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and twisted Čech–de Rham
isomorphism in case dimension = 1
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Abstract For a compact Riemann surface, (n + 1)-tuple x := (x0, . . . , xn) of points on
it, and a holomorphic vector bundle with an integrable connection on the open Riemann
surface Xx deprived of (n + 1) points x0, . . . , xn, let L be the local system of horizon-
tal sections of the connection. In this article, we give a suitable covering of Xx to calcu-
late the Čech cohomology and describe the isomorphism between the cohomology and
the twisted de Rham cohomology, which is the cohomology of the complex with the dif-
ferentials given by the connection. This isomorphism is given by the integrations over
Aomoto’s regularized paths, the so-called Euler type integrals.

For the family {Xx}x parametrized by x, we give a variant of the isomorphism.

1. Introduction

For a compact Riemann surface X of genus g and an (n+1)-tuple x = (x0, x1, . . . ,

xn) of points on X , let Xx be the punctured Riemann surface: Xx = X \
{x0, x1, . . . , xn}. We consider a local system L defined by horizontal sections
of a holomorphic connection ∇ on a (not necessarily trivial) vector bundle V
over Xx:

L := Ker(∇ : V −→ V ⊗ Ω1
Xx

).

In this article, we give an explicit description of the isomorphism between the
Čech cohomology with its coefficients in L (called twisted Čech cohomology) and
the twisted de Rham cohomology, that is, the cohomology of the de Rham com-
plex whose differential is given by ∇. In the formula describing the isomorphism,
the Euler -type integral, that is, the integration over an L∨-valued cycle (called
a twisted cycle), appears.

Our approach to getting such an explicit description is to refine Poincaré
lemma, that is, to describe explicitly the solutions of the equation ∇u = η. This
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type of equation is locally reduced to a system of inhomogeneous linear differen-
tial equations

(d − A)

⎡
⎢⎣

g1

...
gN

⎤
⎥⎦ =

⎡
⎢⎣

η1

...
ηN

⎤
⎥⎦

for n 1-forms η1, . . . , ηN and an (N × N)-matrix A whose entries are 1-forms.
As is well known in elementary calculus, it can be solved by the method of
variation of constants, which is summarized as follows. The following diagram is
commutative:

O ⊕N
Φ

∼=

d−A

L ⊗C O

1⊗d

O ⊕N ⊗O Ω1
Φ

∼=
L ⊗C Ω1.

Thus, we have d − A = Φ−1 ◦ (1 ⊗ d) ◦ Φ, and a solution is given by⎡
⎢⎣

g1

...
gN

⎤
⎥⎦ = Φ−1 ◦

∫
◦Φ

⎛
⎜⎝

⎡
⎢⎣

η1

...
ηN

⎤
⎥⎦

⎞
⎟⎠ .(1.1)

The isomorphism Φ is locally given by Φ(ς1f1 + · · · + ςNfN ) = ς1 ⊗ f1 + · · · +
ςN ⊗ fN , where {ς1, . . . , ςN } is a (local) basis of L. The right-hand side of (1.1)
actually makes sense, especially when it is considered on a domain homotopic
to a punctured disk and each ςi is not single valued. In such a situation, one
can calculate the solution (1.1), which turns out to be single valued, using a
carefully chosen integration path (the so-called regularized paths by Aomoto [1]).
These are the keystones of our desired description of twisted Čech–de Rham
isomorphism.

By the above-mentioned Poincaré lemma, it is sufficient, in order for the
Čech cohomology to be calculated, that we take a covering {Uμ} such that each
Uμ is homotopic to a punctured disk. We give such a covering and a basis of the
Čech cohomology for this covering.

A variation in a relative case is also treated. The punctured Riemann surfaces
of the form Xx are parametrized by x. We fix such an x0 once and for all. Then
x runs through the configuration space S of n-points on X . So the collection
{Xx}x∈S gives rise to an analytic family π : X −→ S, where X = {(t, x) ∈ X × S |
t �= x0, . . . , xn}. We consider a rank N vector bundle V X with an integrable
connection ∇X over X :

∇X : V X −→ V X ⊗ Ω1
X .

It induces a vector bundle H1 with a natural integrable connection ∇(GM) (called
Gauss-Manin connection) over S, each of whose fibers is the twisted de Rham
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cohomology on Xx. On the other hand, the Čech cohomology forms another
analytic vector bundle Ȟ1. We give N horizontal sections of Ȟ1 in terms of
Čech cocycles for a covering similar to the above-mentioned one and an explicit
description of the isomorphism between H1 and Ȟ1 in terms of an Euler-type
integral.

2. Twisted Poincaré lemma

For a compact Riemann surface X and an (n + 1)-tuple x = (x0, x1, . . . , xn) of
points on X , let Xx be the punctured Riemann surface Xx = X \ {x0, x1, . . . , xn}.
We consider a rank N vector bundle V with an (integrable) connection ∇ over Xx:

∇ : V −→ V ⊗ Ω1
Xx

.

Let L be the kernel of ∇, which is a local system, for ∇ is integrable. As is well
known, the integrability says that V (resp., V ⊗ Ω1

Xx
) is isomorphic to L ⊗ OXx

(resp., L ⊗ Ω1
Xx

) and that the following diagram is commutative:

(2.1)

V
Φ

∼=

∇

L ⊗C OXx

1⊗d

V ⊗OXx
Ω1

Xx

Φ

∼=
L ⊗C Ω1

Xx

where Φ−1(s ⊗ h) = sh. Using this diagram (of the method of variation of con-
stants), we prove the twisted Poincaré lemma.

THEOREM 2.1 (TWISTED POINCARÉ LEMMA)

Let U be an open set in Xx, and let o be a base point on U . Put [o, p] a path in U

connecting two points o and p.

(1) If U is simply connected, then the following holds. For η ∈ Γ(U, V ⊗ Ω1
Xx

),
there exists u ∈ Γ(U, V ) such that ∇u = η. Moreover, this u is given by the
following. We can take linearly independent N -sections {s1, . . . , sN } of L over U
and its dual basis {s∨

1 , . . . , s∨
N }; that is, s∨

i (sj) = δij , where s∨
i ∈ Γ(U, L ∨). Then

we have

(2.2) u(p) =
∑

i

si(p)
∫

[o,p]

(s∨
i ⊗ 1)

(
Φ(η)

)
,

and u is independent of the choices of si and [o, p].
(2) If π1(U,o) is isomorphic to the free group 〈σ〉 generated by one element

corresponding to a closed loop σ and the eigenvalues of its monodromy action Mσ

on the stalk L ∨
o do not contain 1, then the following holds. For η ∈ Γ(U, V ⊗ Ω1

Xx
),

there exists the unique section u ∈ Γ(U, V ) such that ∇u = η. Moreover, this u is
given by the following. We can take linearly independent N -germs {s1,o, . . . , sN,o}
of L over o and its dual basis {s∨

1,o, . . . , s
∨
N,o}. For a path γ in U with its initial
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point at o, we denote si,γ (resp., s∨
i,γ) the analytic continuation of si,o (resp., s∨

i,o)
along γ. Then we have

u(p) =
∑

i

si,[o,p](p)
(∫

[o,p]

(s∨
i,[o,p] ⊗ 1)

(
Φ(η)

)
(2.3)

+
∫

σ

(
(Mσ − id)−1s∨

i,σ ⊗ 1
)(

Φ(η)
))

,

where (Mσ − id)−1s∨
i,σ is the analytic continuation of the germ (Mσ − id)−1s∨

i,o

along σ, and u is independent of the choices of si,o, [o, p], and o.

Proof
The diagram (2.1) tells us that (2.2) or (2.3), if it is well defined, satisfies ∇u = η.
In the case when U is simply connected, the integral (2.2) is well defined. Thus,
we have the assertion (1). To prove assertion (2), we prove that u is well defined,
that is, that u(p) is determined independently of a choice of paths [o, p]. We take
another path [o, p]′. It is sufficient to prove that∑

i

si,[o,p]′

(∫
[o,p]′

(s∨
i,[o,p]′ ⊗ 1)

(
Φ(η)

)

+
∫

σ

(
(Mσ − id)−1s∨

i,σ ⊗ 1
)(

Φ(η)
))

−
∑

i

si,[o,p]

(∫
[o,p]

(s∨
i,[o,p] ⊗ 1)

(
Φ(η)

)

+
∫

σ

(
(Mσ − id)−1s∨

i,σ ⊗ 1
)(

Φ(η)
))

= 0

in the case when [o, p]−1 ◦ [o, p]′ is homotopic in U to σ. Applying s∨
j,[o,p]′ each

side of this formula, we prove(∫
[o,p]′

(s∨
j,[o,p]′ ⊗ 1)

(
Φ(η)

)
+

∫
σ

(
(Mσ − id)−1s∨

j,σ ⊗ 1
)(

Φ(η)
))

−
∑

i

s∨
j,[o,p]′ (si,[o,p])

(∫
[o,p]

(s∨
i,[o,p] ⊗ 1)

(
Φ(η)

)
(2.4)

+
∫

σ

(
(Mσ − id)−1s∨

i,σ ⊗ 1
)(

Φ(η)
))

= 0.

Note that s∨
i,[o,p]′ = Mσs∨

i,[o,p],
∑

i Mσs∨
j,γ(si,γ)s∨

i,γ = Mσs∨
j,γ , and Mσs∨

j,γ(si,γ)
does not depend on a path γ but on the germs sj,o and s∨

i,o. Then the left-
hand side of (2.4) equals(∫

[o,p]

(Mσs∨
j,[o,p] ⊗ 1)

(
Φ(η)

)

+
∫

σ

(s∨
j,σ ⊗ 1)

(
Φ(η)

)
+

∫
σ

(
(Mσ − id)−1s∨

j,σ ⊗ 1
)(

Φ(η)
))
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−
(∫

[o,p]

(Mσs∨
j,[o,p] ⊗ 1)

(
Φ(η)

)

+
∫

σ

(
(Mσ − id)−1Mσs∨

j,σ ⊗ 1
)(

Φ(η)
))

= 0.

The uniqueness of u follows from the fact Γ(U, L) = 0. We have thus proved the
theorem. �

REMARK 1

The above theorem implies that we have the following exact sequence:

0 −→ j∗ L −→ j∗ V ∇−→ j∗(V ⊗ Ω1
Xx

) −→ 0,

where j : Xx ↪→ X is the inclusion map.

3. Integrations over regularized paths

The integration (2.3) in Section 2 can be regarded as an integration over a reg-
ularized path, which is formulated by Aomoto [1] in the case rank L = 1. We
generalize it to the higher-rank case. (The special case of higher-rank local sys-
tems appears in the work of Mimachi, Ohara, and Yoshida [3].)

DEFINITION 3.1 (TWISTED CHAIN)

A twisted 1-chain is a 1-chain with its coefficients in L ∨, that is, a linear com-
bination of {γ ⊗ s∨

γ }γ , where γ is a singular 1-simplex (i.e., a path) and s∨
γ is a

local section of L ∨ on γ.

DEFINITION 3.2 (REGULARIZATION)

Let o, U , σ, Mσ be as in Theorem 2.1(2). Let γ be a path on U whose initial
point is o, and let s∨

γ be a section of L ∨ over γ. The regularization of γ ⊗ s∨
γ is

defined by

regU γ ⊗ s∨
γ := γ ⊗ s∨

γ + σ ⊗ (Mσ − id)−1s∨
σ ,

where s∨
σ,o = s∨

γ,o.

DEFINITION 3.3 (INTEGRATION OVER TWISTED 1-SIMPLEX)

Let γ be a path on an open set U of Xx. For η ∈ Γ(U, V ⊗ Ω1
Xx

), the integration
over γ ⊗ s∨

γ is defined by∫
γ⊗s∨

γ

s∨(η) :=
∫

γ

(s∨
γ ⊗ 1)

(
Φ(η)

)
,

where Φ is defined in (2.1).

Using this formulation, we have the following expression of the integration (2.3):

u(p) =
∑

i

si,[o,p](p)
∫

regU [o,p]⊗s∨
i,[o,p]

s∨
i (η).(3.1)
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4. Twisted Čech–de Rham isomorphism

Associated to a covering U = {Uμ}, the Čech complex with its coefficients in L
is given by

0 −→
⊕

μ

Γ(Uμ, L) ∂0

−→
⊕
μ<ν

Γ(Uμ ∩ Uν , L)

(4.1)
∂1

−→
⊕

μ<ν<λ

Γ(Uμ ∩ Uν ∩ Uλ, L) −→ · · · ,

where (
∂0(sμ)μ

)
μν

= sν |Uμ ∩Uν − sμ|Uμ ∩Uν ,(
∂1(sμν)μν

)
μνλ

= sνλ|Uμ ∩Uν ∩Uλ
− sμλ|Uμ ∩Uν ∩Uλ

+ sμν |Uμ ∩Uν ∩Uλ
.

We assume that the covering U satisfies the following conditions.

ASSUMPTION 4.1

(1) o ∈
⋂

μ Uμ, where o ∈ Xx is a base point.
(2) π1(Uμ, o) is isomorphic to the free group 〈σμ〉 generated by a single

element corresponding to a closed loop σμ.
(3) Uμ ∩ Uν is connected.

On the other hand, the twisted de Rham complex is defined by the following:

(4.2) 0 −→ Γ(Xx, V ) ∇−→ Γ(Xx, V ⊗ Ω1
Xx

) −→ 0.

The twisted Poincaré lemma (Theorem 2.1) tells us that the first twisted de
Rham cohomology H1

∇(Xx) (defined by the complex (4.2)) is isomorphic to the
first Čech cohomology H1(U, L) (defined by the complex (4.1)).

THEOREM 4.1

We assume that the eigenvalues of the monodromy action Mσμ on the stalk L ∨
o do

not contain 1. Let {s1,o, . . . , sN,o} be linearly independent N -germs of L over o,
and let {s∨

1,o, . . . , s
∨
N,o} be its dual basis. For a path γ with its initial point at o, let

s∨
i,γ be the analytic continuation of s∨

i,o along γ. We denote by si,μν the section
of L over Uμ ∩ Uν whose germ coincides with si,o. (In the case π1(Uμ ∩ Uν , o) �=
{1}, si,μν indicates zero.) Then, the morphism Ψ : H1

∇(Xx) −→ H1(U, L) given
by

Ψ(η) =
(

−
∑

i

si,μν

∫
regμν s∨

i

s∨
i (η)

)
μν

is well defined and an isomorphism, where

regμν s∨
i = σμ ⊗ (Mσμ − id)−1s∨

i,σμ

− σν ⊗ (Mσν − id)−1s∨
i,σν

.
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Proof
We have the following commutative diagram:

0 0

0 Γ(Xx, V ⊗ Ω1
Xx

)
⊕

μ Γ(Uμ, V ⊗ Ω1
Xx

)
∂0
1

Z1(U, V ⊗ Ω1
Xx

) 0

0 Γ(Xx, V )
ι ⊕

μ Γ(Uμ, V )
∂0
0

∇

Z1(U, V )

∇

0

⊕
μ Γ(Uμ, L)

ι′

Z1(U, L)

0 0

In this diagram, both of the two vertical sequences are exact due to the twisted
Poincaré lemma (Theorem 2.1), and both of the two horizontal sequences are
exact because Xx and Uμ0 ∩ Uμ1 ∩ · · · ∩ Uμk

are Stein (Cartan’s theorem B). Here
we have

H1
∇(Xx) ∼= Ker∂0

1/ Im ∇ ◦ ι,

H1(U, L) ∼= Ker ∇/ Im∂0
0 ◦ ι′,

and Ψ should be defined by ∂0
0 ◦ ∇−1. A standard argument by diagram chasing

tells us that Ψ is well defined and an isomorphism. For a V -valued 1-form η,
we calculate Ψ(η) explicitly by using formula (3.1) in the proof of the twisted
Poincaré lemma:

Ψ(η) = ∂0
0

(∑
i

si,[o,p](p)
∫

regUμ
[o,p]⊗s∨

i,[o,p]

s∨
i (η)

)
μ

=
(∑

i

si,[o,p](p)
∫

regUν
[o,p]⊗s∨

i,[o,p]

s∨
i (η)

−
∑

i

si,[o,p](p)
∫

regUμ
[o,p]⊗s∨

i,[o,p]

s∨
i (η)

)
μν

.

Note that [o, p] is on Uμ ∩ Uν . Thus si,[o,p](p) = si,μν(p), and we have

regUν
[o, p] ⊗ s∨

i,[o,p] − regUμ
[o, p] ⊗ s∨

i,[o,p] = − regμν s∨
i .

(In the case π1(Uμ ∩ Uν , o) �= {1}, the restriction of
∑

i si,[o,p](p)
∫

s∨
i (η) to Uμ ∩ Uν

vanishes.) We have thus proved the theorem. �
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REMARK 2

The integral
∫
regμν s∨

i
s∨

i (η) is a so-called Euler-type integral, that is, a pairing

between H1
∇(Xx) and H1(Xx, L) because regμν s∨

i can be thought of as a repre-
sentative of an element of H1(Xx, L ∨).

5. Explicit description of twisted Čech–de Rham isomorphism

In this section, we give a covering satisfying Assumption 4.1 explicitly, and we
take integration paths (twisted cycles) accordingly. Using integrations over these
paths, we describe the twisted Čech–de Rham isomorphism.

Let g be the genus of the compact Riemann surface X , and let γ1, . . . , γ2g be
the (ordinary) cycles on X whose ends are at the point x0, that is, the generators
of π1(X,x0). We assume that the complement of the γi’s is a simply connected
region Δ and contains x1, . . . , xn; Δ is identified with the interior of a convex 4g-
sided polygon D, and each side of it is identified with some γi. Fix a vertex x̃0 of
D. Let [x̃0, xi] be a segment connecting two points x̃0, xi. We assume that each
two of γ1, . . . , γ2g , [x̃0, x1], . . . , [x̃0, xn] intersect in X only at x0. Now we have
the open covering U = {Uμ}μ∈{γ1,...,γ2g,x1,...,xn } of Xx satisfying Assumption 4.1:

Uγi = X \
(⋃

j �=i

γj ∪
n⋃

k=1

[x̃0, xk]
)
,

Uxk
= X \

( 2g⋃
i=1

γi ∪
⋃
j �=k

[x̃0, xj ]
)
.

REMARK 3

Let U be the open set of Xx deprived of all γi’s and all [x̃0, xk]’s from X :

U = X \
( 2g⋃

j=1

γj ∪
n⋃

k=1

[x̃0, xk]
)
.

Each two of U intersect on U : Uμ ∩ Uν = U . We can take linearly independent
N sections s1, . . . , sN of L over U because it is simply connected.

We take a point o ∈ U and generators σμ of π1(Uμ, o): In the case μ = γi, σμ

is a loop transverse to γi; and in the case μ = xk, σμ is a loop surrounding the
point xk.

PROPOSITION 5.1

We assume that the eigenvalues of the monodromy action of σμ on the stalk Lo

do not contain 1. The first cohomology H1(U, L) of the Čech complex has a basis
formed by the N(n + 2g − 1)-cocycles eμ ⊗ sk (μ ∈ {γ1, . . . , γ2g, x1, . . . , xn−1},
k = 1, . . . ,N) defined by

eμ ⊗ sk := (e(μ)
νλ sk)νλ, e

(μ)
xnλ = −δμλ, e

(μ)
νλ = e

(μ)
xnλ − e(μ)

xnν .
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Proof
By Remark 3, an arbitrary cochain (sνλ)νλ can be expressed by such a form as
sνλ =

∑
k ak

νλsk, where ak
νλ ∈ C. Note that Γ(Uμ, L) = 0 because the eigenvalues

of the monodromy action of σμ do not contain 1 by the assumption. So H1(U, L)
coincides with cocycles Ker∂1. The cocycle condition is equivalent to ak

νλ −
ak

μλ + ak
μν = 0. Hence ak

νλ = ak
xnλ − ak

xnν , and (ak
νλ)νλ can be expressed by a

linear combination of {e
(μ)
νλ }μ, whence the assertion. �

Applying Theorem 4.1 for the covering given above, we obtain the following.

COROLLARY 5.1

We assume that the eigenvalues of the monodromy action Mσμ on the stalk L ∨
o

do not contain 1. Let {s1,o, . . . , sN,o} be the germs of {s1, . . . , sN } at o, and
let {s∨

1,o, . . . , s
∨
N,o} be its dual basis. For a path γ with its initial point at o,

let s∨
i,γ be the analytic continuation of s∨

i,o along γ. Then, the isomorphism
Ψ : H1

∇(Xx) −→ H1(U, L) is given by

Ψ(η) =
∑
μ,k

(∫
regxnμ s∨

k

s∨
k (η)

)
eμ ⊗ sk.

REMARK 4

This implies that {regxnμ s∨
k }μ,k forms a basis of H1(Xx, L ∨).

6. Relative twisted Čech–de Rham isomorphism

The punctured Riemann surfaces of the form Xx are parametrized by x. We
shall fix x0. Then x runs through the configuration space S of n-points on
X : S := X

n \
⋃

i �=j {xi = xj }. So the collection {Xx}x∈S forms an analytic family
π : X −→ S, where X = {(t, x) ∈ X × S | t �= x0, . . . , xn}. We consider a rank N

vector bundle VX with an integrable connection ∇X over X :

∇X : V X −→ V X ⊗ Ω1
X .

Let L X be the kernel of ∇X , which is a local system because ∇X is integrable.
It induces a vector bundle H1 over S, each of whose fibers is isomorphic to
H1

∇(Xx). Let DR•
∇ X /S

be the relative de Rham complex with the differential
∇X /S induced from the above connection ∇X :

0 −→ VX
∇ X /S−→ V X ⊗ Ω1

X /S −→ 0.

The vector bundle H1 is the first cohomology of Rπ∗DR•
∇ X /S

. Because π : X −→
S is Stein, we have the identification H1 ∼= π∗(V X ⊗ Ω1

X /S)/∇X /S(π∗ V X ), whose
sections are represented by VX -valued relative 1-forms.

The vector bundle H1 has a natural connection ∇GM (Gauss-Manin connec-
tion): for [η] ∈ H1 represented by a 1-form on X and a vector field v over S,
∇GM

v [η] := [∇ṽη], where ṽ is a lift of v to X and [•] indicates the element of H1

represented by a 1-form • on X .



202 Ko-Ki Ito

We have another vector bundle Ȟ1 corresponding to Čech cohomology. Let
L X /S be the kernel of ∇X /S : V X −→ V X ⊗ Ω1

X /S . The vector bundle Ȟ1 should
be defined by R1π∗ L X /S . By the projection formula, Ȟ1 is isomorphic to
R1π∗ L X ⊗CS

OS because L X /S is isomorphic to L X ⊗CS
π−1OS . We construct

and compute R1π∗ L X by means of Čech resolution.
We use the symbols x̃0, γi, Δ, and D, the same as in Section 5. Fix an

identification of Δ with the interior of D. For xi, xj ∈ D, we denote by θ(xi, xj)
the angle contained in D whose sides are [x̃0, xi] and [x̃0, xj ]. For I = (i1, . . . , in),
we take an open set VI := {θ(xi1 , xin) > θ(xi2 , xin) > · · · > θ(xin−1 , xin)} ⊂ S and
compute Γ(VI ,R

1π∗ L X ). We have the following Čech resolution:

(6.1) 0 −→ Γ(VI , π∗ L X ) −→
⊕

μ

Γ(U I
μ, L X ) ∂0

−→
⊕
μ≺ν

Γ(U I
μ ∩ U I

ν , L X ) −→ · · · ,

where μ, ν belong to an ordered set {γ1 ≺ · · · ≺ γ2g ≺ xi1 ≺ · · · ≺ xin } and

U I
γi

=
{

(t, x) ∈ X × VI

∣∣∣ t /∈
(⋃

j �=i

γj ∪
n⋃

k=1

[x̃0, xk]
)}

,

U I
xk

=
{

(t, x) ∈ X × VI

∣∣∣ t /∈
( 2g⋃

i=1

γi ∪
⋃
j �=k

[x̃0, xj ]
)}

.

Let U I be an open set given by

{
(t, x) ∈ X × V I

∣∣∣ t /∈
( 2g⋃

i=1

γj ∪
n⋃

k=1

[x̃0, xk]
)}

.

Note that U I
μ ∩ U I

ν coincides with U I .

LEMMA 6.1

Let o be a point in U I . The fundamental group π1(U I
μ , o) is a free group generated

by one element σμ, and U I is contractible.

Proof
We have the chain of smooth surjective morphisms

V
(1)
I ←− V

(2)
I ←− · · · ←− V

(n)
I = VI ←− U I

μ,

where V
(r)
I is the image of VI under the projection X

n −→ X
r
. Each fiber

of the above surjective morphisms is contractible except for the rightmost one.
The fiber of VI ←− U I

μ is homeomorphic to Uμ in Section 5. Thus π1(U I
μ , o) is

isomorphic to the fundamental group of Uμ, which is a free group generated by
one element. The fiber of VI ←− U I , the restriction of VI ←− U I

μ to U I , is also
contractible. Thus U I is contractible. �

Due to Lemma 6.1, we can take N (single-valued) sections sI
1, . . . , s

I
N of L X over

U I . Thus Γ(U I
μ ∩ U I

ν , L X ) is generated by sI
1, . . . , s

I
N . And we take the generators

σμ of π1(U I
μ, o). Now we have the following.
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PROPOSITION 6.1

We assume that the eigenvalues of the monodromy action of σμ ∈ π1(U I
μ, o) on

the stalk L X ,o do not contain 1. The first cohomology of the Čech complex cor-
responding to (6.1) has a basis consisting of the N(n + 2g − 1)-cocycles eI

μ ⊗ sI
k

(μ ∈ {γ1, . . . , γ2g, xi1 , . . . , xin−1 }, k = 1, . . . ,N) defined by

eI
μ ⊗ sI

k := (e(μ)
νλ sI

k)νλ, e
I,(μ)
λxin

= δμλ, e
I,(μ)
νλ = −e

I,(μ)
λxin

+ eI,(μ)
νxin

.

Note that we have the following commutative diagram:

V X
ΦX

∼=

∇

L X ⊗CX O X

1⊗d

V X ⊗O X Ω1
X /S

ΦX

∼=
L X ⊗CX Ω1

X /S

where Φ−1
X (s ⊗ h) = sh. Put L ∨

X := HomCX (L X ,CX ).

COROLLARY 6.1

We assume that the eigenvalues of the monodromy action Mσμ on the stalk L ∨
X ,o

do not contain 1. Let {sI
1,o, . . . , s

I
N,o} be the germs of {sI

1, . . . , s
I
N } at o, and let

{sI∨
1,o, . . . , s

I∨
N,o} be its dual basis. For a path γ with its initial point at o, let sI∨

i,γ be
the analytic continuation of sI∨

i,o along γ. Then, the isomorphism ΨX : H1 −→ Ȟ1

is given by

ΨX (η) =
∑
μ,k

(∫
regxin

μ sI∨
k

(sI∨
k ⊗ 1)

(
ΦX (η)

))
eI
μ ⊗ sI

k.

REMARK 5

This fact implies that solutions of the differential equations corresponding to a
Gauss-Manin connection, that is, the induced connection on relative de Rham
cohomology, have integral representations of Euler type. This conforms with
the following fact: De Rham cohomology classes are represented by differential
forms, which should be integrated; there is a nondegenerate paring between H1

and H1 :=
⋃

x∈S H1(Xx, L X |Xx) whose basis is given by the regularizations of
paths.
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