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Abstract Let L = (1/2)∇ · a∇ + b · ∇ + W be a critical elliptic operator on Rd. For
a certain class of potential functions, we consider the generalized principal eigenvalues
λ(t) of Lt = L + tV . We show that it is differentiable if and only if L0 is null critical.

1. Introduction

We study the behavior of the generalized principal eigenvalues λ(t) of operators
Lt = L + tV (t ∈ R). Here L := (1/2)∇ · a∇ + b · ∇ + W is an elliptic operator on
R

d and V is a potential function on R
d. We call the function λ(t) the spectral

function, and we are interested in the behavior of λ(t), in particular, its differ-
entiability. A precise definition of the generalized principal eigenvalue is given
later. We note that λ(t) is the bottom of the real part of the spectrum of Lt.
So it is an important characteristic for the large time behavior of the semigroup
associated with Lt. We suppose that V is nonnegative. We may also suppose
that λ(0) = 0 by replacing L with L − λ(0) if necessary. Since λ(t) is convex,
there are two possibilities:

(i) λ(t) is flat to zero for a small positive t;
(ii) λ(t) rises immediately as t increases.

Therefore one question arises. Is the initial rising steep or gradual? We show by
using the method in [5] that if the operator L is positive critical, then λ′(+0) > 0,
and if L is null critical, then λ′(+0) = 0. In the latter case, λ(t) is differentiable
at all t ∈ R. Heuristically if the operator L is positive critical, then λ(t) responds
sensitively.

2. Preliminary

Let us consider an elliptic partial differential operator L := (1/2)∇ · a∇ +b · ∇ +W

on R
d. Let V be a potential function with compact support. We assume that

the coefficients a, b,W , and V satisfy the following conditions.
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CONDITION A.1

There exists an α ∈ (0,1) such that for every relatively compact domain D′ with
D′ ⊂ R

d,
(i) a, b ∈ C1,α(D′),W,V ∈ Cα(D′), and ∇ · b ≥ −c, −W ≥ −c for some posi-

tive constant c;
(ii) a = {aij } is uniformly elliptic; that is, there exists a constant μ > 0 such

that for any x ∈ D′,

ξ · a(x)ξ ≥ μ|ξ|2, ξ ∈ R
d;

(iii) x · b(x) ≤ K(|x|2 + 1), ξ · a(x)ξ ≤ K(|x|2 + 1)|ξ|2 for some positive con-
stant K.

We note that condition (iii) is used only in Lemma 4.5.

For the operator L, we denote the set of positive harmonic functions by CL(Rd):

CL(Rd) =
{
u > 0 : u ∈ C2(Rd),Lu = 0

}
.

Following [3], we define the criticality as follows:

(1) If L has 0 Green function, then L is called subcritical.
(2) If L is not subcritical and CL(Rd) �= ∅, then L is called critical.
(3) If CL(Rd) = ∅, then L is called supercritical.

In the critical case, CL(Rd) is one-dimensional, that is, its positive harmonic
function is unique up to positive constant multiplication. In that case, we denote
the positive harmonic function by φc and call it the ground state of L. For an
operator L = (1/2)∇ · a∇ + b · ∇ + W , we define its dual operator L̃ by L̃ =
(1/2)∇ · a∇ − b · ∇ − ∇ · b + W .

The criticality properties of both L and L̃ coincide; that is, L is critical
(subcritical, supercritical) if and only if L̃ is critical (subcritical, supercritical).
In the critical case, both L and L̃ have ground states φc and φ̃c. Moreover, we
classify its critical property as follows

(2-i) If L is critical and φcφ̃c ∈ L1(Rd, dx), then L is positive (or product L1)
critical.

(2-ii) If L is critical and φcφ̃c /∈ L1(Rd, dx), then L is null (or product not
L1) critical.

In the subcritical case, CL(Rd) is not empty. Hence if L is not supercrit-
ical, then CL(Rd) is not empty. We take a φ ∈ CL(Rd) and consider an h-
transformation of L with respect to φ:

Lφ :=
1
2

∇ · a∇ + b · ∇ + a
∇φ

φ
· ∇.

Lφ is a diffusion operator. It is known that
(1) L is subcritical ⇐⇒ Lφ is transient;
(2-i) L is positive critical ⇐⇒ Lφ is positive recurrent;
(2-ii) L is null critical ⇐⇒ Lφ is null recurrent.
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Therefore the criticality property is regarded as a generalization of the recurrence
property.

Using the criticality property, we define λc by

λc := sup{λ ∈ R : L − λ is supercritical}.

The real number λc is called the generalized principal eigenvalue of L. We now
assume that L = L0 is subcritical. Let L̂ = (1/2)(L + L̃) be the symmetric part
of L. Define Ĝα(x, y) =

∫ ∞
0

e−αtp̂t(x, y)dx.
We assume the following conditions.
(A.2) We have limα→∞ ‖ĜαV ‖ ∞ = 0 (Kato class).
(A.3) We have limn→∞ ‖Ĝα(V 1Dc

n
)‖∞ = 0 (tightness). Here a sequence of re-

latively compact sets {Dn} is an approximation of R
d; Dn ⊂ Dn+1,

⋃∞
n=1 Dn =

R
d.

In the case a = I , b = 0, d = 1,2, B. Simon [4] and M. Klaus [2] obtained
its perturbation series around t = 0. For example, Klaus proved that λ(t)1/2 =
(t/

√
2)

∫
R

V (x)dx − (t2/
√

2)
∫

R

∫
R

V (x)|x − y|V (y)dxdy + O(t3) as t ↘ 0, where
L = (1/2) d2

dx2 and V satisfies
∫

R
|V (x)|(1 + |x|)dx. Further, M. Takeda and

K. Tsuchida [5] showed that λ(t) is differentiable when a = I , b = 0, d ≤ 4 and
showed the necessary and sufficient condition for differentiability of λ(t) for sym-
metric stable process. In this article we consider differentiability of λ(t) of Lt by
using the method of [5].

Finally, we note that the differentiability of λ(t) is crucial when we prove the
large deviation principle of the additive functional

∫ t

0
V (Xs)ds by employing the

Gärtner-Ellis theorem.

3. Main theorem and examples

We suppose that L(= L0) is subcritical. We also assume that λ(0) = 0. Condi-
tions (A.2) and (A.3) imply that Lt is a compact perturbation of L (see [5]), and
thus there exists some constant t0 > 0 such that Lt0 is critical (see [3, p. 267] for
details).

THEOREM 3.1

Assume that Lt0 is null critical; then λ′(t0+) = 0. Moreover, λ(t) is a C1-
function on R.

Figure 1 shows examples of λ(t) in the case L = (1/2)� on R
d and V = 1{ |x|<1}.

The left is three-dimensional (Lt0 is null critical); the right is five-dimensional
(Lt0 is positive critical).

4. Proof of the main theorem

Let (Ê ,C∞
0 (Rd)) be a symmetric bilinear form defined by Ê (u, v) = (1/2)

∫
Rd ∇u ·

a∇v dx + (1/2)
∫

Rd(∇ · b)uv dx −
∫

Rd Wuv dx. Since ∇ · b and −W are bounded
below, we can take some constant α such that Êα is positive and closable on
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Figure 1

L2(Rd, dx). The closure of (Êα,C∞
0 (Rd)) is a symmetric Dirichlet form (Êα, F ).

Moreover, if u ∈ D(L) ∩ F , then Êα(u,u) = (−Lu,u) + α(u,u).
A positive Radon measure μ is said to be smooth if μ(A) = 0 for any mea-

surable set A of zero capacity and there exists an increasing sequence of compact
sets {Fn} such that μ(Fn) < ∞ and Cap(K \ Fn) → 0 (n → ∞) for every compact
set K ⊂ R

d. We need the following lemma (see [6]).

LEMMA 4.1

Let u ∈ F̃ be a quasi-continuous version of u ∈ F , and let Ĝαμ(x) =
∫

Rd Ĝα(x,

y)μ(dy); then ∫
Rd

u2(x)μ(dx) ≤ ‖Ĝαμ‖∞ Êα(u,u).

If the operator L is positive critical, then φc ∈ CL(Rd), φ̃c ∈ CL̃(Rd) are the

ground states of L and L̃. We set gc :=
√

φcφ̃c. Since gc ∈ L2(Rd, dx) by defini-
tion of the positive criticality, we normalize gc so that ‖gc‖2 = 1. Then we have
the following lemma.

LEMMA 4.2

Let H(u) :=
∫

Rd(Lu/u)g2
c dx; then infu>0,u∈C2(Rd) H(u) can be attained at u = φc

and its infimum coincides with λc.

Proof
Noting that H(ew) =

∫
Rd((1/2)∇ · a∇w + b · ∇w + (1/2)∇w · a∇w + Ww)g2

c dx,
we see that H(etv1+(1−t)v2) = tH(ev1) + (1 − t)H(ev2) − t(1 − t)

∫
Rd(1/2)∇(v1 −

v2) · a∇(v1 − v2)dx ≤ tH(ev1) + (1 − t)H(ev2). Let ψ(ε) := H(φce
εv). Then we

can show that ψ′(+0) =
∫

Rd((1/2)∇ · a∇v+b · ∇v+(1/2) ∇φc

φc
· a∇v+Wv)g2

c dx =∫
Rd(Lφcv)φcφ̃c dx =

∫
Rd L(φcv)φ̃c dx =

∫
Rd φcv(L̃φ̃c)dx = 0. �
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We have immediately (−Lgc, gc) ≤ (−Lφc, φ̃c) from H(gc) =
∫

Rd gcLgc dx ≥∫
Rd φ̃cLφc dx. Suppose that gc ∈ F . Then, by combining Lemmas 4.1 and 4.2,

we have the following lemma. One of the sufficient conditions for gc ∈ F is given
later.

LEMMA 4.3

Assume that μ is a smooth measure and that gc ∈ F . Then∫
Rd

φc(x)φ̃c(x)μ(dx) ≤ ‖Ĝαμ‖∞
(
(−Lφc, φ̃c) + α

)
.

We consider a one-parameter family of operators Lt = L + tV (t ∈ R). Assume
that Lt0 is critical. For t > t0, λ(t) > 0 and the ground state φt is in L2(Rd, dx).
Assume that Lt0 is critical. For t > t0, λ(t) > 0 and the ground state φt is in
L2(Rd, dx). Since Lt is a holomorphic family of closed operators (see [1]), we can
get that λ(t) is analytic in variable t (t > t0) by the analytic perturbation theory,
and we have the following.

LEMMA 4.4

Let t > t0. Then λ(t + ε) = λ(t) + ε
∫

Rd φtφ̃tV dx + o(ε).

Let {Dn} be an approximation of R
d given in (A.3). We take x0 ∈ D1 and set

Ct = 1/φt(x0). Let tn ↘ t0. We see from Harnack inequality that {Ctnφtn } is
uniformly bounded and equicontinuous on D1, so we can choose a subsequence
of {Ctnφtn } which converges uniformly on D1. We denote the subsequence
by {C

t
(1)
n

φ
t
(1)
n

}. Next take a subsequence {C
t
(2)
n

φ
t
(2)
n

} of {C
t
(1)
n

φ
t
(1)
n

} so that it
converges uniformly on D2. By the same procedure, we take a subsequence
{C

t
(m+1)
n

φ
t
(m+1)
n

} of {C
t
(m)
n

φ
t
(m)
n

} so that it converges uniformly on Dm+1. Then
Ct0φt0(x) = limn→∞ C

t
(n)
n

φ
t
(n)
n

(x). Since the limit is unique, we can get that
Ctφt → Ct0φt0 locally uniformly as t ↘ t0. Now we are ready to give a proof of
the main theorem.

Proof of Theorem 3.1
Applying Lemma 4.4, we have λ′(t) =

∫
Rd φtφ̃tV dx for t > t0. Therefore it is

enough to show that if Lt0 is null critical, then limt→t0

∫
Rd φtφ̃tV dx = 0.

We first note that

limsup
t→t0

∫
Rd

φtφ̃tV dx ≤ limsup
t→t0

∫
Dn

φtφ̃tV dx + limsup
t→t0

∫
Dc

n

φtφ̃tV dx.

On the other hand, by Fatou’s lemma, we have

1 = lim inf
t→t0

∫
Rd

φtφ̃t dx ≥
∫

Rd

lim inf
t→t0

φtφ̃t dx = Ct0C̃t0

∫
Rd

φt0 φ̃t0 dx.

Since Lt0 is null critical, we have Ct0C̃t0 = 0. Hence φtφ̃t tends to zero locally
uniformly as t → t0. Therefore for fixed n the first term converges to zero.
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For the second term, applying Lemma 4.3, we have∫
Dc

n

φtφ̃tV dx ≤ ‖Ĝα(V 1Dc
n
)‖∞

(
(−Lφt, φ̃t) + α

)
.

We note that from the condition of tightness with respect to V , ‖Ĝα(V 1Dc
n
)‖∞ →

0 (n → ∞). Again applying Lemma 4.3,∫
Rd

φtφ̃tV dx ≤ ‖ĜαV ‖ ∞
(
α − λ(t) + t

∫
Rd

φtφ̃tV dx
)
.

We have immediately ∫
Rd

φtφ̃tV dx ≤ ‖ĜαV ‖ ∞(α − λ(t))
1 − t‖ĜαV ‖ ∞

.

Since V is in Kato class, limα→∞ ‖ĜαV ‖ ∞ = 0. Hence we take α such that
t0‖ĜαV ‖ ∞ < 1, and then we have

limsup
t→t0

∫
Rd

φtφ̃tV dx < ∞.

Therefore the second term converges to zero. �

The next lemma gives one of the sufficient conditions for gc ∈ F .

LEMMA 4.5

For a positive critical operator L = (1/2)∇ · a∇ + b · ∇ + W , assume that

x · b(x) ≤ K(|x|2 + 1),

ξ · a(x)ξ ≤ K(|x|2 + 1)|ξ|2

for some constant K. Then the the geometric mean gc =
√

φcφ̃c ∈ F .

Proof
Let ϕ : R → [0,1] be a smooth function such that ϕ(t) = 1 for t ∈ [0,1], ϕ(t) = 0
for t ≥ 2, and −2 ≤ ϕ′(t) ≤ 0. For an n ∈ N, we define χn(x) = ϕ(|x|/n). We
can easily have ∇χn(x) = (1/n)ϕ′(|x|/n)x/|x|. Using this, we have the following
equality by direct calculation and integration by parts:∫

Rd

L(χngc)χngc dx

=
∫

Rd

{
(∇gc · a∇χn)χngc +

1
2
(∇ · a∇χn)χng2

c

+ (b · ∇χn)χng2
c + (Lgc)gcχ

2
n

}
dx

=
∫

Rd

{
− 1

2
g2

c ∇χn · a∇χn + (b · ∇χn)χng2
c + (Lgc)gcχ

2
n

}
dx.
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For the first term, we have∫
Rd

− 1
2
g2

c ∇χn · a∇χn dx = − 1
2

∫
Rd

g2
c

1
n2

ϕ′
( |x|

n

)2 x

|x| · a
x

|x| dx

≥ − 1
2

∫
Rd

g2
c

1
n2

ϕ′
( |x|

n

)2

K(|x|2 + 1)dx

≥ − 1
2

∫
Rd

g2
c

1
n2

ϕ′
( |x|

n

)2

K(4n2 + 1)dx

≥ −9K

∫
Rd

g2
c dx.

For the second term, we have∫
Rd

(b · ∇χn)χng2
c dx =

∫
Rd

χng2
cb · 1

n
ϕ′

( |x|
n

) x

|x| dx

≥
∫

Rd

χng2
c

1
n

ϕ′
( |x|

n

)K(|x|2 + 1)
|x| dx

≥
∫

Rd

χng2
c

1
n

ϕ′
( |x|

n

)
K(|x| + 1)dx

≥
∫

Rd

χng2
c

1
n

ϕ′
( |x|

n

)
K(2n + 1)dx

≥ −5K

∫
Rd

g2
c dx.

Noting that
∫

Rd L(χngc)χngc dx = −Ê (χngc, χngc), we can get

Ê (χngc, χngc) ≤ 14K

∫
Rd

g2
c dx −

∫
Rd

(Lgc)gcχ
2
n dx.

Therefore

limsup
n→∞

Ê (χngc, χngc) ≤ 14K

∫
Rd

g2
c dx −

∫
Rd

(Lgc)gc dx.

Since −
∫

Rd(Lgc)gc dx < ∞ by Lemma 4.2, we have shown gc ∈ D(E ).
This concludes the proofs of Lemma 4.5 and Theorem 3.1. �

5. One-dimensional case

In the one-dimensional case, there is a necessary and sufficient criterion for a
diffusion being either recurrent or transient. Indeed, let L = (1/2)a(x) d2

dx2 +
b(x) d

dx on (α,β), where −∞ ≤ α < β ≤ ∞. Then the corresponding diffusion
to L is recurrent if and only if, for any x0 ∈ (α,β),∫ x0

α

exp
(

−
∫ x

x0

2b

a
(s)ds

)
dx =

∫ β

x0

exp
(

−
∫ x

x0

2b

a
(s)ds

)
dx = ∞.

In general, for a φ ∈ CL(Rd), the critical properties of L and Lφ are the same.
In the sequel we determine the criticality of Lφ from which the corresponding
diffusion is recurrent.
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Let L = (1/2)a(x) d2

dx2 + b(x) d
dx +W (x) on (0, ∞) be critical, where a(x) > 0

and a(x), b(x),W (x) ∈ C1((0, ∞)) and V ∈ C1((0, ∞)) is compactly supported.
Let λ(t) be the generalized principal eigenvalue of L + tV .

In this assumption, we can get the following theorem.

THEOREM 5.1

We have λ′(+0) > 0 if and only if L is product L1 critical.

Proof
For a fixed t > 0, if λ = λ(t), then Lt,λ = (1/2)a(x) d2

dx2 +b(x) d
dx +W (x)+tV (x) −

λ on (0, ∞) is also critical (see [3]). From now on we assume that λ > λ(t). We
denote by u(x, t, λ) the ground state of Lt,λ. If x /∈ suppV , then u is the solution
to the equation (1

2
a(x)

d2

dx2
+ b(x)

d

dx
+ W (x) − λ

)
w(x) = 0.

Since L − λ is subcritical, let I(x,λ) be its increasing solution of (L − λ)w = 0,
and let K(x,λ) be its decreasing solution of (L − λ)w = 0. We note that I(0, λ) =
K(∞, λ) = 0 and assume that I(x0, λ) = K(x0, λ) = 1. Then a general solution
is c1I(x,λ) + c2K(x,λ). From the boundary condition at x0, c1, c2 are satisfied:{

u(x0, t, λ) = c1I(x0, λ) + c2K(x0, λ),

u′(x0, t, λ) = c1I
′(x0, λ) + c2K

′(x0, λ).

Here ′ denotes the derivative w.r.t x variable. If λ = λ(t), then Lt,λ is critical,
so that c1 = 0. Therefore t and λ = λ(t) satisfy

(∗) K ′(x0, λ)u(x0, t, λ) − K(x0, λ)u′(x0, t, λ) = 0.

We set

G(x0, t, λ) = u′(x0, t, λ) − u(x0, t, λ)
K ′(x0, λ)
K(x0, λ)

;

then (∗) can be rewritten as G(x0, t, λ) = 0. Differentiating G(x0, t, λ) in t, we
find that

∂

∂t
G(x0, t, λ)t′(λ) +

∂

∂λ
G(x0, t, λ) = 0.

We now regard t and λ as independent variables. Let

W (x, t, λ) :=

∣∣∣∣∣u(x, t, λ) ∂tu(x, t, λ)
G(x, t, λ) ∂tG(x, t, λ)

∣∣∣∣∣
=

∣∣∣∣∣ u(x, t, λ) ∂tu(x, t, λ)
u′(x, t, λ) − u(x, t, λ)k(x,λ) ∂tu

′(x, t, λ) − ∂tu(x, t, λ)k(x,λ)

∣∣∣∣∣
=

∣∣∣∣∣u(x, t, λ) ∂tu(x, t, λ)
u′(x, t, λ) ∂tu

′(x, t, λ)

∣∣∣∣∣ .
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The function u satisfies
1
2
a(x)u′ ′(x) + b(x)u′(x) + W (x)u(x) + tV (x)u(x) − λu(x) = 0.

Differentiating the left side in t, we have

1
2
a∂tu

′ ′ + b∂tu
′ + (W + tV − λ)∂tu + V u = 0.

Therefore

W ′(x, t, λ) =

∣∣∣∣∣ u(x, t, λ) ∂tu(x, t, λ)
u′ ′(x, t, λ) ∂tu

′ ′(x, t, λ)

∣∣∣∣∣
=

∣∣∣∣∣ u ∂tu

− 2b
a u′ − 2

a (W + tV − λ)u − 2b
a ∂tu

′ − 2
a (W + tV − λ)∂tu − 2

aV u

∣∣∣∣∣
=

∣∣∣∣∣ u ∂tu

− 2b
a u′ − 2b

a ∂tu
′ − 2

aV u

∣∣∣∣∣
= − 2b

a
W (x, t, λ) − 2

a
V (x)u2(x, t, λ).

Noting that W (0, t, λ) = 0, we can get

W (x0, t, λ) = − 1
a

∫ x0

0

2V (x)
a

u2(x, t, λ) exp
(∫ x

x0

2b

a
(s)ds

)
dx < 0.

Since G(x0, t0,0) = 0, we have proved that ∂tG(x0, t0,0) < 0.
We have t′(+0) = ∞ if and only if limλ→0

∂
∂λG(x0, t, λ) = ∞. Set k(x0, λ) :=

(K ′(x0, λ))/(K(x0, λ)). The function k(x0, λ) diverges as λ → 0 if and only if
t′(+0) = ∞. Differentiating k(x0, λ) in λ, we have

∂

∂λ
k(x0, λ) =

1
K2(x0, λ)

∣∣∣∣K(x0, λ) ∂λK(x0, λ)
K ′(x0, λ) ∂λK ′(x0, λ)

∣∣∣∣ .
Recall that K(x,λ) satisfies

1
2
a(x)K ′ ′(x,λ) + b(x)K ′(x) +

(
W (x) − λ

)
K(x,λ) = 0.

Differentiating in λ, we have,

1
2
a(x)∂λK ′ ′(x,λ) + b(x)∂λK ′(x) +

(
W (x) − λ

)
∂λK(x,λ) − K(x,λ) = 0.

Thus∣∣∣∣∣K(x,λ) ∂λK(x,λ)
K ′(x,λ) ∂λK ′(x,λ)

∣∣∣∣∣
′

= − 2b

a
(x)

∣∣∣∣∣K(x,λ) ∂λK(x,λ)
K ′(x,λ) ∂λK ′(x,λ)

∣∣∣∣∣ +
2K2(x,λ)

a(x)
.

K(∞, λ) = 0 and (K2(y,λ))/(a(y)) exp(
∫ y

x0

2b
a (s)ds) is integrable on (x0, ∞).

From this,

∂λk(x0, λ) =
2

K2(x0, λ)
exp

(
−

∫ x0

x0

2b

a
(s)ds

)∫ x0

∞

K2(y,λ)
a(y)

exp
(∫ y

x0

2b

a
(s)ds

)
dy.
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Letting λ → 0, K2(x,λ) → u2(x) on each point x ∈ [x0, ∞). Therefore if the
integral ∫ x0

∞

u2(y)
a(y)

exp
(∫ y

x0

2b

a
(s)ds

)
dy

converges, then ∂λk(x0, λ) also converges. Then L is product L1-critical if and
only if the above integral is finite, and we have shown the theorem. �
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