Twisted Poincaré lemma and twisted Čech-de Rham isomorphism in case dimension = 1

Ko-Ki Ito

Abstract

For a compact Riemann surface, $(n+1)$-tuple $x:=\left(x_{0}, \ldots, x_{n}\right)$ of points on it, and a holomorphic vector bundle with an integrable connection on the open Riemann surface X_{x} deprived of $(n+1)$ points x_{0}, \ldots, x_{n}, let \mathcal{L} be the local system of horizontal sections of the connection. In this article, we give a suitable covering of X_{x} to calculate the Čech cohomology and describe the isomorphism between the cohomology and the twisted de Rham cohomology, which is the cohomology of the complex with the differentials given by the connection. This isomorphism is given by the integrations over Aomoto's regularized paths, the so-called Euler type integrals.

For the family $\left\{X_{x}\right\}_{x}$ parametrized by x, we give a variant of the isomorphism.

1. Introduction

For a compact Riemann surface \bar{X} of genus g and an ($n+1$)-tuple $x=\left(x_{0}, x_{1}, \ldots\right.$, x_{n}) of points on \bar{X}, let X_{x} be the punctured Riemann surface: $X_{x}=\bar{X} \backslash$ $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. We consider a local system \mathcal{L} defined by horizontal sections of a holomorphic connection ∇ on a (not necessarily trivial) vector bundle \mathcal{V} over X_{x} :

$$
\mathcal{L}:=\operatorname{Ker}\left(\nabla: \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega_{X_{x}}^{1}\right) .
$$

In this article, we give an explicit description of the isomorphism between the Čech cohomology with its coefficients in \mathcal{L} (called twisted Čech cohomology) and the twisted de Rham cohomology, that is, the cohomology of the de Rham complex whose differential is given by ∇. In the formula describing the isomorphism, the Euler-type integral, that is, the integration over an \mathcal{L}^{\vee}-valued cycle (called a twisted cycle), appears.

Our approach to getting such an explicit description is to refine Poincaré lemma, that is, to describe explicitly the solutions of the equation $\nabla u=\eta$. This
type of equation is locally reduced to a system of inhomogeneous linear differential equations

$$
(d-A)\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{N}
\end{array}\right]=\left[\begin{array}{c}
\eta_{1} \\
\vdots \\
\eta_{N}
\end{array}\right]
$$

for n 1-forms $\eta_{1}, \ldots, \eta_{N}$ and an $(N \times N)$-matrix A whose entries are 1 -forms. As is well known in elementary calculus, it can be solved by the method of variation of constants, which is summarized as follows. The following diagram is commutative:

Thus, we have $d-A=\Phi^{-1} \circ(1 \otimes d) \circ \Phi$, and a solution is given by

$$
\left[\begin{array}{c}
g_{1} \tag{1.1}\\
\vdots \\
g_{N}
\end{array}\right]=\Phi^{-1} \circ \int \circ \Phi\left(\left[\begin{array}{c}
\eta_{1} \\
\vdots \\
\eta_{N}
\end{array}\right]\right) .
$$

The isomorphism Φ is locally given by $\Phi\left(\varsigma_{1} f_{1}+\cdots+\varsigma_{N} f_{N}\right)=\varsigma_{1} \otimes f_{1}+\cdots+$ $\varsigma_{N} \otimes f_{N}$, where $\left\{\varsigma_{1}, \ldots, \varsigma_{N}\right\}$ is a (local) basis of \mathcal{L}. The right-hand side of (1.1) actually makes sense, especially when it is considered on a domain homotopic to a punctured disk and each ς_{i} is not single valued. In such a situation, one can calculate the solution (1.1), which turns out to be single valued, using a carefully chosen integration path (the so-called regularized paths by Aomoto [1]). These are the keystones of our desired description of twisted Čech-de Rham isomorphism.

By the above-mentioned Poincaré lemma, it is sufficient, in order for the Čech cohomology to be calculated, that we take a covering $\left\{U_{\mu}\right\}$ such that each U_{μ} is homotopic to a punctured disk. We give such a covering and a basis of the Čech cohomology for this covering.

A variation in a relative case is also treated. The punctured Riemann surfaces of the form X_{x} are parametrized by x. We fix such an x_{0} once and for all. Then x runs through the configuration space S of n-points on \bar{X}. So the collection $\left\{X_{x}\right\}_{x \in S}$ gives rise to an analytic family $\pi: \mathcal{X} \longrightarrow S$, where $\mathcal{X}=\{(t, x) \in \bar{X} \times S \mid$ $\left.t \neq x_{0}, \ldots, x_{n}\right\}$. We consider a rank N vector bundle $\mathcal{V}_{\mathcal{X}}$ with an integrable connection $\nabla_{\mathcal{X}}$ over \mathcal{X} :

$$
\nabla_{\mathcal{X}}: \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega_{\mathcal{X}}^{1}
$$

It induces a vector bundle \mathcal{H}^{1} with a natural integrable connection $\nabla^{(\mathrm{GM})}$ (called Gauss-Manin connection) over S, each of whose fibers is the twisted de Rham
cohomology on X_{x}. On the other hand, the Čech cohomology forms another analytic vector bundle $\check{\mathcal{H}}^{1}$. We give N horizontal sections of $\check{\mathcal{H}}^{1}$ in terms of Čech cocycles for a covering similar to the above-mentioned one and an explicit description of the isomorphism between \mathcal{H}^{1} and $\check{\mathcal{H}}^{1}$ in terms of an Euler-type integral.

2. Twisted Poincaré lemma

For a compact Riemann surface \bar{X} and an $(n+1)$-tuple $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of points on \bar{X}, let X_{x} be the punctured Riemann surface $X_{x}=\bar{X} \backslash\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. We consider a rank N vector bundle \mathcal{V} with an (integrable) connection ∇ over X_{x} :

$$
\nabla: \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega_{X_{x}}^{1}
$$

Let \mathcal{L} be the kernel of ∇, which is a local system, for ∇ is integrable. As is well known, the integrability says that \mathcal{V} (resp., $\mathcal{V} \otimes \Omega_{X_{x}}^{1}$) is isomorphic to $\mathcal{L} \otimes \mathcal{O}_{X_{x}}$ (resp., $\mathcal{L} \otimes \Omega_{X_{x}}^{1}$) and that the following diagram is commutative:

where $\Phi^{-1}(s \otimes h)=s h$. Using this diagram (of the method of variation of constants), we prove the twisted Poincaré lemma.

THEOREM 2.1 (TWISTED POINCARÉ LEMMA)

Let U be an open set in X_{x}, and let o be a base point on U. Put $[o, p]$ a path in U connecting two points o and p.
(1) If U is simply connected, then the following holds. For $\eta \in \Gamma\left(U, \mathcal{V} \otimes \Omega_{X_{x}}^{1}\right)$, there exists $u \in \Gamma(U, \mathcal{V})$ such that $\nabla u=\eta$. Moreover, this u is given by the following. We can take linearly independent N-sections $\left\{s_{1}, \ldots, s_{N}\right\}$ of \mathcal{L} over U and its dual basis $\left\{s_{1}^{\vee}, \ldots, s_{N}^{\vee}\right\}$; that is, $s_{i}^{\vee}\left(s_{j}\right)=\delta_{i j}$, where $s_{i}^{\vee} \in \Gamma\left(U, \mathcal{L}^{\vee}\right)$. Then we have

$$
\begin{equation*}
u(p)=\sum_{i} s_{i}(p) \int_{[o, p]}\left(s_{i}^{\vee} \otimes 1\right)(\Phi(\eta)) \tag{2.2}
\end{equation*}
$$

and u is independent of the choices of s_{i} and $[o, p]$.
(2) If $\pi_{1}(U, o)$ is isomorphic to the free group $\langle\sigma\rangle$ generated by one element corresponding to a closed loop σ and the eigenvalues of its monodromy action M_{σ} on the stalk \mathcal{L}_{o}^{\vee} do not contain 1 , then the following holds. For $\eta \in \Gamma\left(U, \mathcal{V} \otimes \Omega_{X_{x}}^{1}\right)$, there exists the unique section $u \in \Gamma(U, \mathcal{V})$ such that $\nabla u=\eta$. Moreover, this u is given by the following. We can take linearly independent N-germs $\left\{s_{1, o}, \ldots, s_{N, o}\right\}$ of \mathcal{L} over o and its dual basis $\left\{s_{1, o}^{\vee}, \ldots, s_{N, o}^{\vee}\right\}$. For a path γ in U with its initial
point at o, we denote $s_{i, \gamma}\left(\right.$ resp., $\left.s_{i, \gamma}^{\vee}\right)$ the analytic continuation of $s_{i, o}\left(\right.$ resp., $\left.s_{i, o}^{\vee}\right)$ along γ. Then we have

$$
\begin{align*}
u(p)=\sum_{i} s_{i,[o, p]}(p)(& \int_{[o, p]}\left(s_{i,[o, p]}^{\vee} \otimes 1\right)(\Phi(\eta)) \tag{2.3}\\
& \left.+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right)
\end{align*}
$$

where $\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, \sigma}^{\vee}$ is the analytic continuation of the germ $\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, o}^{\vee}$ along σ, and u is independent of the choices of $s_{i, o},[o, p]$, and o.

Proof
The diagram (2.1) tells us that (2.2) or (2.3), if it is well defined, satisfies $\nabla u=\eta$. In the case when U is simply connected, the integral (2.2) is well defined. Thus, we have the assertion (1). To prove assertion (2), we prove that u is well defined, that is, that $u(p)$ is determined independently of a choice of paths $[o, p]$. We take another path $[o, p]^{\prime}$. It is sufficient to prove that

$$
\begin{aligned}
& \sum_{i} s_{i,[o, p]^{\prime}}(\int_{[o, p]^{\prime}}\left(s_{i,[o, p]^{\prime}}^{\vee} \otimes 1\right)(\Phi(\eta)) \\
&\left.+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right) \\
&-\sum_{i} s_{i,[o, p]}\left(\int_{[o, p]}\left(s_{i,[o, p]}^{\vee} \otimes 1\right)(\Phi(\eta))\right. \\
&\left.+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right)=0
\end{aligned}
$$

in the case when $[o, p]^{-1} \circ[o, p]^{\prime}$ is homotopic in U to σ. Applying $s_{j,[o, p]^{\prime}}^{\vee}$ each side of this formula, we prove

$$
\begin{align*}
\left(\int_{[o, p]^{\prime}}\left(s_{j,[o, p]^{\prime}}^{\vee} \otimes 1\right)(\Phi(\eta))\right. & \left.+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{j, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right) \\
-\sum_{i} s_{j,[o, p]^{\prime}}^{\vee}\left(s_{i,[o, p]}^{\vee}\right)(& \int_{[o, p]}\left(s_{i,[o, p]}^{\vee} \otimes 1\right)(\Phi(\eta)) \tag{2.4}\\
& \left.+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{i, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right)=0
\end{align*}
$$

Note that $s_{i,[o, p]^{\prime}}^{\vee}=M_{\sigma} s_{i,[o, p]}^{\vee}, \sum_{i} M_{\sigma} s_{j, \gamma}^{\vee}\left(s_{i, \gamma}\right) s_{i, \gamma}^{\vee}=M_{\sigma} s_{j, \gamma}^{\vee}$, and $M_{\sigma} s_{j, \gamma}^{\vee}\left(s_{i, \gamma}\right)$ does not depend on a path γ but on the germs $s_{j, o}$ and $s_{i, o}^{\vee}$. Then the lefthand side of (2.4) equals

$$
\begin{aligned}
& \left(\int_{[o, p]}\left(M_{\sigma} s_{j,[o, p]}^{\vee} \otimes 1\right)(\Phi(\eta))\right. \\
& \left.\quad+\int_{\sigma}\left(s_{j, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{j, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\int_{[o, p]}\left(M_{\sigma} s_{j,[o, p]}^{\vee} \otimes 1\right)(\Phi(\eta))\right. \\
& \left.\quad+\int_{\sigma}\left(\left(M_{\sigma}-\mathrm{id}\right)^{-1} M_{\sigma} s_{j, \sigma}^{\vee} \otimes 1\right)(\Phi(\eta))\right)=0
\end{aligned}
$$

The uniqueness of u follows from the fact $\Gamma(U, \mathcal{L})=0$. We have thus proved the theorem.

REMARK 1

The above theorem implies that we have the following exact sequence:

$$
0 \longrightarrow j_{*} \mathcal{L} \longrightarrow j_{*} \mathcal{V} \xrightarrow{\nabla} j_{*}\left(\mathcal{V} \otimes \Omega_{X_{x}}^{1}\right) \longrightarrow 0
$$

where $j: X_{x} \hookrightarrow \bar{X}$ is the inclusion map.

3. Integrations over regularized paths

The integration (2.3) in Section 2 can be regarded as an integration over a regularized path, which is formulated by Aomoto [1] in the case rank $\mathcal{L}=1$. We generalize it to the higher-rank case. (The special case of higher-rank local systems appears in the work of Mimachi, Ohara, and Yoshida [3].)

DEFINITION 3.1 (TWISTED CHAIN)

A twisted 1-chain is a 1-chain with its coefficients in \mathcal{L}^{\vee}, that is, a linear combination of $\left\{\gamma \otimes s_{\gamma}^{\vee}\right\}_{\gamma}$, where γ is a singular 1-simplex (i.e., a path) and s_{γ}^{\vee} is a local section of \mathcal{L}^{\vee} on γ.

DEFINITION 3.2 (REGULARIZATION)

Let o, U, σ, M_{σ} be as in Theorem 2.1(2). Let γ be a path on U whose initial point is o, and let s_{γ}^{\vee} be a section of \mathcal{L}^{\vee} over γ. The regularization of $\gamma \otimes s_{\gamma}^{\vee}$ is defined by

$$
\operatorname{reg}_{U} \gamma \otimes s_{\gamma}^{\vee}:=\gamma \otimes s_{\gamma}^{\vee}+\sigma \otimes\left(M_{\sigma}-\mathrm{id}\right)^{-1} s_{\sigma}^{\vee}
$$

where $s_{\sigma, o}^{\vee}=s_{\gamma, o}^{\vee}$.

DEFINITION 3.3 (INTEGRATION OVER TWISTED 1-SIMPLEX)
Let γ be a path on an open set U of X_{x}. For $\eta \in \Gamma\left(U, \mathcal{V} \otimes \Omega_{X_{x}}^{1}\right)$, the integration over $\gamma \otimes s_{\gamma}^{\vee}$ is defined by

$$
\int_{\gamma \otimes s_{\gamma}^{\vee}} s^{\vee}(\eta):=\int_{\gamma}\left(s_{\gamma}^{\vee} \otimes 1\right)(\Phi(\eta))
$$

where Φ is defined in (2.1).

Using this formulation, we have the following expression of the integration (2.3):

$$
\begin{equation*}
u(p)=\sum_{i} s_{i,[o, p]}(p) \int_{\mathrm{reg}_{U}[o, p] \otimes s_{i,[o, p]}^{\vee}} s_{i}^{\vee}(\eta) \tag{3.1}
\end{equation*}
$$

4. Twisted Čech-de Rham isomorphism

Associated to a covering $\mathfrak{U}=\left\{U_{\mu}\right\}$, the Čech complex with its coefficients in \mathcal{L} is given by

$$
\begin{align*}
& 0 \longrightarrow \bigoplus_{\mu} \Gamma\left(U_{\mu}, \mathcal{L}\right) \xrightarrow{\partial^{0}} \bigoplus_{\mu<\nu} \Gamma\left(U_{\mu} \cap U_{\nu}, \mathcal{L}\right) \tag{4.1}\\
& \xrightarrow{\partial^{1}} \bigoplus_{\mu<\nu<\lambda} \Gamma\left(U_{\mu} \cap U_{\nu} \cap U_{\lambda}, \mathcal{L}\right) \longrightarrow \cdots
\end{align*}
$$

where

$$
\begin{aligned}
\left(\partial^{0}\left(s_{\mu}\right)_{\mu}\right)_{\mu \nu} & =\left.s_{\nu}\right|_{U_{\mu} \cap U_{\nu}}-\left.s_{\mu}\right|_{U_{\mu} \cap U_{\nu}} \\
\left(\partial^{1}\left(s_{\mu \nu}\right)_{\mu \nu}\right)_{\mu \nu \lambda} & =\left.s_{\nu \lambda}\right|_{U_{\mu} \cap U_{\nu} \cap U_{\lambda}}-\left.s_{\mu \lambda}\right|_{U_{\mu} \cap U_{\nu} \cap U_{\lambda}}+\left.s_{\mu \nu}\right|_{U_{\mu} \cap U_{\nu} \cap U_{\lambda}} .
\end{aligned}
$$

We assume that the covering \mathfrak{U} satisfies the following conditions.

ASSUMPTION 4.1

(1) $o \in \bigcap_{\mu} U_{\mu}$, where $o \in X_{x}$ is a base point.
(2) $\pi_{1}\left(U_{\mu}, o\right)$ is isomorphic to the free group $\left\langle\sigma_{\mu}\right\rangle$ generated by a single element corresponding to a closed loop σ_{μ}.
(3) $U_{\mu} \cap U_{\nu}$ is connected.

On the other hand, the twisted de Rham complex is defined by the following:

$$
\begin{equation*}
0 \longrightarrow \Gamma\left(X_{x}, \mathcal{V}\right) \xrightarrow{\nabla} \Gamma\left(X_{x}, \mathcal{V} \otimes \Omega_{X_{x}}^{1}\right) \longrightarrow 0 \tag{4.2}
\end{equation*}
$$

The twisted Poincaré lemma (Theorem 2.1) tells us that the first twisted de Rham cohomology $H_{\nabla}^{1}\left(X_{x}\right)$ (defined by the complex (4.2)) is isomorphic to the first Čech cohomology $H^{1}(\mathfrak{U}, \mathcal{L})$ (defined by the complex (4.1)).

THEOREM 4.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk \mathcal{L}_{o}^{\vee} do not contain 1. Let $\left\{s_{1, o}, \ldots, s_{N, o}\right\}$ be linearly independent N-germs of \mathcal{L} over o, and let $\left\{s_{1, o}^{\vee}, \ldots, s_{N, o}^{\vee}\right\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i, \gamma}^{\vee}$ be the analytic continuation of $s_{i, o}^{\vee}$ along γ. We denote by $s_{i, \mu \nu}$ the section of \mathcal{L} over $U_{\mu} \cap U_{\nu}$ whose germ coincides with $s_{i, o}$. (In the case $\pi_{1}\left(U_{\mu} \cap U_{\nu}, o\right) \neq$ $\{1\}, s_{i, \mu \nu}$ indicates zero.) Then, the morphism $\Psi: H_{\nabla}^{1}\left(X_{x}\right) \longrightarrow H^{1}(\mathfrak{U}, \mathcal{L})$ given by

$$
\Psi(\eta)=\left(-\sum_{i} s_{i, \mu \nu} \int_{\mathrm{reg}_{\mu \nu} s_{i}^{\vee}} s_{i}^{\vee}(\eta)\right)_{\mu \nu}
$$

is well defined and an isomorphism, where

$$
\begin{aligned}
\operatorname{reg}_{\mu \nu} s_{i}^{\vee}= & \sigma_{\mu} \otimes\left(M_{\sigma_{\mu}}-\mathrm{id}\right)^{-1} s_{i, \sigma_{\mu}}^{\vee} \\
& -\sigma_{\nu} \otimes\left(M_{\sigma_{\nu}}-\mathrm{id}\right)^{-1} s_{i, \sigma_{\nu}}^{\vee}
\end{aligned}
$$

Proof

We have the following commutative diagram:

In this diagram, both of the two vertical sequences are exact due to the twisted Poincaré lemma (Theorem 2.1), and both of the two horizontal sequences are exact because X_{x} and $U_{\mu_{0}} \cap U_{\mu_{1}} \cap \cdots \cap U_{\mu_{k}}$ are Stein (Cartan's theorem B). Here we have

$$
\begin{aligned}
H_{\nabla}^{1}\left(X_{x}\right) & \cong \operatorname{Ker} \partial_{1}^{0} / \operatorname{Im} \nabla \circ \iota, \\
H^{1}(\mathfrak{U}, \mathcal{L}) & \cong \operatorname{Ker} \nabla / \operatorname{Im} \partial_{0}^{0} \circ \iota^{\prime},
\end{aligned}
$$

and Ψ should be defined by $\partial_{0}^{0} \circ \nabla^{-1}$. A standard argument by diagram chasing tells us that Ψ is well defined and an isomorphism. For a \mathcal{V}-valued 1 -form η, we calculate $\Psi(\eta)$ explicitly by using formula (3.1) in the proof of the twisted Poincaré lemma:

$$
\begin{aligned}
\Psi(\eta)= & \partial_{0}^{0}\left(\sum_{i} s_{i,[0, p]}(p) \int_{\operatorname{reg}_{U_{\mu}}[o, p] \otimes s_{i,[o, p]}^{\vee}} s_{i}^{\vee}(\eta)\right)_{\mu} \\
= & \left(\sum_{i} s_{i,[o, p]}(p) \int_{\operatorname{reg}_{U_{\nu}}[o, p] \otimes s_{i,[o, p]}^{\vee}} s_{i}^{\vee}(\eta)\right. \\
& \left.-\sum_{i} s_{i,[o, p]}(p) \int_{\operatorname{reg}_{U_{\mu}}[o, p] \otimes s_{i,[o, p]}^{\vee}} s_{i}^{\vee}(\eta)\right)_{\mu \nu} .
\end{aligned}
$$

Note that $[o, p]$ is on $U_{\mu} \cap U_{\nu}$. Thus $s_{i,[o, p]}(p)=s_{i, \mu \nu}(p)$, and we have

$$
\operatorname{reg}_{U_{\nu}}[o, p] \otimes s_{i,[o, p]}^{\vee}-\operatorname{reg}_{U_{\mu}}[o, p] \otimes s_{i,[o, p]}^{\vee}=-\operatorname{reg}_{\mu \nu} s_{i}^{\vee} .
$$

(In the case $\pi_{1}\left(U_{\mu} \cap U_{\nu}, o\right) \neq\{1\}$, the restriction of $\sum_{i} s_{i,[o, p]}(p) \int s_{i}^{\vee}(\eta)$ to $U_{\mu} \cap U_{\nu}$ vanishes.) We have thus proved the theorem.

REMARK 2
The integral $\int_{\text {reg }}^{\mu \nu} s_{i}^{\vee} s_{i}^{\vee}(\eta)$ is a so-called Euler-type integral, that is, a pairing between $H_{\nabla}^{1}\left(X_{x}\right)$ and $H_{1}\left(X_{x}, \mathcal{L}\right)$ because $\operatorname{reg}_{\mu \nu} s_{i}^{\vee}$ can be thought of as a representative of an element of $H_{1}\left(X_{x}, \mathcal{L}^{\vee}\right)$.

5. Explicit description of twisted Čech-de Rham isomorphism

In this section, we give a covering satisfying Assumption 4.1 explicitly, and we take integration paths (twisted cycles) accordingly. Using integrations over these paths, we describe the twisted Čech-de Rham isomorphism.

Let g be the genus of the compact Riemann surface \bar{X}, and let $\gamma_{1}, \ldots, \gamma_{2 g}$ be the (ordinary) cycles on \bar{X} whose ends are at the point x_{0}, that is, the generators of $\pi_{1}\left(\bar{X}, x_{0}\right)$. We assume that the complement of the γ_{i} 's is a simply connected region Δ and contains $x_{1}, \ldots, x_{n} ; \Delta$ is identified with the interior of a convex $4 g$ sided polygon D, and each side of it is identified with some γ_{i}. Fix a vertex $\widetilde{x_{0}}$ of D. Let $\left[\widetilde{x_{0}}, x_{i}\right]$ be a segment connecting two points $\widetilde{x_{0}}, x_{i}$. We assume that each two of $\gamma_{1}, \ldots, \gamma_{2 g},\left[\widetilde{x_{0}}, x_{1}\right], \ldots,\left[\widetilde{x_{0}}, x_{n}\right]$ intersect in \bar{X} only at x_{0}. Now we have the open covering $\mathfrak{U}=\left\{U_{\mu}\right\}_{\mu \in\left\{\gamma_{1}, \ldots, \gamma_{2 g}, x_{1}, \ldots, x_{n}\right\}}$ of X_{x} satisfying Assumption 4.1:

$$
\begin{aligned}
U_{\gamma_{i}} & =\bar{X} \backslash\left(\bigcup_{j \neq i} \gamma_{j} \cup \bigcup_{k=1}^{n}\left[\widetilde{x_{0}}, x_{k}\right]\right) \\
U_{x_{k}} & =\bar{X} \backslash\left(\bigcup_{i=1}^{2 g} \gamma_{i} \cup \bigcup_{j \neq k}\left[\widetilde{x_{0}}, x_{j}\right]\right)
\end{aligned}
$$

REMARK 3
Let U be the open set of X_{x} deprived of all γ_{i} 's and all $\left[\widetilde{x_{0}}, x_{k}\right.$]'s from \bar{X} :

$$
U=\bar{X} \backslash\left(\bigcup_{j=1}^{2 g} \gamma_{j} \cup \bigcup_{k=1}^{n}\left[\widetilde{x_{0}}, x_{k}\right]\right)
$$

Each two of \mathfrak{U} intersect on $U: U_{\mu} \cap U_{\nu}=U$. We can take linearly independent N sections s_{1}, \ldots, s_{N} of \mathcal{L} over U because it is simply connected.

We take a point $o \in U$ and generators σ_{μ} of $\pi_{1}\left(U_{\mu}, o\right)$: In the case $\mu=\gamma_{i}, \sigma_{\mu}$ is a loop transverse to γ_{i}; and in the case $\mu=x_{k}, \sigma_{\mu}$ is a loop surrounding the point x_{k}.

PROPOSITION 5.1
We assume that the eigenvalues of the monodromy action of σ_{μ} on the stalk \mathcal{L}_{o} do not contain 1. The first cohomology $H^{1}(\mathfrak{U}, \mathcal{L})$ of the Čech complex has a basis formed by the $N(n+2 g-1)$-cocycles $e_{\mu} \otimes s_{k}\left(\mu \in\left\{\gamma_{1}, \ldots, \gamma_{2 g}, x_{1}, \ldots, x_{n-1}\right\}\right.$, $k=1, \ldots, N)$ defined by

$$
e_{\mu} \otimes s_{k}:=\left(e_{\nu \lambda}^{(\mu)} s_{k}\right)_{\nu \lambda}, \quad e_{x_{n} \lambda}^{(\mu)}=-\delta_{\mu \lambda}, e_{\nu \lambda}^{(\mu)}=e_{x_{n} \lambda}^{(\mu)}-e_{x_{n} \nu}^{(\mu)}
$$

Proof
By Remark 3, an arbitrary cochain $\left(s_{\nu \lambda}\right)_{\nu \lambda}$ can be expressed by such a form as $s_{\nu \lambda}=\sum_{k} a_{\nu \lambda}^{k} s_{k}$, where $a_{\nu \lambda}^{k} \in \mathbb{C}$. Note that $\Gamma\left(U_{\mu}, \mathcal{L}\right)=0$ because the eigenvalues of the monodromy action of σ_{μ} do not contain 1 by the assumption. So $H^{1}(\mathfrak{U}, \mathcal{L})$ coincides with cocycles $\operatorname{Ker} \partial^{1}$. The cocycle condition is equivalent to $a_{\nu \lambda}^{k}-$ $a_{\mu \lambda}^{k}+a_{\mu \nu}^{k}=0$. Hence $a_{\nu \lambda}^{k}=a_{x_{n \lambda}}^{k}-a_{x_{n} \nu}^{k}$, and $\left(a_{\nu \lambda}^{k}\right)_{\nu \lambda}$ can be expressed by a linear combination of $\left\{e_{\nu \lambda}^{(\mu)}\right\}_{\mu}$, whence the assertion.

Applying Theorem 4.1 for the covering given above, we obtain the following.

COROLLARY 5.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk \mathcal{L}_{o}^{\vee} do not contain 1. Let $\left\{s_{1, o}, \ldots, s_{N, o}\right\}$ be the germs of $\left\{s_{1}, \ldots, s_{N}\right\}$ at o, and let $\left\{s_{1, o}^{\vee}, \ldots, s_{N, o}^{\vee}\right\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i, \gamma}^{\vee}$ be the analytic continuation of $s_{i, o}^{\vee}$ along γ. Then, the isomorphism $\Psi: H_{\nabla}^{1}\left(X_{x}\right) \longrightarrow H^{1}(\mathfrak{U}, \mathcal{L})$ is given by

$$
\Psi(\eta)=\sum_{\mu, k}\left(\int_{\operatorname{reg}_{x_{n} \mu} s_{k}^{\checkmark}} s_{k}^{\vee}(\eta)\right) e_{\mu} \otimes s_{k}
$$

REMARK 4

This implies that $\left\{\operatorname{reg}_{x_{n} \mu} s_{k}^{\vee}\right\}_{\mu, k}$ forms a basis of $H_{1}\left(X_{x}, \mathcal{L}^{\vee}\right)$.

6. Relative twisted Čech-de Rham isomorphism

The punctured Riemann surfaces of the form X_{x} are parametrized by x. We shall fix x_{0}. Then x runs through the configuration space S of n-points on $\bar{X}: S:=\bar{X}^{n} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$. So the collection $\left\{X_{x}\right\}_{x \in S}$ forms an analytic family $\pi: \mathcal{X} \longrightarrow S$, where $\mathcal{X}=\left\{(t, x) \in \bar{X} \times S \mid t \neq x_{0}, \ldots, x_{n}\right\}$. We consider a rank N vector bundle $\mathcal{V}_{\mathcal{X}}$ with an integrable connection $\nabla_{\mathcal{X}}$ over \mathcal{X} :

$$
\nabla_{\mathcal{X}}: \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega_{\mathcal{X}}^{1}
$$

Let $\mathcal{L}_{\mathcal{X}}$ be the kernel of $\nabla_{\mathcal{X}}$, which is a local system because $\nabla_{\mathcal{X}}$ is integrable. It induces a vector bundle \mathcal{H}^{1} over S, each of whose fibers is isomorphic to $H_{\nabla}^{1}\left(X_{x}\right)$. Let $D R_{\nabla_{\mathcal{X} / S}}^{\bullet}$ be the relative de Rham complex with the differential $\nabla_{\mathcal{X} / S}$ induced from the above connection $\nabla_{\mathcal{X}}$:

$$
0 \longrightarrow \mathcal{V}_{\mathcal{X}} \xrightarrow{\nabla_{\mathcal{X} / S}} \mathcal{V}_{\mathcal{X}} \otimes \Omega_{\mathcal{X} / S}^{1} \longrightarrow 0
$$

The vector bundle \mathcal{H}^{1} is the first cohomology of $\mathbb{R} \pi_{*} D R_{\nabla_{\mathcal{X} / S}}^{\bullet}$. Because $\pi: \mathcal{X} \longrightarrow$ S is Stein, we have the identification $\mathcal{H}^{1} \cong \pi_{*}\left(\mathcal{V}_{\mathcal{X}} \otimes \Omega_{\mathcal{X} / S}^{1}\right) / \nabla_{\mathcal{X} / S}\left(\pi_{*} \mathcal{V}_{\mathcal{X}}\right)$, whose sections are represented by $\mathcal{V}_{\mathcal{X}}$-valued relative 1 -forms.

The vector bundle \mathcal{H}^{1} has a natural connection ∇^{GM} (Gauss-Manin connection): for $[\eta] \in \mathcal{H}^{1}$ represented by a 1 -form on \mathcal{X} and a vector field v over S, $\nabla_{v}^{\mathrm{GM}}[\eta]:=\left[\nabla_{\widetilde{v}} \eta\right]$, where \widetilde{v} is a lift of v to \mathcal{X} and $[\bullet]$ indicates the element of \mathcal{H}^{1} represented by a 1 -form \bullet on \mathcal{X}.

We have another vector bundle $\check{\mathcal{H}}^{1}$ corresponding to Čech cohomology. Let $\mathcal{L}_{\mathcal{X} / S}$ be the kernel of $\nabla_{\mathcal{X} / S}: \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega_{\mathcal{X} / S}^{1}$. The vector bundle $\check{\mathcal{H}}^{1}$ should be defined by $R^{1} \pi_{*} \mathcal{L}_{\mathcal{X} / S}$. By the projection formula, $\check{\mathcal{H}}^{1}$ is isomorphic to $R^{1} \pi_{*} \mathcal{L}_{\mathcal{X}} \otimes \mathbb{C}_{S} \mathcal{O}_{S}$ because $\mathcal{L}_{\mathcal{X} / S}$ is isomorphic to $\mathcal{L}_{\mathcal{X}} \otimes \mathbb{C}_{S} \pi^{-1} \mathcal{O}_{S}$. We construct and compute $R^{1} \pi_{*} \mathcal{L}_{\mathcal{X}}$ by means of Čech resolution.

We use the symbols $\widetilde{x_{0}}, \gamma_{i}, \Delta$, and D, the same as in Section 5. Fix an identification of Δ with the interior of D. For $x_{i}, x_{j} \in D$, we denote by $\theta\left(x_{i}, x_{j}\right)$ the angle contained in D whose sides are $\left[\widetilde{x_{0}}, x_{i}\right]$ and $\left[\widetilde{x_{0}}, x_{j}\right]$. For $I=\left(i_{1}, \ldots, i_{n}\right)$, we take an open set $V_{I}:=\left\{\theta\left(x_{i_{1}}, x_{i_{n}}\right)>\theta\left(x_{i_{2}}, x_{i_{n}}\right)>\cdots>\theta\left(x_{i_{n-1}}, x_{i_{n}}\right)\right\} \subset S$ and compute $\Gamma\left(V_{I}, R^{1} \pi_{*} \mathcal{L}_{\mathcal{X}}\right)$. We have the following Čech resolution:

$$
\begin{equation*}
0 \longrightarrow \Gamma\left(V_{I}, \pi_{*} \mathcal{L}_{\mathcal{X}}\right) \longrightarrow \bigoplus_{\mu} \Gamma\left(U_{\mu}^{I}, \mathcal{L}_{\mathcal{X}}\right) \xrightarrow{\partial^{0}} \bigoplus_{\mu \prec \nu} \Gamma\left(U_{\mu}^{I} \cap U_{\nu}^{I}, \mathcal{L}_{\mathcal{X}}\right) \longrightarrow \cdots, \tag{6.1}
\end{equation*}
$$

where μ, ν belong to an ordered set $\left\{\gamma_{1} \prec \cdots \prec \gamma_{2 g} \prec x_{i_{1}} \prec \cdots \prec x_{i_{n}}\right\}$ and

$$
\begin{aligned}
& U_{\gamma_{i}}^{I}=\left\{(t, x) \in \bar{X} \times V_{I} \mid t \notin\left(\bigcup_{j \neq i} \gamma_{j} \cup \bigcup_{k=1}^{n}\left[\widetilde{x_{0}}, x_{k}\right]\right)\right\}, \\
& U_{x_{k}}^{I}=\left\{(t, x) \in \bar{X} \times V_{I} \mid t \notin\left(\bigcup_{i=1}^{2 g} \gamma_{i} \cup \bigcup_{j \neq k}\left[\widetilde{x_{0}}, x_{j}\right]\right)\right\} .
\end{aligned}
$$

Let U^{I} be an open set given by

$$
\left\{(t, x) \in \bar{X} \times V^{I} \mid t \notin\left(\bigcup_{i=1}^{2 g} \gamma_{j} \cup \bigcup_{k=1}^{n}\left[\widetilde{x_{0}}, x_{k}\right]\right)\right\} .
$$

Note that $U_{\mu}^{I} \cap U_{\nu}^{I}$ coincides with U^{I}.

LEMMA 6.1
Let o be a point in U^{I}. The fundamental group $\pi_{1}\left(U_{\mu}^{I}, o\right)$ is a free group generated by one element σ_{μ}, and U^{I} is contractible.

Proof
We have the chain of smooth surjective morphisms

$$
V_{I}^{(1)} \longleftarrow V_{I}^{(2)} \longleftarrow \cdots \longleftarrow V_{I}^{(n)}=V_{I} \longleftarrow U_{\mu}^{I},
$$

where $V_{I}^{(r)}$ is the image of V_{I} under the projection $\bar{X}^{n} \longrightarrow \bar{X}^{r}$. Each fiber of the above surjective morphisms is contractible except for the rightmost one. The fiber of $V_{I} \longleftarrow U_{\mu}^{I}$ is homeomorphic to U_{μ} in Section 5. Thus $\pi_{1}\left(U_{\mu}^{I}, o\right)$ is isomorphic to the fundamental group of U_{μ}, which is a free group generated by one element. The fiber of $V_{I} \longleftarrow U^{I}$, the restriction of $V_{I} \longleftarrow U_{\mu}^{I}$ to U^{I}, is also contractible. Thus U^{I} is contractible.

Due to Lemma 6.1, we can take N (single-valued) sections $s_{1}^{I}, \ldots, s_{N}^{I}$ of $\mathcal{L}_{\mathcal{X}}$ over U^{I}. Thus $\Gamma\left(U_{\mu}^{I} \cap U_{\nu}^{I}, \mathcal{L}_{\mathcal{X}}\right)$ is generated by $s_{1}^{I}, \ldots, s_{N}^{I}$. And we take the generators σ_{μ} of $\pi_{1}\left(U_{\mu}^{I}, o\right)$. Now we have the following.

PROPOSITION 6.1

We assume that the eigenvalues of the monodromy action of $\sigma_{\mu} \in \pi_{1}\left(U_{\mu}^{I}, o\right)$ on the stalk $\mathcal{L}_{\mathcal{X}, o}$ do not contain 1 . The first cohomology of the Čech complex corresponding to (6.1) has a basis consisting of the $N(n+2 g-1)$-cocycles $e_{\mu}^{I} \otimes s_{k}^{I}$ $\left(\mu \in\left\{\gamma_{1}, \ldots, \gamma_{2 g}, x_{i_{1}}, \ldots, x_{i_{n-1}}\right\}, k=1, \ldots, N\right)$ defined by

$$
e_{\mu}^{I} \otimes s_{k}^{I}:=\left(e_{\nu \lambda}^{(\mu)} s_{k}^{I}\right)_{\nu \lambda}, \quad e_{\lambda x_{i_{n}}}^{I,(\mu)}=\delta_{\mu \lambda}, e_{\nu \lambda}^{I,(\mu)}=-e_{\lambda x_{i_{n}}}^{I,(\mu)}+e_{\nu x_{i_{n}}}^{I,(\mu)} .
$$

Note that we have the following commutative diagram:

where $\Phi_{\mathcal{X}}^{-1}(s \otimes h)=s h$. Put $\mathcal{L}_{\mathcal{X}}^{\vee}:=\mathcal{H o m}_{\mathbb{C}_{\mathcal{X}}}\left(\mathcal{L}_{\mathcal{X}}, \mathbb{C}_{\mathcal{X}}\right)$.

COROLLARY 6.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk $\mathcal{L}_{\mathcal{X}, o}^{\vee}$ do not contain 1. Let $\left\{s_{1, o}^{I}, \ldots, s_{N, o}^{I}\right\}$ be the germs of $\left\{s_{1}^{I}, \ldots, s_{N}^{I}\right\}$ at o, and let $\left\{s_{1, o}^{I \vee}, \ldots, s_{N, o}^{I \vee}\right\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i, \gamma}^{I \vee}$ be the analytic continuation of $s_{i, o}^{I V}$ along γ. Then, the isomorphism $\Psi_{\mathcal{X}}: \mathcal{H}^{1} \longrightarrow \check{\mathcal{H}}^{1}$ is given by

$$
\Psi_{\mathcal{X}}(\eta)=\sum_{\mu, k}\left(\int_{\operatorname{reg}_{x_{i_{n}} \mu} S_{k}^{I V}}\left(s_{k}^{I \vee} \otimes 1\right)\left(\Phi_{\mathcal{X}}(\eta)\right)\right) e_{\mu}^{I} \otimes s_{k}^{I}
$$

REMARK 5

This fact implies that solutions of the differential equations corresponding to a Gauss-Manin connection, that is, the induced connection on relative de Rham cohomology, have integral representations of Euler type. This conforms with the following fact: De Rham cohomology classes are represented by differential forms, which should be integrated; there is a nondegenerate paring between \mathcal{H}^{1} and $\mathcal{H}_{1}:=\bigcup_{x \in S} H_{1}\left(X_{x},\left.\mathcal{L}_{\mathcal{X}}\right|_{X_{x}}\right)$ whose basis is given by the regularizations of paths.

Acknowledgment. The author thanks Professor F. Kato for valuable comments.

References

[1] K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo 27 (1977), 49-61.
[2] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts in Math. 82, Springer, New York, 1982.
[3] K. Mimachi, K. Ohara, and M. Yoshida, Intersection numbers for loaded cycles associated with Selberg-type integrals, Tohoku Math. J. (2) 56 (2004), 531-551.

Research Institute for Mathematical Sciences, Kyoto University, KitashirakawaOiwakechou, Sakyoku, Kyoto 606-8502, Japan; koki@kurims.kyoto-u.ac.jp

