z), t ∈ B0 is holomorphic for z ∈ V and since f(t, z) is uniformly
bounded in B0 × V by (5.3), it thus suffices for (a) to show that, for any
fixed z′ ∈ V , it holds ∂f(t,z′)

∂t
= 0 on B0 in the sense of distribution; that is,

it holds, for any ϕ(t) = ϕ(t1 + it2) ∈ C∞
0 (B0),

(5.6) I :=
∫

B0

f(t, z′)
∂ϕ(t)

∂t
dt1 dt2 = 0.

To prove this by contradiction, assume that I �= 0. We fix a small disk
V0 = {|z − z′ | < r0} � V of center z′, so that we have R′

n(t) � V0 for any
t ∈ B0 and n ≥ ∃n0. We see from the mean-value theorem for holomorphic
functions for z that

I =
1

πr2
0

∫∫
B0×V0

f(t, z)
∂ϕ(t)

∂t
dt1 dt2 dxdy.

We put fn(t, z) = ∂pn(t,z)
∂z in B0 × V . Since limn→∞ fn(t, z) = f(t, z) uni-

formly on V0 for a fixed t ∈ B0 and since fn(t, z), f(t, z) are uniformly
bounded in B0 × V0 by (5.3), the Lebesgue bounded theorem implies that

I =
1

πr2
0

lim
n→∞

∫ ∫
B0×V0

fn(t, z)
∂ϕ(t)

∂t
dt1 dt2 dxdy.
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Therefore,∣∣∣ 1
πr2

0

∫∫
B0×V0

fn(t, z)
∂ϕ(t)

∂t
dt1 dt2 dxdy

∣∣∣ ≥ |I|
2

> 0 for n ≥ ∃N.

On the other hand, using Lemma 5.1(2)(ii) under Theorem 5.1(∗), we see
that, for a fixed z ∈ V0, pn(t, z), and hence fn(t, z) is of class C1 for t ∈ B0.
It follows that∫

B0

fn(t, z)
∂ϕ(t)

∂t
dt1 dt2 = −

∫
B0

ϕ(t)
∂fn(t, z)

∂t
dt1 dt2.

Hence, putting I0 = (πr2
0 |I|)/2 > 0, we have from the Schwarz inequality

that

I2
0 ≤

(∫∫
B0×V0

|ϕ(t)|2 dt1 dt2 dxdy
)

×
(∫∫

B0×V0

∣∣∣∂fn(t, z)
∂t

∣∣∣2 dt1 dt2 dxdy
)

=: C
∫∫

B0×V0

∣∣∣∂fn(t, z)
∂t

∣∣∣2 dt1 dt2 dxdy,

where C > 0 is independent of n. Lemma 4.1 and L′(i) in “Preparation” for
the pseudoconvex domain R ′

n imply that

0 ≤ 4
π

∫
R′

n(t)

∣∣∣∂fn(t, z)
∂t

∣∣∣2 dxdy ≤ ∂2sn(t)
∂t∂t

for any t ∈ B \ L ′.

Since L ′ (depending on n) consists of a finite number of Cω arcs in B,
R′

n(t) ⊃ V0 for n ≥ n0, and fn ∈ C1(B0 × V0), it follows that

I2
0 ≤ C

∫∫
(B0\L ′)×V0

∣∣∣∂fn(t, z)
∂t

∣∣∣2 dt1 dt2 dxdy

≤ Cπ

4

∫
B0\L ′

∂2sn(t)
∂t∂t

dt1 dt2.

We fix a disk B1 : B0 � B1 � B and a C∞
0 function ϕ1(t) ≥ 0 on B1 such

that ϕ1(t) ≡ 1 on B0. Since ∂2sn(t)
∂t∂t

≥ 0 on B1 \ L ′, we have that∫
B0\L ′

∂2sn(t)
∂t∂t

dt1 dt2 ≤
∫

B1\L ′
ϕ1(t)

∂2sn(t)
∂t∂t

dt1 dt2.
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Since sn(t) is of class C1 on B and ϕ1(t) ≡ 0 on ∂B1, we have that∫
B1\L ′

ϕ1(t)
∂2sn(t)
∂t∂t

dt1 dt2 =
∫

B1

sn(t)
∂2ϕ1(t)

∂t∂t
dt1 dt2,

both being equal to −(1/4)
∫
B1

(∂ϕ1

∂t1
∂sn
∂t1

+ ∂ϕ1

∂t2
∂sn
∂t2

)dt1 dt2. Therefore,

0 < I2
0 ≤ Cπ

4

∫
B1

sn(t)
∂2ϕ1(t)

∂t∂t
dt1 dt2

→ Cπ

4

∫
B1

s(t)
∂2ϕ1(t)

∂t∂t
dt1 dt2 as n → ∞

= 0 by the harmonicity of s(t) on B,

which is a contradiction, and Step 1 is proved.
Step 2. Assertion (2) is true.
In fact, fix Bi, i = 1,2, . . . , and let Pi(t, z) denote the circular slit map-

ping for (R(t),0, η(t)) used in (a) in Step 1 for R |Bi . From the theory of
one complex variable, for a fixed t ∈ Bi ∩ Bj , there exists aij(t) �= 0 such
that Pi(t, z) = aij(t)Pj(t, z) on R(t). Since aij(t) is holomorphic on Bi ∩ Bj

and since Δ is an open Riemann surface, we have a nonvanishing holomor-
phic function ai(t) on Bi such that aij(t) = aj(t)/ai(t) on Bi ∩ Bj . Thus,
ai(t)Pi(t, z) on Bi, i = 1,2, . . . defines a holomorphic function P (t, z) on R,
so that T : (t, z) ∈ R → (t,w) = (t, P (t, z)) ∈ B × Pw proves Step 2.

Corollary 5.1 (Rigidity). Let R : t ∈ Δ → R(t) satisfy (a)–(d). Assume
that
(i) R(t), t ∈ B satisfies Lemma 5.2 (�), so that R(t) has ν (ideal) boundary

components;
(ii) there exists at least one (ideal) boundary component C(t) of R(t), t ∈ Δ

such that C(t) moves homotopically with t ∈ Δ in R and C(t) is of
positive harmonic measure on R(t).

Let ξ, η ∈ Γ(Δ, R) such that ξ �= η, and let s(t), t ∈ Δ denote the harmonic
span for (R(t), ξ(t), η(t)). Then we have the following.
(1) In the case where Δ is an open Riemann surface, s(t) is harmonic on

Δ if and only if R is π-biholomorphic to a domain (Δ × D) \ Ξ where D

is a circular μ slit domain in Pw and Ξ := t ∈ Δ → {ξk(t)}k=1,...,μ′ ⊂ D

is a multivalent holomorphic section of Δ × D over Δ, where μ ≥ 1 and
μ + μ′ = ν. Thus s(t) is constant on Δ.
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(2) In the case where Δ is a compact Riemann surface, then R is π-
biholomorphic to the product Δ × (D \ {ak }=1,...,μ′ ), where D is a circular
μ slit domain in Pw and ak ∈ D.

Proof. Since the proofs are similar, we prove (2). By (i), we cover Δ with
disks {Bi}i=1,...,m which satisfies Theorem 5.1(∗), so that s(t) is subhar-
monic on Bi and on Δ; hence, s(t) = constant on Δ. We fix Bi. Then by the
proof of Theorem 5.1(2), the circular slit mapping Pi(t, z) for (R(t),0, η(t)) is
holomorphic for t ∈ Bi. Since Di(t) := Pi(t,R(t)) is a circular slit domain in
Pw with ν circular arcs {A

(1)
j (t),A(2)

j (t)} (depending on Bi), some of which

may be a point A
(1)
j (t) = A

(2)
j (t) =: ξj(t), Behnke [3, p. 352] implies that each

A
(k)
j (t) is holomorphic on Bi. We rename j such that arc {A

(1)
1 (t),A(2)

1 (t)} =

Pi(t,C(t)) for C(t) in (ii); {A
(1)
j (t),A(2)

j (t)}, j = 2, . . . , μ(≤ ν), are arcs and
the rest are points, say, ξk(t), k = 1, . . . , μ′. Under the homotopy condition
for C(t), we see by the same argument as in Theorem 4.1(3)(ii) that, if
we put P̃i(t, z) := Pi(t, z)/A(1)

1 (t) on RBi and ξ̃k(t) := ξk(t)/A
(1)
1 (t) on Bi,

then P̃i(t, z) = P̃j(t, z) on R |Bi ∩Bj for all i, j. We thus have a holomorphic
function P̃ (t, z) for (t, z) ∈ R such that T : (t, z) ∈ R → (t,w) = (t, P̃ (t, z)) ∈
Δ × Pw is a π-biholomorphism from R onto (Δ × D) \ Ξ̃, where D is a circular
μ slit domain in Pw and where Ξ̃ = {ξ̃k }k=1,...,μ′ is a μ′-valent holomorphic
section of Δ × D over Δ. Taking the fundamental polynomials of {ξ̃k(t)}μ′

k=1

on Δ, we see that each ξ̃k(t) is a constant ak on Δ, which proves (2).

Applying Corollary 5.1 to the special case (c′): each R(t), t ∈ Δ confor-
mally equivalent to a disk D, we have the following.

Corollary 5.2. We have the following.

(1) Corollary 4.1 holds under the weaker condition for R : t ∈ Δ → R(t),
which satisfies (a), (b), (c′), and (d).

(2) Let R : t ∈ Δ → R(t) satisfy (b), (c′), and (d), where Δ is a compact
Riemann surface. Then, if there exist two distinct ξi ∈ Γ(Δ, R), i = 1,2,
then R is equivalent to the trivial Δ × D.
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