Differentiability of spectral functions for nonsymmetric diffusion processes

Atsushi Tanida

Abstract Let $L = (1/2)\nabla \cdot a\nabla + b \cdot \nabla + W$ be a critical elliptic operator on \mathbb{R}^d . For a certain class of potential functions, we consider the generalized principal eigenvalues $\lambda(t)$ of $L_t = L + tV$. We show that it is differentiable if and only if L_0 is null critical.

1. Introduction

We study the behavior of the generalized principal eigenvalues $\lambda(t)$ of operators $L_t = L + tV$ $(t \in \mathbb{R})$. Here $L := (1/2)\nabla \cdot a\nabla + b \cdot \nabla + W$ is an elliptic operator on \mathbb{R}^d and V is a potential function on \mathbb{R}^d . We call the function $\lambda(t)$ the spectral function, and we are interested in the behavior of $\lambda(t)$, in particular, its differentiability. A precise definition of the generalized principal eigenvalue is given later. We note that $\lambda(t)$ is the bottom of the real part of the spectrum of L_t . So it is an important characteristic for the large time behavior of the semigroup associated with L_t . We suppose that V is nonnegative. We may also suppose that $\lambda(0) = 0$ by replacing L with $L - \lambda(0)$ if necessary. Since $\lambda(t)$ is convex, there are two possibilities:

- (i) $\lambda(t)$ is flat to zero for a small positive t;
- (ii) $\lambda(t)$ rises immediately as t increases.

Therefore one question arises. Is the initial rising steep or gradual? We show by using the method in [5] that if the operator L is positive critical, then $\lambda'(+0) > 0$, and if L is null critical, then $\lambda'(+0) = 0$. In the latter case, $\lambda(t)$ is differentiable at all $t \in \mathbb{R}$. Heuristically if the operator L is positive critical, then $\lambda(t)$ responds sensitively.

2. Preliminary

Let us consider an elliptic partial differential operator $L := (1/2)\nabla \cdot a\nabla + b \cdot \nabla + W$ on \mathbb{R}^d . Let V be a potential function with compact support. We assume that the coefficients a, b, W, and V satisfy the following conditions.

CONDITION A.1

There exists an $\alpha \in (0,1)$ such that for every relatively compact domain D' with $\overline{D'} \subset \mathbb{R}^d$,

- (i) $a,b \in C^{1,\alpha}(D'), W, V \in C^{\alpha}(D')$, and $\nabla \cdot b \ge -c, -W \ge -c$ for some positive constant c;
- (ii) $a = \{a_{ij}\}$ is uniformly elliptic; that is, there exists a constant $\mu > 0$ such that for any $x \in D'$,

$$\xi \cdot a(x)\xi \ge \mu |\xi|^2, \quad \xi \in \mathbb{R}^d;$$

(iii) $x \cdot b(x) \le K(|x|^2+1), \xi \cdot a(x)\xi \le K(|x|^2+1)|\xi|^2$ for some positive constant K.

We note that condition (iii) is used only in Lemma 4.5.

For the operator L, we denote the set of positive harmonic functions by $C_L(\mathbb{R}^d)$:

$$C_L(\mathbb{R}^d) = \{ u > 0 : u \in C^2(\mathbb{R}^d), Lu = 0 \}.$$

Following [3], we define the criticality as follows:

- (1) If L has 0 Green function, then L is called subcritical.
- (2) If L is not subcritical and $C_L(\mathbb{R}^d) \neq \emptyset$, then L is called critical.
- (3) If $C_L(\mathbb{R}^d) = \emptyset$, then L is called supercritical.

In the critical case, $C_L(\mathbb{R}^d)$ is one-dimensional, that is, its positive harmonic function is unique up to positive constant multiplication. In that case, we denote the positive harmonic function by ϕ_c and call it the *ground state* of L. For an operator $L = (1/2)\nabla \cdot a\nabla + b \cdot \nabla + W$, we define its dual operator \widetilde{L} by $\widetilde{L} = (1/2)\nabla \cdot a\nabla - b \cdot \nabla - \nabla \cdot b + W$.

The criticality properties of both L and \widetilde{L} coincide; that is, L is critical (subcritical, supercritical) if and only if \widetilde{L} is critical (subcritical, supercritical). In the critical case, both L and \widetilde{L} have ground states ϕ_c and $\widetilde{\phi}_c$. Moreover, we classify its critical property as follows

- (2-i) If L is critical and $\phi_c \tilde{\phi}_c \in L^1(\mathbb{R}^d, dx)$, then L is positive (or product L^1) critical.
- (2-ii) If L is critical and $\phi_c \tilde{\phi}_c \notin L^1(\mathbb{R}^d, dx)$, then L is null (or product not L^1) critical.

In the subcritical case, $C_L(\mathbb{R}^d)$ is not empty. Hence if L is not supercritical, then $C_L(\mathbb{R}^d)$ is not empty. We take a $\phi \in C_L(\mathbb{R}^d)$ and consider an h-transformation of L with respect to ϕ :

$$L^{\phi} := \frac{1}{2} \nabla \cdot a \nabla + b \cdot \nabla + a \frac{\nabla \phi}{\phi} \cdot \nabla.$$

 L^{ϕ} is a diffusion operator. It is known that

- (1) L is subcritical $\iff L^{\phi}$ is transient;
- (2-i) L is positive critical $\iff L^{\phi}$ is positive recurrent;
- (2-ii) L is null critical $\iff L^{\phi}$ is null recurrent.

Therefore the criticality property is regarded as a generalization of the recurrence property.

Using the criticality property, we define λ_c by

$$\lambda_c := \sup \{ \lambda \in \mathbb{R} : L - \lambda \text{ is supercritical} \}.$$

The real number λ_c is called the generalized principal eigenvalue of L. We now assume that $L = L_0$ is subcritical. Let $\hat{L} = (1/2)(L + \tilde{L})$ be the symmetric part of L. Define $\hat{G}_{\alpha}(x,y) = \int_{0}^{\infty} e^{-\alpha t} \hat{p}_{t}(x,y) dx$.

We assume the following conditions.

- (A.2) We have $\lim_{\alpha \to \infty} \|\hat{G}_{\alpha}V\|_{\infty} = 0$ (Kato class).
- (A.3) We have $\lim_{n\to\infty} \|\hat{G}_{\alpha}(V\mathbb{1}_{D_n^c})\|_{\infty} = 0$ (tightness). Here a sequence of relatively compact sets $\{D_n\}$ is an approximation of \mathbb{R}^d ; $\overline{D_n} \subset D_{n+1}, \bigcup_{n=1}^{\infty} D_n = \mathbb{R}^d$.

In the case $a=I,\ b=0,\ d=1,2,\$ B. Simon [4] and M. Klaus [2] obtained its perturbation series around t=0. For example, Klaus proved that $\lambda(t)^{1/2}=(t/\sqrt{2})\int_{\mathbb{R}}V(x)\,dx-(t^2/\sqrt{2})\int_{\mathbb{R}}\int_{\mathbb{R}}V(x)|x-y|V(y)\,dx\,dy+O(t^3)$ as $t\searrow 0$, where $L=(1/2)\frac{d^2}{dx^2}$ and V satisfies $\int_{\mathbb{R}}|V(x)|(1+|x|)\,dx$. Further, M. Takeda and K. Tsuchida [5] showed that $\lambda(t)$ is differentiable when $a=I,\ b=0,\ d\le 4$ and showed the necessary and sufficient condition for differentiability of $\lambda(t)$ for symmetric stable process. In this article we consider differentiability of $\lambda(t)$ of L_t by using the method of [5].

Finally, we note that the differentiability of $\lambda(t)$ is crucial when we prove the large deviation principle of the additive functional $\int_0^t V(X_s) ds$ by employing the Gärtner-Ellis theorem.

3. Main theorem and examples

We suppose that $L(=L_0)$ is subcritical. We also assume that $\lambda(0) = 0$. Conditions (A.2) and (A.3) imply that L_t is a compact perturbation of L (see [5]), and thus there exists some constant $t_0 > 0$ such that L_{t_0} is critical (see [3, p. 267] for details).

THEOREM 3.1

Assume that L_{t_0} is null critical; then $\lambda'(t_0+)=0$. Moreover, $\lambda(t)$ is a C^1 -function on \mathbb{R} .

Figure 1 shows examples of $\lambda(t)$ in the case $L = (1/2) \triangle$ on \mathbb{R}^d and $V = \mathbb{1}_{\{|x| < 1\}}$. The left is three-dimensional $(L_{t_0}$ is null critical); the right is five-dimensional $(L_{t_0}$ is positive critical).

4. Proof of the main theorem

Let $(\hat{\mathcal{E}}, C_0^{\infty}(\mathbb{R}^d))$ be a symmetric bilinear form defined by $\hat{\mathcal{E}}(u, v) = (1/2) \int_{\mathbb{R}^d} \nabla u \cdot a \nabla v \, dx + (1/2) \int_{\mathbb{R}^d} (\nabla \cdot b) uv \, dx - \int_{\mathbb{R}^d} W uv \, dx$. Since $\nabla \cdot b$ and -W are bounded below, we can take some constant α such that $\hat{\mathcal{E}}_{\alpha}$ is positive and closable on

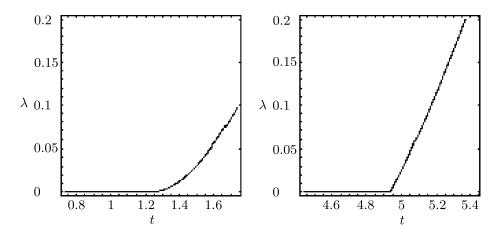


Figure 1

 $L^2(\mathbb{R}^d, dx)$. The closure of $(\hat{\mathcal{E}}_{\alpha}, C_0^{\infty}(\mathbb{R}^d))$ is a symmetric Dirichlet form $(\hat{\mathcal{E}}_{\alpha}, \mathcal{F})$. Moreover, if $u \in D(L) \cap \mathcal{F}$, then $\hat{\mathcal{E}}_{\alpha}(u, u) = (-Lu, u) + \alpha(u, u)$.

A positive Radon measure μ is said to be smooth if $\mu(A) = 0$ for any measurable set A of zero capacity and there exists an increasing sequence of compact sets $\{F_n\}$ such that $\mu(F_n) < \infty$ and $\operatorname{Cap}(K \setminus F_n) \to 0 \ (n \to \infty)$ for every compact set $K \subset \mathbb{R}^d$. We need the following lemma (see [6]).

LEMMA 4.1

Let $u \in \tilde{\mathcal{F}}$ be a quasi-continuous version of $u \in \mathcal{F}$, and let $\hat{G}_{\alpha}\mu(x) = \int_{\mathbb{R}^d} \hat{G}_{\alpha}(x, y)\mu(dy)$; then

$$\int_{\mathbb{R}^d} u^2(x)\mu(dx) \le \|\hat{G}_{\alpha}\mu\|_{\infty}\hat{\mathcal{E}}_{\alpha}(u,u).$$

If the operator L is positive critical, then $\phi_c \in C_L(\mathbb{R}^d)$, $\widetilde{\phi}_c \in C_{\widetilde{L}}(\mathbb{R}^d)$ are the ground states of L and \widetilde{L} . We set $g_c := \sqrt{\phi_c \widetilde{\phi}_c}$. Since $g_c \in L^2(\mathbb{R}^d, dx)$ by definition of the positive criticality, we normalize g_c so that $||g_c||_2 = 1$. Then we have the following lemma.

LEMMA 4.2

Let $H(u) := \int_{\mathbb{R}^d} (Lu/u) g_c^2 dx$; then $\inf_{u>0, u \in C^2(\mathbb{R}^d)} H(u)$ can be attained at $u = \phi_c$ and its infimum coincides with λ_c .

Proof

Noting that $H(e^w) = \int_{\mathbb{R}^d} ((1/2)\nabla \cdot a\nabla w + b \cdot \nabla w + (1/2)\nabla w \cdot a\nabla w + Ww)g_c^2 dx$, we see that $H(e^{tv_1+(1-t)v_2}) = tH(e^{v_1}) + (1-t)H(e^{v_2}) - t(1-t)\int_{\mathbb{R}^d} (1/2)\nabla (v_1-v_2) \cdot a\nabla (v_1-v_2) dx \leq tH(e^{v_1}) + (1-t)H(e^{v_2})$. Let $\psi(\varepsilon) := H(\phi_c e^{\varepsilon v})$. Then we can show that $\psi'(+0) = \int_{\mathbb{R}^d} ((1/2)\nabla \cdot a\nabla v + b \cdot \nabla v + (1/2)\frac{\nabla\phi_c}{\phi_c} \cdot a\nabla v + Wv)g_c^2 dx = \int_{\mathbb{R}^d} (L^{\phi_c}v)\phi_c\widetilde{\phi}_c dx = \int_{\mathbb{R}^d} L(\phi_cv)\widetilde{\phi}_c dx = \int_{\mathbb{R}^d} \phi_cv(\widetilde{L}\widetilde{\phi}_c) dx = 0.$

We have immediately $(-Lg_c, g_c) \leq (-L\phi_c, \widetilde{\phi}_c)$ from $H(g_c) = \int_{\mathbb{R}^d} g_c L g_c dx \geq \int_{\mathbb{R}^d} \widetilde{\phi}_c L \phi_c dx$. Suppose that $g_c \in \mathcal{F}$. Then, by combining Lemmas 4.1 and 4.2, we have the following lemma. One of the sufficient conditions for $g_c \in \mathcal{F}$ is given later.

LEMMA 4.3

Assume that μ is a smooth measure and that $g_c \in \mathcal{F}$. Then

$$\int_{\mathbb{R}^d} \phi_c(x) \widetilde{\phi}_c(x) \mu(dx) \le \|\widehat{G}_{\alpha}\mu\|_{\infty} \left((-L\phi_c, \widetilde{\phi}_c) + \alpha \right).$$

We consider a one-parameter family of operators $L_t = L + tV$ $(t \in \mathbb{R})$. Assume that L_{t_0} is critical. For $t > t_0$, $\lambda(t) > 0$ and the ground state ϕ_t is in $L^2(\mathbb{R}^d, dx)$. Assume that L_{t_0} is critical. For $t > t_0$, $\lambda(t) > 0$ and the ground state ϕ_t is in $L^2(\mathbb{R}^d, dx)$. Since L_t is a holomorphic family of closed operators (see [1]), we can get that $\lambda(t)$ is analytic in variable t $(t > t_0)$ by the analytic perturbation theory, and we have the following.

LEMMA 4.4

Let
$$t > t_0$$
. Then $\lambda(t + \varepsilon) = \lambda(t) + \varepsilon \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V dx + o(\varepsilon)$.

Let $\{D_n\}$ be an approximation of \mathbb{R}^d given in (A.3). We take $x_0 \in D_1$ and set $C_t = 1/\phi_t(x_0)$. Let $t_n \searrow t_0$. We see from Harnack inequality that $\{C_{t_n}\phi_{t_n}\}$ is uniformly bounded and equicontinuous on D_1 , so we can choose a subsequence of $\{C_{t_n}\phi_{t_n}\}$ which converges uniformly on D_1 . We denote the subsequence by $\{C_{t_n^{(1)}}\phi_{t_n^{(1)}}\}$. Next take a subsequence $\{C_{t_n^{(2)}}\phi_{t_n^{(2)}}\}$ of $\{C_{t_n^{(1)}}\phi_{t_n^{(1)}}\}$ so that it converges uniformly on D_2 . By the same procedure, we take a subsequence $\{C_{t_n^{(m+1)}}\phi_{t_n^{(m+1)}}\}$ of $\{C_{t_n^{(m)}}\phi_{t_n^{(m)}}\}$ so that it converges uniformly on D_{m+1} . Then $C_{t_0}\phi_{t_0}(x) = \lim_{n \to \infty} C_{t_n^{(n)}}\phi_{t_n^{(n)}}(x)$. Since the limit is unique, we can get that $C_t\phi_t \to C_{t_0}\phi_{t_0}$ locally uniformly as $t \searrow t_0$. Now we are ready to give a proof of the main theorem.

Proof of Theorem 3.1

Applying Lemma 4.4, we have $\lambda'(t) = \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx$ for $t > t_0$. Therefore it is enough to show that if L_{t_0} is null critical, then $\lim_{t \to t_0} \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx = 0$.

We first note that

$$\limsup_{t \to t_0} \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx \le \limsup_{t \to t_0} \int_{D_n} \phi_t \widetilde{\phi}_t V \, dx + \limsup_{t \to t_0} \int_{D_n^c} \phi_t \widetilde{\phi}_t V \, dx.$$

On the other hand, by Fatou's lemma, we have

$$1 = \liminf_{t \to t_0} \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t \, dx \geq \int_{\mathbb{R}^d} \liminf_{t \to t_0} \phi_t \widetilde{\phi}_t \, dx = C_{t_0} \widetilde{C}_{t_0} \int_{\mathbb{R}^d} \phi_{t_0} \widetilde{\phi}_{t_0} \, dx.$$

Since L_{t_0} is null critical, we have $C_{t_0}\widetilde{C}_{t_0} = 0$. Hence $\phi_t\widetilde{\phi}_t$ tends to zero locally uniformly as $t \to t_0$. Therefore for fixed n the first term converges to zero.

486 Atsushi Tanida

For the second term, applying Lemma 4.3, we have

$$\int_{D_n^c} \phi_t \widetilde{\phi}_t V \, dx \le \|\widehat{G}_{\alpha}(V \mathbb{1}_{D_n^c})\|_{\infty} ((-L\phi_t, \widetilde{\phi}_t) + \alpha).$$

We note that from the condition of tightness with respect to V, $\|\hat{G}_{\alpha}(V\mathbb{1}_{D_n^c})\|_{\infty} \to 0$ $(n \to \infty)$. Again applying Lemma 4.3,

$$\int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx \le \|\widehat{G}_{\alpha} V\|_{\infty} \Big(\alpha - \lambda(t) + t \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx\Big).$$

We have immediately

$$\int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx \le \frac{\|\hat{G}_{\alpha} V\|_{\infty} (\alpha - \lambda(t))}{1 - t \|\hat{G}_{\alpha} V\|_{\infty}}.$$

Since V is in Kato class, $\lim_{\alpha \to \infty} \|\hat{G}_{\alpha}V\|_{\infty} = 0$. Hence we take α such that $t_0 \|\hat{G}_{\alpha}V\|_{\infty} < 1$, and then we have

$$\limsup_{t \to t_0} \int_{\mathbb{R}^d} \phi_t \widetilde{\phi}_t V \, dx < \infty.$$

Therefore the second term converges to zero.

The next lemma gives one of the sufficient conditions for $g_c \in \mathcal{F}$.

LEMMA 4.5

For a positive critical operator $L = (1/2)\nabla \cdot a\nabla + b \cdot \nabla + W$, assume that

$$x \cdot b(x) \le K(|x|^2 + 1),$$

 $\xi \cdot a(x)\xi \le K(|x|^2 + 1)|\xi|^2$

for some constant K. Then the geometric mean $g_c = \sqrt{\phi_c \widetilde{\phi}_c} \in \mathcal{F}$.

Proof

Let $\varphi : \mathbb{R} \to [0,1]$ be a smooth function such that $\varphi(t) = 1$ for $t \in [0,1]$, $\varphi(t) = 0$ for $t \geq 2$, and $-2 \leq \varphi'(t) \leq 0$. For an $n \in \mathbb{N}$, we define $\chi_n(x) = \varphi(|x|/n)$. We can easily have $\nabla \chi_n(x) = (1/n)\varphi'(|x|/n)x/|x|$. Using this, we have the following equality by direct calculation and integration by parts:

$$\begin{split} & \int_{\mathbb{R}^d} L(\chi_n g_c) \chi_n g_c \, dx \\ & = \int_{\mathbb{R}^d} \left\{ (\nabla g_c \cdot a \nabla \chi_n) \chi_n g_c + \frac{1}{2} (\nabla \cdot a \nabla \chi_n) \chi_n g_c^2 \right. \\ & \left. + (b \cdot \nabla \chi_n) \chi_n g_c^2 + (Lg_c) g_c \chi_n^2 \right\} dx \\ & = \int_{\mathbb{R}^d} \left\{ -\frac{1}{2} g_c^2 \nabla \chi_n \cdot a \nabla \chi_n + (b \cdot \nabla \chi_n) \chi_n g_c^2 + (Lg_c) g_c \chi_n^2 \right\} dx. \end{split}$$

For the first term, we have

$$\begin{split} \int_{\mathbb{R}^d} -\frac{1}{2} g_c^2 \nabla \chi_n \cdot a \nabla \chi_n \, dx &= -\frac{1}{2} \int_{\mathbb{R}^d} g_c^2 \frac{1}{n^2} \varphi' \Big(\frac{|x|}{n}\Big)^2 \frac{x}{|x|} \cdot a \frac{x}{|x|} \, dx \\ &\geq -\frac{1}{2} \int_{\mathbb{R}^d} g_c^2 \frac{1}{n^2} \varphi' \Big(\frac{|x|}{n}\Big)^2 K(|x|^2 + 1) \, dx \\ &\geq -\frac{1}{2} \int_{\mathbb{R}^d} g_c^2 \frac{1}{n^2} \varphi' \Big(\frac{|x|}{n}\Big)^2 K(4n^2 + 1) \, dx \\ &\geq -9K \int_{\mathbb{R}^d} g_c^2 \, dx. \end{split}$$

For the second term, we have

$$\int_{\mathbb{R}^d} (b \cdot \nabla \chi_n) \chi_n g_c^2 dx = \int_{\mathbb{R}^d} \chi_n g_c^2 b \cdot \frac{1}{n} \varphi' \left(\frac{|x|}{n}\right) \frac{x}{|x|} dx$$

$$\geq \int_{\mathbb{R}^d} \chi_n g_c^2 \frac{1}{n} \varphi' \left(\frac{|x|}{n}\right) \frac{K(|x|^2 + 1)}{|x|} dx$$

$$\geq \int_{\mathbb{R}^d} \chi_n g_c^2 \frac{1}{n} \varphi' \left(\frac{|x|}{n}\right) K(|x| + 1) dx$$

$$\geq \int_{\mathbb{R}^d} \chi_n g_c^2 \frac{1}{n} \varphi' \left(\frac{|x|}{n}\right) K(2n + 1) dx$$

$$\geq -5K \int_{\mathbb{R}^d} g_c^2 dx.$$

Noting that $\int_{\mathbb{R}^d} L(\chi_n g_c) \chi_n g_c dx = -\hat{\mathcal{E}}(\chi_n g_c, \chi_n g_c)$, we can get

$$\hat{\mathcal{E}}(\chi_n g_c, \chi_n g_c) \le 14K \int_{\mathbb{R}^d} g_c^2 dx - \int_{\mathbb{R}^d} (Lg_c) g_c \chi_n^2 dx.$$

Therefore

$$\limsup_{n \to \infty} \hat{\mathcal{E}}(\chi_n g_c, \chi_n g_c) \le 14K \int_{\mathbb{R}^d} g_c^2 dx - \int_{\mathbb{R}^d} (Lg_c) g_c dx.$$

Since $-\int_{\mathbb{R}^d} (Lg_c)g_c dx < \infty$ by Lemma 4.2, we have shown $g_c \in D(\mathcal{E})$. This concludes the proofs of Lemma 4.5 and Theorem 3.1.

5. One-dimensional case

In the one-dimensional case, there is a necessary and sufficient criterion for a diffusion being either recurrent or transient. Indeed, let $L = (1/2)a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx}$ on (α, β) , where $-\infty \le \alpha < \beta \le \infty$. Then the corresponding diffusion to L is recurrent if and only if, for any $x_0 \in (\alpha, \beta)$,

$$\int_{\alpha}^{x_0} \exp\left(-\int_{x_0}^{x} \frac{2b}{a}(s) \, ds\right) dx = \int_{x_0}^{\beta} \exp\left(-\int_{x_0}^{x} \frac{2b}{a}(s) \, ds\right) dx = \infty.$$

In general, for a $\phi \in C_L(\mathbb{R}^d)$, the critical properties of L and L^{ϕ} are the same. In the sequel we determine the criticality of L^{ϕ} from which the corresponding diffusion is recurrent. 488 Atsushi Tanida

Let $L=(1/2)a(x)\frac{d^2}{dx^2}+b(x)\frac{d}{dx}+W(x)$ on $(0,\infty)$ be critical, where a(x)>0 and $a(x),b(x),W(x)\in C^1((0,\infty))$ and $V\in C^1((0,\infty))$ is compactly supported. Let $\lambda(t)$ be the generalized principal eigenvalue of L+tV.

In this assumption, we can get the following theorem.

THEOREM 5.1

We have $\lambda'(+0) > 0$ if and only if L is product L^1 critical.

Proof

For a fixed t > 0, if $\lambda = \lambda(t)$, then $L_{t,\lambda} = (1/2)a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx} + W(x) + tV(x) - \lambda$ on $(0,\infty)$ is also critical (see [3]). From now on we assume that $\lambda > \lambda(t)$. We denote by $u(x,t,\lambda)$ the ground state of $L_{t,\lambda}$. If $x \notin \text{supp } V$, then u is the solution to the equation

$$\Big(\frac{1}{2}a(x)\,\frac{d^2}{dx^2}+b(x)\,\frac{d}{dx}+W(x)-\lambda\Big)w(x)=0.$$

Since $L - \lambda$ is subcritical, let $I(x, \lambda)$ be its increasing solution of $(L - \lambda)w = 0$, and let $K(x, \lambda)$ be its decreasing solution of $(L - \lambda)w = 0$. We note that $I(0, \lambda) = K(\infty, \lambda) = 0$ and assume that $I(x_0, \lambda) = K(x_0, \lambda) = 1$. Then a general solution is $c_1I(x, \lambda) + c_2K(x, \lambda)$. From the boundary condition at x_0, c_1, c_2 are satisfied:

$$\begin{cases} u(x_0, t, \lambda) = c_1 I(x_0, \lambda) + c_2 K(x_0, \lambda), \\ u'(x_0, t, \lambda) = c_1 I'(x_0, \lambda) + c_2 K'(x_0, \lambda). \end{cases}$$

Here ' denotes the derivative w.r.t x variable. If $\lambda = \lambda(t)$, then $L_{t,\lambda}$ is critical, so that $c_1 = 0$. Therefore t and $\lambda = \lambda(t)$ satisfy

$$(*) K'(x_0,\lambda)u(x_0,t,\lambda) - K(x_0,\lambda)u'(x_0,t,\lambda) = 0.$$

We set

$$G(x_0, t, \lambda) = u'(x_0, t, \lambda) - u(x_0, t, \lambda) \frac{K'(x_0, \lambda)}{K(x_0, \lambda)};$$

then (*) can be rewritten as $G(x_0, t, \lambda) = 0$. Differentiating $G(x_0, t, \lambda)$ in t, we find that

$$\frac{\partial}{\partial t}G(x_0,t,\lambda)t'(\lambda) + \frac{\partial}{\partial \lambda}G(x_0,t,\lambda) = 0.$$

We now regard t and λ as independent variables. Let

$$W(x,t,\lambda) := \begin{vmatrix} u(x,t,\lambda) & \partial_t u(x,t,\lambda) \\ G(x,t,\lambda) & \partial_t G(x,t,\lambda) \end{vmatrix}$$

$$= \begin{vmatrix} u(x,t,\lambda) & \partial_t u(x,t,\lambda) \\ u'(x,t,\lambda) - u(x,t,\lambda)k(x,\lambda) & \partial_t u'(x,t,\lambda) - \partial_t u(x,t,\lambda)k(x,\lambda) \end{vmatrix}$$

$$= \begin{vmatrix} u(x,t,\lambda) & \partial_t u(x,t,\lambda) \\ u'(x,t,\lambda) & \partial_t u'(x,t,\lambda) \end{vmatrix}.$$

The function u satisfies

$$\frac{1}{2}a(x)u''(x) + b(x)u'(x) + W(x)u(x) + tV(x)u(x) - \lambda u(x) = 0.$$

Differentiating the left side in t, we have

$$\frac{1}{2}a\partial_t u'' + b\partial_t u' + (W + tV - \lambda)\partial_t u + Vu = 0.$$

Therefore

$$W'(x,t,\lambda) = \begin{vmatrix} u(x,t,\lambda) & \partial_t u(x,t,\lambda) \\ u''(x,t,\lambda) & \partial_t u''(x,t,\lambda) \end{vmatrix}$$

$$= \begin{vmatrix} u & \partial_t u \\ -\frac{2b}{a}u' - \frac{2}{a}(W+tV-\lambda)u & -\frac{2b}{a}\partial_t u' - \frac{2}{a}(W+tV-\lambda)\partial_t u - \frac{2}{a}Vu \end{vmatrix}$$

$$= \begin{vmatrix} u & \partial_t u \\ -\frac{2b}{a}u' & -\frac{2b}{a}\partial_t u' - \frac{2}{a}Vu \end{vmatrix}$$

$$= -\frac{2b}{a}W(x,t,\lambda) - \frac{2}{a}V(x)u^2(x,t,\lambda).$$

Noting that $W(0,t,\lambda) = 0$, we can get

$$W(x_0, t, \lambda) = -\frac{1}{a} \int_0^{x_0} \frac{2V(x)}{a} u^2(x, t, \lambda) \exp\left(\int_{x_0}^x \frac{2b}{a}(s) \, ds\right) dx < 0.$$

Since $G(x_0, t_0, 0) = 0$, we have proved that $\partial_t G(x_0, t_0, 0) < 0$.

We have $t'(+0) = \infty$ if and only if $\lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} G(x_0, t, \lambda) = \infty$. Set $k(x_0, \lambda) := (K'(x_0, \lambda))/(K(x_0, \lambda))$. The function $k(x_0, \lambda)$ diverges as $\lambda \to 0$ if and only if $t'(+0) = \infty$. Differentiating $k(x_0, \lambda)$ in λ , we have

$$\frac{\partial}{\partial \lambda} k(x_0,\lambda) = \frac{1}{K^2(x_0,\lambda)} \begin{vmatrix} K(x_0,\lambda) & \partial_\lambda K(x_0,\lambda) \\ K'(x_0,\lambda) & \partial_\lambda K'(x_0,\lambda) \end{vmatrix}.$$

Recall that $K(x,\lambda)$ satisfies

$$\frac{1}{2}a(x)K''(x,\lambda) + b(x)K'(x) + \left(W(x) - \lambda\right)K(x,\lambda) = 0.$$

Differentiating in λ , we have,

$$\frac{1}{2}a(x)\partial_{\lambda}K''(x,\lambda) + b(x)\partial_{\lambda}K'(x) + (W(x) - \lambda)\partial_{\lambda}K(x,\lambda) - K(x,\lambda) = 0.$$

Thus

$$\begin{vmatrix} K(x,\lambda) & \partial_{\lambda}K(x,\lambda) \\ K'(x,\lambda) & \partial_{\lambda}K'(x,\lambda) \end{vmatrix}' = -\frac{2b}{a}(x) \begin{vmatrix} K(x,\lambda) & \partial_{\lambda}K(x,\lambda) \\ K'(x,\lambda) & \partial_{\lambda}K'(x,\lambda) \end{vmatrix} + \frac{2K^{2}(x,\lambda)}{a(x)}.$$

 $K(\infty,\lambda)=0$ and $(K^2(y,\lambda))/(a(y))\exp(\int_{x_0}^y \frac{2b}{a}(s)\,ds)$ is integrable on (x_0,∞) . From this,

$$\partial_{\lambda}k(x_0,\lambda) = \frac{2}{K^2(x_0,\lambda)} \exp\left(-\int_{x_0}^{x_0} \frac{2b}{a}(s) \, ds\right) \int_{\infty}^{x_0} \frac{K^2(y,\lambda)}{a(y)} \exp\left(\int_{x_0}^{y} \frac{2b}{a}(s) \, ds\right) dy.$$

490 Atsushi Tanida

Letting $\lambda \to 0$, $K^2(x,\lambda) \to u^2(x)$ on each point $x \in [x_0,\infty)$. Therefore if the integral

$$\int_{\infty}^{x_0} \frac{u^2(y)}{a(y)} \exp\left(\int_{x_0}^{y} \frac{2b}{a}(s) \, ds\right) dy$$

converges, then $\partial_{\lambda}k(x_0,\lambda)$ also converges. Then L is product L^1 -critical if and only if the above integral is finite, and we have shown the theorem.

References

- [1] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 ed., Classics Math., Springer, Berlin, 1995.
- [2] M. Klaus, On the bound state of Schrödinger operators in one dimension, Ann. Physics 108 (1977), 288–300.
- R. G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge Stud. Adv. Math. 45, Cambridge Univ. Press, Cambridge, 1995.
- [4] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics **97** (1976), 279–288.
- [5] M. Takeda and K. Tsuchida, Differentiability of spectral functions for symmetric α -stable processes, Trans. Amer. Math. Soc. **359** (2007), 4031–4054.
- [6] Z. Vondraček, An estimate for the L²-norm of a quasicontinuous function with respect to a smooth measure, Arch. Math. (Basel) 67 (1996), 408–414.

Department of Mathematics, Kyoto University, Kyoto 602-8502, Japan; tanida@math.kyoto-u.ac.jp