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A COHOMOLOGICAL TAMAGAWA NUMBER
FORMULA

ANNETTE HUBER and GUIDO KINGS

Abstract. For smooth linear group schemes over Z, we give a cohomological

interpretation of the local Tamagawa measures as cohomological periods. This

is in the spirit of the Tamagawa measures for motives defined by Bloch and

Kato. We show that in the case of tori, the cohomological and the motivic

Tamagawa measures coincide, which proves again the Bloch-Kato conjecture

for motives associated to tori.

Introduction

The purpose of this article is twofold: we propose and justify a new def-
inition of p-adic periods for reductive groups, and we give evidence that it
is related to the Tamagawa number conjecture of Bloch and Kato.

Recall that the complex period numbers of an algebraic variety X/Q are
defined as the values of the natural pairing (given by integration) between
algebraic de Rham cohomology over Q and rational singular homology of
X(C). Note that this pairing can also be phrased as an isomorphism between
de Rham cohomology and singular cohomology. In the case of reductive
groups, we want to imitate this in the setting of p-adic analysis. We use the
following dictionary: de Rham cohomology is replaced by Lie algebra coho-
mology ; singular cohomology is replaced by analytic group cohomology ; the
comparison isomorphism is the one of Lazard (see Section 1.3 for details).
For every model G/Z of a reductive group and a Lie algebra class [ω] of top
degree, this defines a period number μcoh

[ω] (G(Zp)) (see Definition 1.3.5). In
the first part of the article, we prove that the product of these cohomological
periods is related to values of L-functions. The result is particularly easy to
state in the case of Sln.

Received August 17, 2009. Revised June 9, 2010. Accepted August 10, 2010.
2010 Mathematics Subject Classification. 11G40, 11R42, 14G10, 22E41.

© 2011 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-1260441
http://www.ams.org/msc/


46 A. HUBER AND G. KINGS

Theorem 1. Let [ω] ∈ Hn2−1(Lie(Sln),Z) be a basis element. Then∏
p

μcoh
[ω]

(
Sln(Zp)

)
= [ζ(2)ζ(3) · · · ζ(n)]−1,

where ζ(s) is the Riemann ζ-function.

For general reductive groups, this takes the form of a cohomological Tam-
agawa number formula taking also the infinite place into account (see Theo-
rem 1.5.7). The key ingredient is an integral version of Lazard’s isomorphism
proved in [HKN].

The Tamagawa number formula for a reductive algebraic group G relates
the volume of G(A)/G(Q) to arithmetical invariants of G. Bloch and Kato
proposed a similar formula for all motives, which unfortunately remains
largely conjectural. They define p-adic periods by comparing different p-
adic cohomology theories via the Bloch-Kato exponential map. There is no
direct link to the classical Tamagawa measure for linear groups. At the end
of the introduction of [BK], Bloch and Kato state that they see the inter-
section between the theory of algebraic groups and the theory of motives as
consisting of abelian varieties and tori. Indeed, the very formulation of the
Bloch-Kato conjecture is inspired by Bloch’s beautiful paper [B], where he
shows that the conjecture of Birch and Swinnerton-Dyer is equivalent to a
Tamagawa number formula in the sense of algebraic groups.

It has been our philosophy to also view reductive groups in this intersec-
tion. We see the Lazard isomorphism as the p-adic part of the bridge. There
is some evidence for such a connection. In the case of the algebraic group
for a division algebra (see Example 1.1.8), the infinite cohomological period
is very closely related to Borel’s regulator in [Bo]. The work of Borel, com-
plemented by a comparison of regulators due to Beilinson and Rapoport,
provides this relation for the “infinite period,” proving the Beilinson con-
jecture, that is, the Bloch-Kato conjecture up to a rational factor. On the
other hand, we have shown in [HK2] that the p-adic cohomological periods
are related to the Bloch-Kato exponential map and the Soulé regulator,
which are used in the definition of the local motivic Tamagawa measures.
This article proves that our cohomological periods are the right choice to
correct Borel’s rational formula. (Unfortunately, it is by no means obvious
how to prove the conjecture from these ingredients.)

As pointed out by a referee, the cohomological Tamagawa number formula
of this paper could probably be generalized to more general algebraic group
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schemes, and by [B] even a relation to the Bloch-Kato conjecture is possible.
However, we restrict to the reductive case because [Bo] and [HK2] are strictly
restricted to the setting of reductive groups.

In the second part of this article, we treat the case of tori as a test case
for our approach. We show that our cohomological Tamagawa measures
can be identified with the motivic Tamagawa measures of Bloch and Kato.
Together with the key input of Ono’s classical Tamagawa number formula
for tori (see [O]), this gives a proof of the Tamagawa number formula for
the motives associated to tori over Q. The result as such is not new (see [F,
section 8.3]). By general yoga for Artin motives over Q, it suffices to treat the
case of h0(F ) where F is a number field, that is, the Dedekind ζ-function at
zero (resp., 1). This is nothing but the class number formula. However, the
direct proof is another piece of evidence for our approach to the Bloch-Kato
conjecture for reductive groups, or, equivalently, for Dedekind ζ-functions.

§1. A cohomological Tamagawa measure

1.1. Notation
We fix the following setting for the whole article.
Let G be a smooth linear group scheme over Z whose generic fiber is

connected reductive. If R is a ring, we denote by G(R) the R-valued points
of G, and we denote by GR the base change to R.

For any finite place p, we choose Gc
p, a compact open subgroup of G(Qp).

We say that the pair (G,Gc
p) with (p < ∞) has good reduction at p if

Gc
p = G(Zp) and GFp is quasi-split reductive. In particular, Gp

c is a maximal
compact at good reduction primes p.

We assume that (G,Gc
p) has good reduction at almost all places.

For p = ∞, we put Gc
∞ = G(R) (which is, of course, not compact in

general).

Remark 1.1.1. We could choose Gc
p = G(Zp) for all finite places p. Recall

also that by [PR, Proposition 3.16], any compact group of G(Qp) is con-
tained in a maximal compact subgroup.

Let A be the ring of adeles of Q, and let Af be the ring of finite adeles.
We put

Kf :=
∏

p<∞
Gc

p ⊂ G(Af ).

It is a compact open subgroup of G(Af ) and of finite index in a maximal
compact open subgroup. As usual, we embed G(Q) diagonally into G(A).
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We denote by
HG,Kf

= G(Q)\G(A)/G(R)Kf

the set of double cosets. For all g ∈ G(A), let

Γg = gG(R)Kfg−1 ∩ G(Q) ⊂ G(R).

In particular,

Γ := Γe =
{
g ∈ G(Q)

∣∣g ∈ Gc
p for all finite places p

}
.

Lemma 1.1.2. We have the following:
(1) HG,Kf

is finite;
(2) for all g ∈ G(A), the group Γg is an arithmetic subgroup of G(R), that

depends only on the class of g in HG,Kf
;

(3)
G(Q)\G(A)/Kf =

∐
g∈HG,Kf

Γg \G(R).

Proof. As Kf is of finite index in a maximal compact subgroup, the first
statement follows from [PR, Theorem 5.1]. Independence of the represen-
tative of the class is easy to check. The last statement is a standard com-
putation: for x,x′ ∈ G(R), the double cosets G(Q)gxKf and G(Q)gx′Kf

are equal if and only if there exists a γ ∈ G(Q) with γgxKf = gx′Kf . This
is equivalent to γ ∈ gG(R)Kfg−1 and γx = x′. Thus, the double classes of
G(Q)gG(R)Kf are represented by Γg \G(R).

Definition 1.1.3. We call the number of double cosets

hG,Kf
= #HG,Kf

the class number of G relative to Kf .

Example 1.1.4. Let K be a number field with ring of integers O, and
consider the Weil restriction G = ResO/ZGm with Gc

p = G(Zp) = (O ⊗ Zp)∗

for all primes p. Then hG,Kf
is the class number of K. In this case, all Γg

are equal to Γ.

Example 1.1.5. Assume that GQ is simple, simply connected with G(R)
noncompact. Then by the strong approximation theorem (see [PR, Theo-
rem 7.12]), hG,Kf

= 1 (for any choice of Kf !). Hence,

G(Q)\G(A)/Kf = Γ\G(R).
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We need a technical condition.

Assumption 1.1.6. We assume that G(A)/G(Q) is compact (or, equiv-
alently, that all Γg \G(R) are compact).

Note that the condition depends only on GQ. In fact, by [PR, Theo-
rem 4.12], it is equivalent to GQ being anisotropic.

Example 1.1.7. Let T be a smooth group scheme over Z whose generic
fiber is a torus. Then the assumption is equivalent to the condition that the
Q-rank of T is zero (see [PR, Theorem 4.11]). Hence, the torus ResO/ZGm

does not satisfy the assumption, but the quotient ResO/ZGm/Gm does. We
consider this example in more detail in the second part of the article.

Example 1.1.8. Let D be a noncommutative division algebra over Q

with center F . Let D be a maximal Z-order of D. (They exist; see, e.g.,
[CR, Corollary 26.6].) Let G be the group scheme of units of a D, that is,
given by the functor

G(A) = (D ⊗ A)∗

for all rings A. The group G is easily seen to be smooth. GQ is reductive.
However, it does not satisfy our assumption because it contains a diagonal
torus Gm. Let H be the kernel of the reduced norm map. More precisely,
for all commutative OF -algebras A′, consider

nred : (D ⊗OF
A′)∗ → (A′)∗

(see [CR, Section 7D, Corollary 26.2]). Let H ′ be the algebraic group over
OF defined by its kernel. It is a form of Sld/F , in particular simple, and we
let

H = ResOF /ZH ′.

Then HQ is a form of ResF/QSld, in particular semisimple and simply con-
nected. The group is anisotropic, and hence it satisfies Assumption 1.1.6.
The smoothness of H/Z is not obvious. For a direct proof, see [N, Theo-
rem 2].

The invariant hG for H is 1 if strong approximation holds for H ′, that is,
if and only if H ′(Fv) is noncompact for all infinite places v of F . This is the
case if the algebra A′ is split at the infinite places but not true in general.
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1.2. The local measure: real case
Let ω be an invariant d-form on G(R). Let Γg be as in Section 1.1.

Depending on the choice of ω, we are going to introduce a measure on
Γg \G(R). Recall that this quotient was assumed to be compact. Note that
Γg \G(R) is not a manifold in general. It may have orbifold singularities.

Note also that Γg \G(R) is not connected in general. In order to simplify
notation, we will assume that G(R) is connected for the rest of this section.
It is easy to extend the formulas to the general case.

Let g be the algebraic Lie algebra of GR. It can be identified with the Lie
algebra of the real Lie group G(R).

The cohomological measure. Let Ai
G(R) be the space of real C∞-differential

forms on G(R). By definition, g∨ = (A1
G(R))

G(R), the space of invariant one-
forms. Moreover, choose Γ′ ⊂ Γg, a normal subgroup of finite index such
that Γ′ \G(R) is a manifold. Together with Stokes’s theorem, this defines
natural maps

•∧
g∨ → (A•

G(R))
G(R) ⊂ (A•

G(R))
Γg

→ (A•
Γ′ \G(R))

Γg/Γ′ → C•
sing

(
Γ′ \G(R),R

)Γg/Γ′
→ C•

sing

(
Γg \G(R),R

)
.

The composition is independent of the choice of Γ′.

Definition 1.2.1. Let

S : H i(g,R) → H i
sing

(
Γg \G(R),R

)
be the natural map defined by Stokes’s theorem, that is, the natural homo-
morphism induced by the above composition.

Remark 1.2.2. Let K∞ be a maximal compact subgroup of G(R) with
Lie algebra k. Recall that the van Est isomorphism identifies relative Lie
algebra cohomology with continuous group cohomology

H i(g, k,R) ∼= H i
cont

(
G(R),R

)
.

Restricting to Γg ⊂ G(R) and identifying the cohomology of Γg with
Hsing((Γg \ G(R)/K∞,R), we get a map

H i(g, k,R) → H i
sing

(
Γg \G(R)/K∞,R

)
.

This map is a crucial ingredient in Borel’s definition of a regulator for num-
ber fields.
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Definition 1.2.3. Let ηΓg ∈ Hd(Γg \G(R),Q) be the fundamental class,
that is, the Poincaré dual of the cycle Γg \G(R) in H0(Γg \G(R),Q).

The fundamental class is a basis of Hd(Γg \G(R),Q).

Remark 1.2.4. If G(R) is not connected, this construction has to be
carried out in such a way that Lemma 1.2.6 holds. We leave the details to
the reader.

Definition 1.2.5. Let [ω] ∈ Hd(g,R). Then

S([ω]) = π(Γg, [ω])ηΓg

for some real number, the cohomological period at infinity. Let μcoh
[ω] be the

unique translation-invariant measure on
∐

g∈HG,Kf
Γg \G(R) normalized by

μcoh
[ω]

(
Γg \G(R)

)
= π(Γg, [ω]).

Lemma 1.2.6. Let Γ′ ⊂ Γg be a normal subgroup of finite index. Then

π(Γ′, [ω]) = [Γg : Γ′]π(Γg, [ω]).

Proof. This follows directly from the projection formula for the covering
Γ′ \G(R) → Γg \G(R).

Let ω 	= 0 be an invariant d-form on G(R). It is a gauge form and hence
defines a (nonnormalized) translation-invariant measure μTam

ω on the com-
pact homogeneous space Γg \G(R). This is nothing but the local Tamagawa
measure at infinity.

On the other hand, ω induces a class [ω] ∈ Hd(g,R).

Proposition 1.2.7. Let ω 	= 0 be an invariant d-form on G(R). Then

μTam
ω = μcoh

[ω] .

The cohomological period agrees with the local Tamagawa number.

Proof. By Lemma 1.2.6, we may replace Γg by a normal subgroup of
finite index. We choose Γ′ small enough such that Γ′ \G(R) is a manifold. By
definition, the isomorphism S is induced by Stokes’s theorem for Γ′ \G(R),
that is, by integrating differential forms over cycles.
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1.3. The local measure: p-adic case
Let G be a smooth algebraic group scheme over Zp of dimension d with

connected generic fiber. Let g be its Zp-Lie algebra. Let ω be an invariant
d-form on GQp . Depending on the choice of ω, we are going to introduce
a measure on the compact group G(Zp) and compare it with the classical
local Tamagawa measure.

Recall that G(Zp) is a p-adic Lie group. Let G ⊂ G(Zp) be a compact open
subgroup. Recall also (see [L, chapitre V, théorème 2.3.10]) that continuous
and locally analytic group cohomology agree for G. We are going to denote
it simply by H i(G,Qp).

Proposition 1.3.1. The natural restriction map

res : H i
(
G(Zp),Qp

)
→ H i(G,Qp)

is an isomorphism.

Proof. In [HKN, Theorem 4.3.1], locally analytic group cohomology of
both groups was shown to agree with Lie algebra cohomology. In particular,
the restriction is an isomorphism.

However, the integral structures on these cohomology groups defined by
cohomology with coefficients in Zp differ.

If G is without p-torsion, then by [L, chapitre V, théorème 2.5.8], it is a
Poincaré group with dualizing module D = Zp. This means that for every
finitely generated Zp-module A with continuous operation of G, there is a
natural isomorphism

H i(G,A∗)∗ ∼= Hd−i(G,A).

(Here (·)∗ is the Pontrjagin dual Hom(·,Qp/Zp).) We are interested in the
basic case A = Zp.

Definition 1.3.2. Let G ⊂ G(Zp) be an open subgroup without tor-
sion. We put ηG ∈ Hd(G,Qp), the image of 1 ∈ Zp = H0(G,Qp/Zp)∗, in
Hd(G,Zp) ⊂ Hd(G,Qp). It is called the fundamental class of G.

Note that the fundamental class is a generator of Hd(G,Zp) as Zp-module.
This condition determines it up to a factor in Z∗

p.

Remark 1.3.3. There is an alternative point of view. If G is a Poincaré
group with dualizing module D = Zp, then there is also a natural Qp-duality.
Under the perfect pairing

H0(G,Qp) × Hd(G,Qp) → Qp,
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ηG is indeed the dual of 1 ∈ H0(G,Qp). Details can be found elsewhere
(see [H]).

Lemma 1.3.4. Let G be an open torsion-free subgroup of G(Zp), and let
G ′ ⊂ G be a subgroup of index N = pk. Then

ηG |G ′ = pkηG ′ .

Proof. This follows from the projection formula for restriction and core-
striction.

Let [ω] ∈ Hd(g,Qp). We think of it as a volume form on G(Zp). It is
represented by some invariant d-form ω on G(Zp). Recall (see [L, chapitre V,
théorème 2.4.9] and [HKN, Theorem 4.3.1]) that the Lazard morphism is
an isomorphism

Laz : Hd(G,Qp) → Hd(g,Qp).

Hence, Laz−1[ω] is a multiple of the fundamental class of G(Zp). We define
π(G, [ω]) ∈ Qp by

Laz−1[ω] = π(G, [ω])ηG .

Definition 1.3.5. Let G ⊂ G(Zp) be an open subgroup, and let [ω] ∈
Hd(g,Qp) be a cohomology class. Choose G ′ ⊂ G, a torsion-free open sub-
group. Let μcoh

[ω] be the unique Haar measure on G normalized by

μcoh
[ω] (G ′) =

∣∣π(G ′, [ω])
∣∣
p
.

Lemma 1.3.6. The cohomological measure is well defined, that is, inde-
pendent of the choice of G ′.

Proof. This follows directly from Lemma 1.3.4.

1.4. The local Tamagawa measure
An invariant d-form ω defines a local Tamagawa measure μTam

ω on Gc
p

(see [W, Section 2.2.1]). More precisely, let U ⊂ Gc
p, let x1, . . . , xd be local

coordinates on U , and let ω = fdx1 ∧ dx2 ∧ · · · ∧ dxd on U . Then

μTam
ω (U) =

∫
x(U)

|f ◦ x−1|p

with respect to the standard measure on x(U) ⊂ Qd
p.
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Theorem 1.4.1. Let ω 	= 0 be an invariant d-form on GQp . Let [ω] be the
corresponding class in Hd(g,Qp). Then

μcoh
[ω] = μTam

ω

as measures on G(Zp).

Proof. It suffices to check that

μcoh
[ω] (G) = μTam

ω (G)

for some open compact subgroup G ⊂ G(Qp). As ω is unique up to scaling,
it also suffices to check the assertion for some ω.

Let
G(pZp) := ker

(
G(Zp) → G(Fp)

)
.

This is a standard group in the sense of Serre [S] (see also the detailed
discussion in [HKN, Section 2.2]). Let t1, . . . , td be coordinates of the formal
group Ĝ, the completion of G along e. Then

t = (t1, . . . , td) : G(pZp) → Zd
p

is well defined with image (pZp)d. The valuation

ω(x) = sup
i

|ti(x)|p

turns G(pZp) into a p-valued group. Let G be its saturated subgroup,
described as follows. In order to unify notation, let q = p for p 	= 2, and
let q = 4 for p = 2. By [HKN, Lemma 2.2.2], we have

t(G) = (qZp)d.

Recall that g is the Zp-Lie algebra of the group scheme G. It is a free
Zp-module of rank d. The exponential map induces a homeomorphism

qg → G.

By [HKN, Example 2.6.8], the Zp-Lie algebra qg is nothing but the integral
Lazard Lie algebra L(G) of G. We have

Hd(qg,Qp) =
d∧

(qg)∨ ∼= Zp.
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Let [η] be a generator. The main result of [HKN] is the compatibility of the
Lazard isomorphism with integral structures. By [HKN, Theorem 3.1.1 and
Example 3.3.1], we know that

Laz : Hd(G,Zp) → Hd(qg,Zp)

is an isomorphism. In particular, Laz−1([η]) is a generator of Hd(G,Zp).
This implies that

μcoh
[η] (G) = 1.

We now turn to the Tamagawa measure. Let ω be a generator of the space
of invariant algebraic d-forms on G. This space is a Zp-module of rank 1;
hence, ω is well defined up to a factor in Z∗

p. Restricting to the cotangent
space at e, we get a generator of

∧d
g∨. Hence, q−dω generates

∧d(qg)∨.
This implies that

[η] = uq−d[ω] ∈ Hd(qg,Qp)

with u ∈ Z∗
p. Without loss of generality, u = 1.

We now write ω in coordinates of the formal group. It has the form

ω = fdt1 ∧ · · · dtn,

with f ∈ Zp[[t1, . . . , tn]] such that f(0) is a p-adic unit. Recall that t(G) =
(qZp)d. Hence,

|f |p = |f(0)|p = 1

on t(G), and the Tamagawa measure of G with respect to η = q−dω is∫
(qZp)d

|q−df |p =
∫

(qZp)d

qd = 1.

This finishes the proof.

Remark 1.4.2. The above proof used the existence of a smooth model
G/Zp. By [BLR, Section 7.1, Theorem 5] this is not a restriction.

Corollary 1.4.3. If [ω] is a Zp-generator of Hd(g,Zp), then

μcoh
[ω]

(
G(Zp)

)
= p−d|G(Fp)|.

Proof. This is true for the local Tamagawa number τω (see [W, Theo-
rem 2.2.5]). It also follows directly from the computation in the proof of
Theorem 1.4.1.
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Proof of Theorem 1. Let [ω] be a generator of Hd(Sln,Z); then, by Corol-
lary 1.4.3,

μcoh
[ω]

(
Sln(Zp)

)
= p−d|Sl(Fp)| = (1 − p−2)(1 − p−3) · · · (1 − p−n)

because
|Sln(Fp)| = (p2 − 1)(p3 − 1) · · · (pn − 1)pn(n−1)/2

and d = n2 − 1. Taking the product over all p yields the formula of Theo-
rem 1.

1.5. The global formula
Let G/Z be as fixed in Section 1.1. Recall the class number hG,Kf

from
Definition 1.1.3. Let S be a finite set of finite places including all primes of
bad reduction of our data.

We want to define a cohomological Tamagawa number as a product of
the local Tamagawa numbers for all places. However, the product does not
converge in general. We have to introduce convergence factors.

Let M be the motive of (the quasi-split inner form of) G in the sense of
[G, Chapter 1]. It has good reduction at p /∈ S.

Remark 1.5.1. The motive of the variety GQ (e.g., in Voevodsky’s tri-
angulated category of motives) is a direct sum of Artin-Tate motives. It has
the structure of a Hopf object. In can be shown that M in the sense of Gross
is the primitive part of M(G) and independent of the choice of inner form.
Details will be discussed elsewhere.

Definition 1.5.2. For p /∈ S, let

Ep(G,s) = det(1 − Fr−1
p p−s | M)

be the Euler factor of M at p. The partial L-function of G is defined as the
Euler product

LS(G,s) =
∏
p/∈S

Ep(G,s)−1.

This is LS(M,s) in the notation of [G, Section 9]. Under Assumption 1.1.6,
the function has an analytic continuation (with no pole) to s = 1 (see [G,
Proposition 9.4]).

Lemma 1.5.3. For almost all p,

Ep(G,1) = p−d|G(Fp)|.
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Proof. For almost all p, GFp is quasi-split reductive. In this case, use [G,
Section 3].

Example 1.5.4. Let K be a number field with ring of integers O. If
G = ResO/ZGm is as in Example 1.1.7, then LS(M,s) = ζK,S(s) is the par-
tial Dedekind ζ-function. For G = ResO/ZGm/Gm, it is ζK,S(s)/ζS(s). In
particular, it is regular at s = 1. If G = H is as in Example 1.1.8 (kernel of
the reduced norm of a central simple algebra over a number field F ), then
it is an inner form of SLn,F , and hence

LS(G,s) = LS(SLn,F , s) =
n−1∏
i=1

ζF,S(s + i).

Again, it is regular at s = 1.

Definition 1.5.5. Let [ω] ∈ Hd(Lie(G),Q). Then the cohomological Tam-
agawa number is defined as

τ coh(G,Kf )

= LS(G,1)−1
(∏

p/∈S

Ep(G,1)−1μcoh
[ω] (Gc

p)
)(∏

p∈S

μcoh
[ω] (Gc

p)
)
μcoh

[ω]

( ∐
g∈HG,Kf

Γg \G(R)
)
.

For almost all p,
Ep(G,1)−1μcoh

[ω] (Gc
p) = 1

by Corollary 1.4.3 and Lemma 1.5.3. Hence, the product converges. As usual,
τ coh(G,Kf ) is independent of the choices of S and [ω].

Remark 1.5.6. If GQ is semisimple, then the convergence factors are not
necessary. We have

τ coh(G,Kf ) = μcoh
[ω]

( ∐
g∈HG,Kf

Γg \G(R)
) ∏

p<∞
μcoh

[ω] (Gc
p).

If, in addition, Gi(R) is noncompact for all simple factors of GQ, then by
Example 1.1.5, we have

τ coh(G,Kf ) = μcoh
[ω]

(
Γ\G(R)

) ∏
p<∞

μcoh
[ω] (Gc

p).

This includes the case of our Example 1.1.8.
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Let τTam(G) be the Tamagawa number of the group G in the sense of
Weil, that is, the volume of G(Q)\G(A) with respect to the global Tamagawa
measure μTam. Recall from Lemma 1.1.2 that

G(Q)\G(A)/Kf =
∐

g∈HG,Kf

Γg \G(R).

Theorem 1.5.7. One has the equality

τTam(G) = τ coh(G,Kf ).

Proof. Recall that Gc
∞ = G(R). We have

τTam(G) = μTam
(
G(A)/G(Q)

)
=

∑
g∈HG,Kf

μTam
( ∏

p<∞
Gc

p × Γg \G(R)
)
.

By definition of μTam, the assertion now follows from the local identities of
Proposition 1.2.7 and Theorem 1.4.1.

Remark 1.5.8. Rationally, the Lazard isomorphism exists for all choices
of Gc

p, and hence the formulation of the theorem is independent of the choice
of model G. By [BLR, Section 7.1, Theorem 5], all reductive groups GQ allow
a smooth model G over Z in the sense that we need.

Corollary 1.5.9. If GQ is semisimple and simply connected, then

1 = τ coh(G,Kf ).

Proof. In this case, the Tamagawa number τTam(G) equals 1 (see [PR,
Section 5.3] for a discussion of results on Tamagawa numbers).

This includes the case of our Example 1.1.8.

§2. Comparison with the Bloch-Kato conjecture in the case of
tori

2.1. Notation
Let T be an algebraic torus of dimension d over Q. For each Q-algebra A,

we let T (A) be the group of A-rational points. We denote by

(1) X∗ := HomQ(T,Gm), X∗ := HomQ(Gm, T )
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the group of characters (resp., cocharacters) of T defined over Q. For each
field Q ⊂ K, we denote by

(2) X∗
K := HomK(T ×Q K,Gm), X∗K := HomK(Gm, T ×Q K)

the group of characters (resp., cocharacters) defined over K. Let

(3) r := rkX∗
Q, rp := rkX∗

Qp
, r∞ = rkX∗

R

be the Q-rank, Qp-rank, and R-rank of T , respectively.

Assumption 2.1.1. To avoid problems with the pole of the Riemann zeta
function at 1, we will consider only tori of Q-rank 0.

We denote the motive of T by V := h1(T ). Considered as an Artin-Tate
motive, this is V = X∗ ⊗ Q(1).

Remark 2.1.2. As in Section 1.5, this is the motive of T in the sense of
Gross, that is, the dual of the primitive part of M(T ) in a suitable category
of Artin-Tate motives.

We can recover the N -torsion T [N ](Q) from X∗(1) by observing that

T [N ](Q) = HomQ(X∗ ⊗ Z/NZ,Gm) ∼= X∗ ⊗ μN .

In particular, we can identify the Tate module of T with

(4) X∗ ⊗ Zp(1) ∼= lim←−
n

T [pn](Q).

The following sets of points of T play an important role in the identification
of the motivic points of V . By Assumption 2.1.1, we have

T 1(A) :=
⋂

χ∈X∗
Q

ker(‖χ‖A) = T (A),

which implies that T (A)/T (Q) is compact. For each finite place v of Q, we
define the maximal compact subtorus T c

υ ⊂ T (Qv) by

(5) T c
v :=

⋂
χ∈X∗

Qv

ker(|χ|v),

where | · |v is the norm on Qv normalized by |p|p = 1/p. We have

(6) 0 → T c
v → T (Qv) → Zrv → 0.
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Define

(7) Γ := T (Q) ∩
(
T (R) ×

∏
p

T c
p

)
⊂ T (A).

(This agrees with the notation of Section 1.1; we have Γ = Γg for all g

because T is commutative.) By Dirichlet’s unit theorem, Γ is of the form

(8) Γ =
(
T (Q) ∩

∏
p

T c
p

)
× E,

where E is a free group of rank r∞ (recall that r = 0 by Assumption 2.1.1)
and (T (Q) ∩

∏
p T c

p ) is a finite group.

Definition 2.1.3. Let M be an abelian group; then we denote the p-adic
completion by

M ∧p := lim←−
n

M/pnM

and the profinite completion by

M ∧ := lim←−
N

M/NM.

Consider the Kummer sequence for T ,

0 → T [pn] → T
[pn]−−→ T → 0.

Lemma 2.1.4. For each field k ⊃ Q, the Kummer sequence induces iso-
morphisms

T (k)∧p ∼= H1
(
k,X∗ ⊗ Zp(1)

)
and

T (k)∧ ∼= H1
(
k,X∗ ⊗ Ẑ(1)

)
.

Proof. The Kummer sequence induces

0 → T (k)/NT (k) → H1(k,T [N ]) → H1(k,T )[N ] → 0,

and taking the inverse limit, we have

lim←−
n

H1(k,T )[pn] = 0
(
resp., lim←−

N

H1(k,T )[N ] = 0
)
,

as the transition maps are multiplication by p and H1(k,T ) is finite. As lim←−
is left-exact, this implies the isomorphism.
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2.2. R-valued points of tori
We consider the motive h1(T ). The Betti realization of h1(T ) is given by

h1(T )B = X∗ ⊗ Q(1), which contains X∗(1) as a lattice. The de Rham real-
ization is h1(T )dR = LieT , which has Fil0h1(T )dR = 0. Bloch and Kato [BK,
(5.6)] consider D∞ := h1(T )dR,R = LieTR and define the R-valued points of
the motive h1(T ) by

A(R) =
(
D∞ ⊗R C/(Fil0D∞ ⊗R C + X∗(1))

)+
.

Proposition 2.2.1. The R-valued points of h1(T ) are given by

A(R) = T (R),

and via the identification D∞ ∼= LieT (R), the natural map

D∞ → A(R)

is the exponential map.

Proof. In our case, D∞/Fil0D∞ ∼= LieT (R), so that D∞ ⊗R C ∼= LieT (C).
We have an exact sequence

0 → X∗(1) → X∗ ⊗ C → T (C) → 0,

where the last map is the exponential. Hence, X∗ ⊗ C ∼= LieT (C), and we
get

A(R) =
(
LieT (C)/X∗(1)

)+ =
(
T (C)

)+ = T (R).

2.3. Qp-valued points of tori
The aim of this section is to identify the Qp-valued motivic points. The

Qp-valued motivic points are by definition (see [BK, (5.6)])

A(Qp) := H1
f

(
Qp,X∗ ⊗ Ẑ(1)

)
.

Theorem 2.3.1. The Qp-valued motivic points of the motive V = h1(T )
are given by

A(Qp) = T c
p .

As a first step, we identify the torsion subgroup of A(Qp).

Lemma 2.3.2. The torsion subgroup of A(Qp) coincides with the one of
T c

p :
(T c

p )tors = T (Qp)tors = A(Qp)tors.
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Proof. By definition of H1
f (Qp,X∗ ⊗ Ẑ(1)), the torsion coincides with the

torsion in
H1

(
Qp,X∗ ⊗ Ẑ(1)

)
=

∏
l

H1
(
Qp,X∗ ⊗ Zl(1)

)
.

The torsion in H1(Qp,X∗ ⊗ Zl(1)) is H0(Qp,X∗(1) ⊗ Ql/Zl) because we
have an exact sequence

0 → H0
(
Qp,X∗(1) ⊗ Ql/Zl

)
→ H1

(
Qp,X∗ ⊗ Zl(1)

)
→ H1

(
Qp,X∗ ⊗ Ql(1)

)
,

where the first zero appears as H0(Qp,X∗ ⊗ Ql(1)) = 0 for weight reasons.
On the other hand,

T [l∞](Q) = HomQ(X∗, μl∞ ) = X∗(1) ⊗ Ql/Zl.

This gives H0(Qp,X∗(1) ⊗ Ql/Zl) = T [l∞](Qp). To conclude, note that the
exact sequence (6) implies that T c

p [l∞] = T [l∞](Qp).

Lemma 2.3.3. One has, for l 	= p,

H1
f (Qp, Vl) = 0.

In particular, H1
f (Qp,X∗ ⊗ Zl(1)) is torsion.

Proof. Let Ip be the inertia group at p; then, by definition (see [BK,
(3.7.1)]), H1

f (Qp, Vl) is given by the cokernel of the map

V
Ip

l

1−Fr−1
p−−−−−→ V

Ip

l .

But V = X∗ ⊗ Q(1) is the Tate twist of an Artin motive, so that Fr−1
p does

not have 1 as an eigenvalue. This implies that 1 − Fr−1
p is injective, hence

surjective.

We have, by Lemma 2.1.4,

T (Qp)∧p ⊗ Qp
∼= H1(Qp, Vp).

In order to identify H1
f (Qp, Vp) in T (Qp)∧p ⊗Zp Qp, we need the following.

Lemma 2.3.4. Denote by vp : Q∗
p → Z the p-adic valuation; then one has

an exact sequence

(9) 0 → T c
p

∧p → T (Qp)∧p → Z
rp
p → 0.
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In particular,

T c
p

∧p ⊗Zp Qp =
⋂

χ∈X∗
Qp

ker
(
T (Qp)∧p ⊗Zp Qp

vp ◦χ−−−→ Qp

)
.

Proof. Consider the exact sequence

0 → T c
p → T (Qp) → Zrp → 0.

As Zrp is free, this sequence splits as a sequence of abelian groups; hence,
taking the p-adic completion is exact. This gives the sequence (9). Tensoring
this with Qp over Zp, we get

0 → (T c
p )∧p ⊗Zp Qp → T (Qp)∧p ⊗Zp Qp → Q

rp
p → 0.

This implies the result.

The next lemma identifies H1
f (Qp, Vp) ⊂ T (Qp)∧p ⊗Zp Qp.

Lemma 2.3.5. Denote by vp : Q∗
p → Z the p-adic valuation; then

H1
f (Qp, Vp) =

⋂
χ∈X∗

Qp

ker
(
T (Qp)∧p ⊗ Qp

vp ◦χ−−−→ Qp

)
.

In particular,
(T c

p )∧p ⊗Zp Qp = H1
f (Qp, Vp).

Proof. Every χ ∈ X∗
Qp

defines a map

H1(Qp, Vp)
χ−→ H1

(
Qp,Qp(1)

)
.

By Lemma 2.1.4, for T = Gm one has (Q∗
p)

∧p ⊗Zp Qp
∼= H1(Qp,Qp(1)). By

[HK1, Lemma A.1 and Corollary A.2], one has

(Z∗
p)

∧p ⊗Zp Qp
∼= H1

f

(
Qp,Qp(1)

)
and that H1

f (Qp,Qp(1)) is the kernel of the valuation map

(Q∗
p)

∧p ⊗ Qp
vp−→ Qp.

On the other hand, χ defines H1
f (Qp, Vp)

χ−→ H1
f (Qp,Qp(1)). Putting this

information together, we obtain

H1
f (Qp, Vp) ⊂

⋂
χ∈X∗

Qp

ker
(
T (Qp)∧p ⊗ Qp

vp ◦χ−−−→ Qp

)
.
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By Lemma 2.3.4, we get

H1
f (Qp, Vp) ⊂ T c

p ⊗ Qp.

To show equality, we consider the dimension of both sides. Via the Bloch-
Kato exponential DdR(Vp) ∼= H1

f (Qp, Vp), we see that the Qp-dimension of
H1

f (Qp, Vp) is dimQp Vp. On the other hand, the Euler characteristic formula
gives

2∑
i=0

dimQp H i(Qp, Vp) = − dimQp Vp,

which implies that

dimQp H1(Qp, Vp) = dimQp Vp + dimQp H0(Qp, Vp) = dimQp Vp + rp.

With the identification T (Qp)∧p ⊗Zp Qp
∼= H1(Qp, Vp) and the exact sequence

(6), we see that dimQp(T
c
p ⊗Zp Qp) = dimQp Vp. This proves the desired

result.

Lemma 2.3.6. Under the identification T (Qp)∧p ∼= H1(Qp,X∗ ⊗ Zp(1))
by the Kummer sequence, the subgroup H1

f (Qp,X∗ ⊗ Zp(1)) ⊂ H1(Qp,X∗ ⊗
Zp(1)) coincides with (T c

p )∧p.

Proof. Consider the diagram

0 (T c
p )∧p T (Qp)∧p Z

rp
p 0

0 (T c
p )∧p ⊗Zp Qp T (Qp)∧p ⊗Zp Qp Q

rp
p 0

where both rows are exact by Lemma 2.3.4. Using the definition of H1
f (Qp,

X∗ ⊗ Zp(1)) as the pullback of H1(Qp,X∗ ⊗ Zp(1)) to H1
f (Qp, Vp), we get

that (T c
p )∧p ∼= H1

f (Qp,X∗ ⊗ Zp(1)).

Finally, we can show Theorem 2.3.1.

Proof of Theorem 2.3.1. As both T c
p and A(Qp) contain a subgroup of

the form Zd
p of finite index, it suffices to show that, for all l,

(T c
p )∧l ∼= A(Qp)∧l.

For l 	= p we have seen that both sides are torsion, and the claim follows
from Lemma 2.3.2. For l = p the claim follows from Lemma 2.3.6 and the
definition of A(Qp).
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2.4. Comparison of the motivic
with the local Tamagawa measure

Let ω 	= 0 be a T -invariant algebraic differential form defined over Qv of
top degree on T . This form defines the local Tamagawa measure μTam

ω on
T (Qv) (see Section 1.4) for all places v with the property that

μTam
ω (T c

p ) = p− dimT #T (Fp)

for almost all p. Here T is a smooth model of T over Zp.
We next explain the motivic measures defined by Bloch and Kato on the

local points of the motive h1(T ). Choose once and for all a rational, top-
degree translation-invariant differential form ω on T . This gives a linear
form ω :

∧d LieT → Q, and we denote by ω∨ ∈
∧d LieT the dual basis.

By definition [BK, Definition 5.9], the motivic measure μBK
ω on A(R) =

T (R) equals μTam
ω .

Next consider A(Qp) = T c
p . Here the motivic measure μBK

ω is the Haar
measure on T c

p normalized as follows. The Bloch-Kato exponential map
induces an isomorphism

expBK : LieTQp
∼= H1

f

(
Qp,X∗ ⊗ Qp(1)

)
.

By definition of A(Qp) = T c
p , a subgroup of finite index, say, T1 ⊂ A(Qp), is

contained in H1
f (Qp,X∗ ⊗ Qp). Then

exp−1
BK(T1) =: T ⊂ LieTQp

is a Zp-lattice. Choose a basis t1, . . . , td of T ; then we normalize μBK
p,ω by

μBK
p,ω(T1) = |ω(t1 ∧ · · · ∧ td)|p.

We need the following information about expBK.

Lemma 2.4.1. The diagram

LieTQp

expBK

exp

H1
f

(
Qp,X∗ ⊗ Qp(1)

)

T c
p

∧p ⊗ Qp
Kummer

H1
(
Qp,X∗ ⊗ Qp(1)

)
commutes. Here exp is the exponential map of T c

p .
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Proof. After base change to the splitting field, one sees with [BK, Exam-
ple 3.10.1] that expBK is given by the exponential map.

Proposition 2.4.2. For all v, the motivic and the local Tamagawa mea-
sures coincide:

μBK
ω = μTam

ω .

Proof. For v = ∞, both measures are defined in the same way, and there
is nothing to show. For v = p, by Lemma 2.4.1, we have exp : T ∼= T1. On
T1 we have the translation-invariant form ω, and the pullback exp∗ ω is an
invariant form on T . We claim that this coincides with ω. But exp induces
the identity on the tangent spaces, so that 0∗ exp∗ ω = e∗ω, where zero and e

are the unit sections of T and T1. As e∗ω is the linear form ω :
∧d LieT → Q,

the claim follows. Thus, the Tamagawa measure of T1 is ω(t1 ∧ · · · ∧ td), where
t1, . . . , td is the basis of T chosen above.

2.5. Global points of tori
For any number field K, let MAT(K) be the Q-linear abelian category

of mixed Artin-Tate motives over K.

Remark 2.5.1. Whereas the category of mixed motives in general is con-
jectural, the subcategory of Artin-Tate motives is well defined, for example,
as (the opposed category of) the heart of the motivic t-structure on the full
triangulated subcategory of Voevodsky’s category DMgm(SpecK,Q) gener-
ated by Artin motives over K and all pure Tate motives Q(n) for n ∈ Z. It
contains the homological motive of T . Its h1 is given by X∗ ⊗ Q(1).

The realization functors attach to all objects of MAT(K), mixed Hodge
structures, or Gal(K̄/K)-modules.

We put
H1

mot(K,V ) = Ext1MAT(K)

(
Q(0), h1(T )

)
.

Recall [BK, p. 374] that the global points A(Q) of the motive V = h1(T )
are defined as follows. Let

H1
mot,f (Q, V ) := ker

(
H1

mot(Q, V ) →
∏

p<∞
H1(Qp, Vp)/H1

f (Qp, Vp)
)
.

Then A(Q) ⊂ H1
f (Q,X∗ ⊗ Ẑ(1)) is the preimage of

H1
mot,f (Q, V ) ⊂ H1

f

(
Q,X∗ ⊗ Ẑ(1)

)
⊗Z Q

in H1
f (Q,X∗ ⊗ Ẑ(1)).
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Theorem 2.5.2. Recall that Γ = T (Q) ∩ (T (R) ×
∏

p T c
p ); then the global

points of the motive V = h1(T ) are

A(Q) = Γ.

For the proof we need several lemmas.

Lemma 2.5.3. One has

H1
mot(Q, V ) ∼= T (Q) ⊗Z Q

and
H1

mot,f (Q, V ) ∼= Γ ⊗Z Q.

Proof. Let t ∈ T (Q). By the Abel-Jacobi map, the homologically trivial
cycle [t] − [1] induces an element of Ext1MAT(Q(0), h1(T )). This defines a
natural map, T (Q) ⊗Z Q → H1

mot(Q, V ). Let K/Q be the splitting field of
T ; then T (K) = (K∗)d, and hence

H1
mot(K,V ) ∼= T (K) ⊗Z Q.

Using H1
mot(Q, V ) = H1

mot(K,V )Gal(K/Q), the result for H1
mot(Q, V ) follows.

With this result and Lemma 2.3.5, we have a Cartesian diagram

H1
mot,f (Q, V )

∏
p(T

c
p )∧p ⊗Zp Qp

T (Q) ⊗ Q
∏

p T (Qp)∧p ⊗Zp Qp.

(10)

On the other hand, consider the exact sequence

(11) 0 → Γ → T (Q)
∏

vp−−−→
∏
p

T (Qp)∧p/(T c
p )∧p =

∏
p

Z
rp
p .

If we tensor with Q and use (
∏

p Zrp) ⊗ Q ⊂
∏

p Q
rp
p , we get

0 → Γ ⊗Z Q → T (Q) ⊗Z Q

∏
vp ⊗id−−−−−→

∏
p

Q
rp
p .

In particular, diagram (10) is Cartesian with H1
mot,f (Q, V ) replaced by

Γ ⊗Z Q, which proves our claim.
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Lemma 2.5.4. There is a Cartesian diagram

Γ∧
∏

p T c
p

∧

T (Q)∧ ∏
p T (Qp)∧.

Proof. By definition, the diagram

Γ
∏

p T c
p

T (Q)
∏

p T (Qp)

is Cartesian. Note that the cokernel of
∏

p T c
p →

∏
p T (Qp) is

∏
p Zrp and

hence torsion free. By (11), the cokernel of Γ → T (Q) is also torsion free.
Moreover, as the N -multiplication on a product is the product of the N -
multiplications, the exact sequence

∏
p

T (Q)
[N ]−−→

∏
p

T (Q) →
∏
p

(
T (Q)/NT (Q)

)
→ 0

shows that
(∏

p T (Q)
)

⊗ Z/N ∼=
∏

p(T (Q) ⊗ Z/N). This implies that, for
each N ∈ Z, we have a Cartesian diagram

Γ ⊗Z Z/N
∏

p T c
p ⊗Z Z/N

T (Q) ⊗Z Z/N
∏

p T (Qp) ⊗Z Z/N.

Passing to lim←−N
and observing that this commutes with products and finite

fiber products, hence with Cartesian diagrams, gives the claim.

Corollary 2.5.5. One has

H1
f

(
Q,X∗ ⊗ Ẑ(1)

)
= Γ∧ = Γ ⊗Z Ẑ.
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Proof. The first equality follows from Lemma 2.5.4, the definition of
H1

f (Q,X∗ ⊗ Ẑ(1)) by the Cartesian diagram

H1
f

(
Q,X∗ ⊗ Ẑ(1)

) ∏
p H1

f

(
Qp,X∗ ⊗ Ẑ(1)

)

H1
(
Q,X∗ ⊗ Ẑ(1)

) ∏
p H1

(
Qp,X∗ ⊗ Ẑ(1)

)
,

and the identifications in Theorem 2.3.1 and Lemma 2.1.4. The second
equality follows from the fact that Γ is a finitely generated abelian group,
so that its profinite completion is given by Γ ⊗Z Ẑ.

Proof of Theorem 2.5.2. The global motivic points are by definition the
fiber product of H1

mot,f (Q, V ) = Γ ⊗Z Q (Lemma 2.5.3) and H1
f (Q,X∗ ⊗

Ẑ(1)) = Γ ⊗Z Ẑ (Corollary 2.5.5) over H1
f (Q,X∗ ⊗ Ẑ(1)) ⊗ Q = Γ ⊗Z Af . To

finish the proof, we have to show that there is a Cartesian diagram

Γ Γ ⊗Z Ẑ

Γ ⊗Z Q Γ ⊗Z Af .

As Γ is a finitely generated abelian group, we can prove this statement for
the free part and the torsion part separately. For the free part, it follows
from the standard Cartesian diagram

Z Ẑ

Q Af .

For the torsion part, it suffices to note that Γ and Γ ⊗Z Ẑ have obviously
the same torsion.

2.6. Global invariants
Recall the definition of the classical Shafarevich group for tori (see [M,

Theorem 9.11]):

X(T ) = Ker
(
H1(Q, T ) →

∏
p≤ ∞

H1(Qp, T )
)
.
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On the other hand, Bloch and Kato define a group XBK(M) for all motives
M/Q (see [BK, (5.13)]). Using our identifications of local and global points,
it reads

XBK

(
h1(T )

)
= Ker

(H1(Q,X∗(1) ⊗ Q/Z)
Γ ⊗ Q/Z

→
⊕
p≤ ∞

H1(Qp,X∗(1) ⊗ Q/Z)
T c

p ⊗ Q/Z

)
,

where by abuse of notation we put T c
∞ = T (R).

Definition 2.6.1. The class group of T is

Cl(T ) := Cl(T,Γ) :=
T (Af )

T (Q)
∏

p<∞ T c
p

.

We denote its order as hΓ.

Remark 2.6.2. Cl(T,Γ) is nothing but HT,Kf
of Section 1.1. In par-

ticular, hΓ = hT,Kf
(see Definition 1.1.3), and the group is finite. If T =

ResK/QGm, then Cl(T ) is the class group of K.

Our aim is to show the following.

Proposition 2.6.3. There is a natural short exact sequence

0 → Cl(T ) → XBK

(
h1(T )

)
→ X(T ) → 0.

Proof. Note that

T (Af )/
∏

p<∞
T c

p
∼=

⊕
p<∞

T (Qp)/T c
p .

(Take the direct limit over S-adeles for finite sets of places S.) By definition
of Cl(T ), this implies that

0 → T (Q)/Γ →
⊕
p<∞

T (Qp)/T c
p → Cl(T ) → 0.

We abbreviate I(T ) for the middle group. Recall that T (Qp)/T c
p

∼= Zrp in
our notation. Hence, I(T ) is torsion free.
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Let n be a natural number. We get a commutative diagram with exact
rows and columns:

T (Q)/Γ

[n]

I(T )

[n]

Cl(T )

[n]

T (Q)/Γ I(T ) Cl(T )

T (Q)/Γ ⊗ Z/nZ I(T ) ⊗ Z/nZ Cl(T ) ⊗ Z/nZ

By the snake lemma, the kernel of the last line is isomorphic to Cl(T )[n].
This implies that the sequence

0 → Cl(T )[n] → T (Q)/Γ ⊗ Z/nZ →
⊕

p

T (Qp)/T c
p ⊗ Z/n

→ Cl(T )/nCl(T ) → 0

is exact. We pass to the direct limit over n. Note that the transition map
Cl(T )[n] → Cl(T )[nm] is the natural inclusion. As Cl(T ) is finite, this means
that

lim−→ Cl(T )[n] = Cl(T ).

On the other hand, the transition map Cl(T )/nCl(T ) → Cl(T )/nmCl(T ) is
multiplication by m. Again, by finiteness, this means that

lim−→ Cl(T )/nCl(T ) = 0.

We have established the short exact sequence

(12) 0 → Cl(T ) → T (Q) ⊗ Q/Z

Γ ⊗ Q/Z
→

⊕
p

T (Qp) ⊗ Q/Z

T c
p ⊗ Q/Z

→ 0.

Recall that by abuse of notation T c
∞ = T (R); hence, the equation remains

valid when the sum runs through p ≤ ∞.
By Kummer theory for the torus T , we have

H1
(
k,T (k̄)

) ∼= H1(k,T (k̄)tors)
T (k) ⊗ Q/Z
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for any field k ⊃ Q. Hence, the defining sequence for X(T ) can be rewritten
as

0 → X(T ) → H1(Q, T (Q̄)tors)
T (Q) ⊗ Q/Z

→
∏

p≤ ∞

H1(Qp, T (Q̄p)tors)
T (Qp) ⊗ Q/Z

.

In this sequence, we can replace the product by a direct sum because all
global cohomology classes are unramified almost everywhere, and unramified
local classes vanish for tori.

Comparing this to the defining sequence of XBK yields a commutative
diagram of exact sequences:

X(T ) H1(Q,T (Q̄)tors)
T (Q)⊗Q/Z

⊕
p≤ ∞

H1(Qp,T (Q̄p)tors)
T (Qp)⊗Q/Z

XBK

(
h1(T )

) H1(Q,T (Q̄)tors)
Γ⊗Q/Z

⊕
p≤ ∞

H1(Qp,T (Q̄p)tors)
T c

p ⊗Q/Z

Cl(T ) T (Q)⊗Q/Z

Γ⊗Q/Z

⊕
p≤ ∞

T (Qp)⊗Q/Z

T c
p ⊗Q/Z

where the last line was shown in (12). The snake lemma gives the proposi-
tion.

Corollary 2.6.4. Let i(T ) be Ono’s constant (see [O, Section 3.4]).
Then

# XBK

(
h1(T )

)
= hΓ · i(T ).

Proof. By definition, i(T ) is the order of

X′(T ) = Ker
(
H1(K/Q, T (K))

)
→ H1

(
K/Q, T (AK)

)
for big enough K (independent of this choice). By abuse of notation, let T

be a model of the torus T/Q over some open part of SpecZ. By definition,

H1
(
K/Q, T (AK)

)
= lim−→

S

∏
v∈S

H1
(
K/Q, T (Kv)

)
×

∏
v/∈S

H1
(
K/Q, T (Ov)

)
,
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where the limit is over finite sets of finite places of K and Ov is the ring of
integers of Kv. For any rational prime p, we choose a place v of K over p.
Then ⊕

v′ |p
H1

(
K/Q, T (Kv′ )

) ∼= H1
(
Kv/Qp, T (Kv)

)
.

As in the proof of Proposition 2.6.3, the classes in the image of H1(K/Q,

T (K)) are unramified almost everywhere, and unramified local classes van-
ish for tori. Hence, we can replace the products by direct sums. Taking the
direct limit over S, this means that

0 → X′(T ) → H1
(
K/Q, T (Q)

)
→

⊕
p

H1
(
Kv/Q, T (Kv)

)
.

Passing to the limit over K, we get the defining sequence for X(T ).

We also need another global cohomological invariant.

Lemma 2.6.5. Let TQ be a torus satisfying Assumption 1.1.6, that is, with
Q-rank zero. Then

H1(Q,X∗) ∼= H0(Q,X∗ ⊗ Q/Z).

Proof. Under our assumption, this follows from the long exact sequence
for the short exact sequence of discrete Galois modules,

0 → X∗ → X∗ ⊗ Q → X∗ ⊗ Q/Z → 0.

2.7. The Tamagawa number conjecture for tori
Recall that T/Q is a torus with Q-rank equal to zero. We now turn to

stating the Bloch-Kato conjecture for the motive h1(T ) = X∗ ⊗ Q(1). Let
ω be an invariant d-form on T . Recall the local measures μBK

ω on the local
points A(Qp) of the motive for p ≤ ∞ (see Section 2.4). They define a
product measure μBK on ( ∏

p≤ ∞
A(Qp)

)
/A(Q).

This global measure is independent of the choice of ω.

Remark 2.7.1. Note that h1(T ) is pure of weight −1. Hence, we have
to use the refined definition (see [BK, Formula 5.9.1]) for the Tamagawa
number. In the same way as in Definition 1.5.5 or in the classical Tamagawa
measure, we introduce convergence factors.
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The Tamagawa number of h1(T ) is

τBK
(
h1(T )

)
= μBK

(( ∏
p≤ ∞

A(Qp)
)
/A(Q)

)
.

Theorem 2.7.2. Let T be a torus of Q-rank equal to zero. Then the Tam-
agawa number conjecture of Bloch and Kato [BK, Conjecture 5.15] holds for
the motive h1(T ) = X∗ ⊗ Q(1); that is,

τBK
(
h1(T )

)
=

#H0(Q,X∗ ⊗ Q/Z))
#XBK(h1(T ))

.

Proof of Theorem 2.7.2. We have already identified local points and local
measures (see Proposition 2.4.2). Hence, μBK = μTam. Using in addition
Corollary 2.6.4 and Lemma 2.6.5, the claim is equivalent to

μTam
(
T (R)

∏
p<∞

T c
p/Γ

)
=

#H1(Q,X∗)
hΓi(T )

.

On the other hand, the classical Tamagawa number formula for tori as
proved by Ono [O, Section 5, Main Theorem] reads

μTam
(
T (A)/T (Q)

)
=

#H1(Q,X∗)
i(T )

.

Together with the definition of hΓ, this proves the theorem.

Remark 2.7.3. This clears up a point we had been wondering about:
where is the class number in the Tamagawa number conjecture?

Acknowledgment. We thank Burt Totaro for a remark on the existence
of smooth models of reductive groups.
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Séminaire Bourbaki, no. 751.

[G] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287–
313.
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