Twisted Poincaré lemma and twisted Čech–de Rham isomorphism in case dimension = 1

Ko-Ki Ito

Abstract For a compact Riemann surface, (n + 1)-tuple $x := (x_0, \ldots, x_n)$ of points on it, and a holomorphic vector bundle with an integrable connection on the open Riemann surface X_x deprived of (n + 1) points x_0, \ldots, x_n , let \mathcal{L} be the local system of horizontal sections of the connection. In this article, we give a suitable covering of X_x to calculate the Čech cohomology and describe the isomorphism between the cohomology and the *twisted* de Rham cohomology, which is the cohomology of the complex with the differentials given by the connection. This isomorphism is given by the integrations over Aomoto's *regularized* paths, the so-called *Euler type integrals*.

For the family $\{X_x\}_x$ parametrized by x, we give a variant of the isomorphism.

1. Introduction

For a compact Riemann surface \overline{X} of genus g and an (n+1)-tuple $x = (x_0, x_1, \ldots, x_n)$ of points on \overline{X} , let X_x be the punctured Riemann surface: $X_x = \overline{X} \setminus \{x_0, x_1, \ldots, x_n\}$. We consider a local system \mathcal{L} defined by horizontal sections of a holomorphic connection ∇ on a (not necessarily trivial) vector bundle \mathcal{V} over X_x :

$$\mathcal{L} := \operatorname{Ker}(\nabla : \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega^1_{X_m}).$$

In this article, we give an explicit description of the isomorphism between the Čech cohomology with its coefficients in \mathcal{L} (called *twisted* Čech cohomology) and the *twisted* de Rham cohomology, that is, the cohomology of the de Rham complex whose differential is given by ∇ . In the formula describing the isomorphism, the *Euler*-type integral, that is, the integration over an \mathcal{L}^{\vee} -valued cycle (called a *twisted* cycle), appears.

Our approach to getting such an explicit description is to refine Poincaré lemma, that is, to describe explicitly the solutions of the equation $\nabla u = \eta$. This

Kyoto Journal of Mathematics, Vol. 50, No. 1 (2010), 193-204

DOI 10.1215/0023608X-2009-009, © 2010 by Kyoto University

Received October 1, 2007. Revised June 29, 2009. Accepted October 7, 2009.

 $Mathematics\ Subject\ Classification:\ 33C60,\ 33C70,\ 55N05,\ 58A12.$

type of equation is locally reduced to a system of inhomogeneous linear differential equations

$$(d-A) \begin{bmatrix} g_1 \\ \vdots \\ g_N \end{bmatrix} = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_N \end{bmatrix}$$

for *n* 1-forms η_1, \ldots, η_N and an $(N \times N)$ -matrix *A* whose entries are 1-forms. As is well known in elementary calculus, it can be solved by the *method of variation of constants*, which is summarized as follows. The following diagram is commutative:

$$\mathcal{O}^{\oplus N} \xrightarrow{\Phi} \mathcal{L} \otimes_{\mathbb{C}} \mathcal{O}$$

$$\downarrow d-A \qquad \qquad \downarrow 1 \otimes d$$

$$\mathcal{O}^{\oplus N} \otimes_{\mathcal{O}} \Omega^{1} \xrightarrow{\Phi} \mathcal{L} \otimes_{\mathbb{C}} \Omega^{1}.$$

Thus, we have $d - A = \Phi^{-1} \circ (1 \otimes d) \circ \Phi$, and a solution is given by

(1.1)
$$\begin{bmatrix} g_1 \\ \vdots \\ g_N \end{bmatrix} = \Phi^{-1} \circ \int \circ \Phi \left(\begin{bmatrix} \eta_1 \\ \vdots \\ \eta_N \end{bmatrix} \right).$$

The isomorphism Φ is *locally* given by $\Phi(\varsigma_1 f_1 + \cdots + \varsigma_N f_N) = \varsigma_1 \otimes f_1 + \cdots + \varsigma_N \otimes f_N$, where $\{\varsigma_1, \ldots, \varsigma_N\}$ is a (local) basis of \mathcal{L} . The right-hand side of (1.1) actually makes sense, especially when it is considered on a domain homotopic to a punctured disk and each ς_i is *not* single valued. In such a situation, one can calculate the solution (1.1), which turns out to be *single* valued, using a carefully chosen integration path (the so-called *regularized paths* by Aomoto [1]). These are the keystones of our desired description of twisted Čech-de Rham isomorphism.

By the above-mentioned Poincaré lemma, it is sufficient, in order for the Čech cohomology to be calculated, that we take a covering $\{U_{\mu}\}$ such that each U_{μ} is homotopic to a punctured disk. We give such a covering and a basis of the Čech cohomology for this covering.

A variation in a relative case is also treated. The punctured Riemann surfaces of the form X_x are parametrized by x. We fix such an x_0 once and for all. Then x runs through the configuration space S of n-points on \overline{X} . So the collection $\{X_x\}_{x\in S}$ gives rise to an analytic family $\pi: \mathcal{X} \longrightarrow S$, where $\mathcal{X} = \{(t, x) \in \overline{X} \times S \mid t \neq x_0, \ldots, x_n\}$. We consider a rank N vector bundle $\mathcal{V}_{\mathcal{X}}$ with an integrable connection $\nabla_{\mathcal{X}}$ over \mathcal{X} :

$$\nabla_{\mathcal{X}}: \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega^{1}_{\mathcal{X}}.$$

It induces a vector bundle \mathcal{H}^1 with a natural integrable connection $\nabla^{(GM)}$ (called *Gauss-Manin connection*) over S, each of whose fibers is the twisted de Rham

cohomology on X_x . On the other hand, the Čech cohomology forms another analytic vector bundle $\check{\mathcal{H}}^1$. We give N horizontal sections of $\check{\mathcal{H}}^1$ in terms of Čech cocycles for a covering similar to the above-mentioned one and an explicit description of the isomorphism between \mathcal{H}^1 and $\check{\mathcal{H}}^1$ in terms of an Euler-type integral.

2. Twisted Poincaré lemma

For a compact Riemann surface \overline{X} and an (n + 1)-tuple $x = (x_0, x_1, \dots, x_n)$ of points on \overline{X} , let X_x be the punctured Riemann surface $X_x = \overline{X} \setminus \{x_0, x_1, \dots, x_n\}$. We consider a rank N vector bundle \mathcal{V} with an (integrable) connection ∇ over X_x :

$$\nabla: \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega^1_{X_x}.$$

Let \mathcal{L} be the kernel of ∇ , which is a local system, for ∇ is integrable. As is well known, the integrability says that \mathcal{V} (resp., $\mathcal{V} \otimes \Omega^1_{X_x}$) is isomorphic to $\mathcal{L} \otimes \mathcal{O}_{X_x}$ (resp., $\mathcal{L} \otimes \Omega^1_{X_x}$) and that the following diagram is commutative:

where $\Phi^{-1}(s \otimes h) = sh$. Using this diagram (of the method of variation of constants), we prove the twisted Poincaré lemma.

THEOREM 2.1 (TWISTED POINCARÉ LEMMA)

Let U be an open set in X_x , and let o be a base point on U. Put [o, p] a path in U connecting two points o and p.

(1) If U is simply connected, then the following holds. For $\eta \in \Gamma(U, \mathcal{V} \otimes \Omega^1_{X_x})$, there exists $u \in \Gamma(U, \mathcal{V})$ such that $\nabla u = \eta$. Moreover, this u is given by the following. We can take linearly independent N-sections $\{s_1, \ldots, s_N\}$ of \mathcal{L} over U and its dual basis $\{s_1^{\vee}, \ldots, s_N^{\vee}\}$; that is, $s_i^{\vee}(s_j) = \delta_{ij}$, where $s_i^{\vee} \in \Gamma(U, \mathcal{L}^{\vee})$. Then we have

(2.2)
$$u(p) = \sum_{i} s_i(p) \int_{[o,p]} (s_i^{\vee} \otimes 1) (\Phi(\eta)),$$

and u is independent of the choices of s_i and [o, p].

(2) If $\pi_1(U,o)$ is isomorphic to the free group $\langle \sigma \rangle$ generated by one element corresponding to a closed loop σ and the eigenvalues of its monodromy action M_{σ} on the stalk \mathcal{L}_{o}^{\vee} do not contain 1, then the following holds. For $\eta \in \Gamma(U, \mathcal{V} \otimes \Omega_{X_x}^1)$, there exists the unique section $u \in \Gamma(U, \mathcal{V})$ such that $\nabla u = \eta$. Moreover, this u is given by the following. We can take linearly independent N-germs $\{s_{1,o}, \ldots, s_{N,o}\}$ of \mathcal{L} over o and its dual basis $\{s_{1,o}^{\vee}, \ldots, s_{N,o}^{\vee}\}$. For a path γ in U with its initial

point at o, we denote $s_{i,\gamma}$ (resp., $s_{i,\gamma}^{\vee}$) the analytic continuation of $s_{i,o}$ (resp., $s_{i,o}^{\vee}$) along γ . Then we have

(2.3)
$$u(p) = \sum_{i} s_{i,[o,p]}(p) \Big(\int_{[o,p]} (s_{i,[o,p]}^{\vee} \otimes 1) \big(\Phi(\eta) \big) \\ + \int_{\sigma} \big((M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee} \otimes 1 \big) \big(\Phi(\eta) \big) \Big),$$

where $(M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee}$ is the analytic continuation of the germ $(M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee}$ along σ , and u is independent of the choices of $s_{i,\sigma}$, [o,p], and o.

Proof

The diagram (2.1) tells us that (2.2) or (2.3), if it is well defined, satisfies $\nabla u = \eta$. In the case when U is simply connected, the integral (2.2) is well defined. Thus, we have the assertion (1). To prove assertion (2), we prove that u is well defined, that is, that u(p) is determined independently of a choice of paths [o, p]. We take another path [o, p]'. It is sufficient to prove that

$$\sum_{i} s_{i,[o,p]'} \left(\int_{[o,p]'} (s_{i,[o,p]'}^{\vee} \otimes 1) (\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee} \otimes 1) (\Phi(\eta)) \right) \\ - \sum_{i} s_{i,[o,p]} \left(\int_{[o,p]} (s_{i,[o,p]}^{\vee} \otimes 1) (\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee} \otimes 1) (\Phi(\eta)) \right) = 0$$

in the case when $[o,p]^{-1} \circ [o,p]'$ is homotopic in U to σ . Applying $s_{j,[o,p]'}^{\vee}$ each side of this formula, we prove

$$(2.4) \qquad \left(\int_{[o,p]'} (s_{j,[o,p]'}^{\vee} \otimes 1)(\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{j,\sigma}^{\vee} \otimes 1)(\Phi(\eta))\right)$$
$$(2.4) \qquad -\sum_{i} s_{j,[o,p]'}^{\vee} (s_{i,[o,p]}) \left(\int_{[o,p]} (s_{i,[o,p]}^{\vee} \otimes 1)(\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{i,\sigma}^{\vee} \otimes 1)(\Phi(\eta))\right) = 0.$$

Note that $s_{i,[o,p]'}^{\vee} = M_{\sigma}s_{i,[o,p]}^{\vee}$, $\sum_{i} M_{\sigma}s_{j,\gamma}^{\vee}(s_{i,\gamma})s_{i,\gamma}^{\vee} = M_{\sigma}s_{j,\gamma}^{\vee}$, and $M_{\sigma}s_{j,\gamma}^{\vee}(s_{i,\gamma})$ does not depend on a path γ but on the germs $s_{j,o}$ and $s_{i,o}^{\vee}$. Then the left-hand side of (2.4) equals

$$\left(\int_{[o,p]} (M_{\sigma} s_{j,[o,p]}^{\vee} \otimes 1) (\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{j,\sigma}^{\vee} \otimes 1) (\Phi(\eta)) \right)$$
$$+ \int_{\sigma} (s_{j,\sigma}^{\vee} \otimes 1) (\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} s_{j,\sigma}^{\vee} \otimes 1) (\Phi(\eta))$$

$$-\left(\int_{[o,p]} (M_{\sigma}s_{j,[o,p]}^{\vee} \otimes 1) (\Phi(\eta)) + \int_{\sigma} ((M_{\sigma} - \mathrm{id})^{-1} M_{\sigma}s_{j,\sigma}^{\vee} \otimes 1) (\Phi(\eta)) \right) = 0.$$

The uniqueness of u follows from the fact $\Gamma(U, \mathcal{L}) = 0$. We have thus proved the theorem.

REMARK 1

The above theorem implies that we have the following exact sequence:

$$0 \longrightarrow j_* \mathcal{L} \longrightarrow j_* \mathcal{V} \xrightarrow{\nabla} j_* (\mathcal{V} \otimes \Omega^1_{X_x}) \longrightarrow 0,$$

where $j: X_x \hookrightarrow \overline{X}$ is the inclusion map.

3. Integrations over regularized paths

The integration (2.3) in Section 2 can be regarded as an integration over a *reg-ularized* path, which is formulated by Aomoto [1] in the case rank $\mathcal{L} = 1$. We generalize it to the higher-rank case. (The special case of higher-rank local systems appears in the work of Mimachi, Ohara, and Yoshida [3].)

DEFINITION 3.1 (TWISTED CHAIN)

A twisted 1-chain is a 1-chain with its coefficients in \mathcal{L}^{\vee} , that is, a linear combination of $\{\gamma \otimes s_{\gamma}^{\vee}\}_{\gamma}$, where γ is a singular 1-simplex (i.e., a path) and s_{γ}^{\vee} is a local section of \mathcal{L}^{\vee} on γ .

DEFINITION 3.2 (REGULARIZATION)

Let o, U, σ, M_{σ} be as in Theorem 2.1(2). Let γ be a path on U whose initial point is o, and let s_{γ}^{\vee} be a section of \mathcal{L}^{\vee} over γ . The regularization of $\gamma \otimes s_{\gamma}^{\vee}$ is defined by

$$\operatorname{reg}_U \gamma \otimes s_{\gamma}^{\vee} := \gamma \otimes s_{\gamma}^{\vee} + \sigma \otimes (M_{\sigma} - \operatorname{id})^{-1} s_{\sigma}^{\vee},$$

where $s_{\sigma,o}^{\vee} = s_{\gamma,o}^{\vee}$.

DEFINITION 3.3 (INTEGRATION OVER TWISTED 1-SIMPLEX)

Let γ be a path on an open set U of X_x . For $\eta \in \Gamma(U, \mathcal{V} \otimes \Omega^1_{X_x})$, the integration over $\gamma \otimes s_{\gamma}^{\vee}$ is defined by

$$\int_{\gamma \otimes s_{\gamma}^{\vee}} s^{\vee}(\eta) := \int_{\gamma} (s_{\gamma}^{\vee} \otimes 1) \big(\Phi(\eta) \big),$$

where Φ is defined in (2.1).

Using this formulation, we have the following expression of the integration (2.3):

(3.1)
$$u(p) = \sum_{i} s_{i,[o,p]}(p) \int_{\operatorname{reg}_{U}[o,p] \otimes s_{i,[o,p]}^{\vee}} s_{i}^{\vee}(\eta).$$

4. Twisted Čech-de Rham isomorphism

Associated to a covering $\mathfrak{U} = \{U_{\mu}\}$, the Čech complex with its coefficients in \mathcal{L} is given by

(4.1)
$$0 \longrightarrow \bigoplus_{\mu} \Gamma(U_{\mu}, \mathcal{L}) \xrightarrow{\partial^{0}} \bigoplus_{\mu < \nu} \Gamma(U_{\mu} \cap U_{\nu}, \mathcal{L})$$
$$\xrightarrow{\partial^{1}} \bigoplus_{\mu < \nu < \lambda} \Gamma(U_{\mu} \cap U_{\nu} \cap U_{\lambda}, \mathcal{L}) \longrightarrow \cdots,$$

where

$$\left(\partial^0(s_\mu)_\mu\right)_{\mu\nu} = s_\nu|_{U_\mu\cap U_\nu} - s_\mu|_{U_\mu\cap U_\nu}, \left(\partial^1(s_{\mu\nu})_{\mu\nu}\right)_{\mu\nu\lambda} = s_{\nu\lambda}|_{U_\mu\cap U_\nu\cap U_\lambda} - s_{\mu\lambda}|_{U_\mu\cap U_\nu\cap U_\lambda} + s_{\mu\nu}|_{U_\mu\cap U_\nu\cap U_\lambda}.$$

We assume that the covering \mathfrak{U} satisfies the following conditions.

ASSUMPTION 4.1

(1) $o \in \bigcap_{\mu} U_{\mu}$, where $o \in X_x$ is a base point.

(2) $\pi_1(U_\mu, o)$ is isomorphic to the free group $\langle \sigma_\mu \rangle$ generated by a single element corresponding to a closed loop σ_μ .

(3) $U_{\mu} \cap U_{\nu}$ is connected.

On the other hand, the *twisted de Rham complex* is defined by the following:

(4.2)
$$0 \longrightarrow \Gamma(X_x, \mathcal{V}) \xrightarrow{\nabla} \Gamma(X_x, \mathcal{V} \otimes \Omega^1_{X_x}) \longrightarrow 0.$$

The twisted Poincaré lemma (Theorem 2.1) tells us that the first twisted de Rham cohomology $H^1_{\nabla}(X_x)$ (defined by the complex (4.2)) is isomorphic to the first Čech cohomology $H^1(\mathfrak{U}, \mathcal{L})$ (defined by the complex (4.1)).

THEOREM 4.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk \mathcal{L}_{o}^{\vee} do not contain 1. Let $\{s_{1,o}, \ldots, s_{N,o}\}$ be linearly independent N-germs of \mathcal{L} over o, and let $\{s_{1,o}^{\vee}, \ldots, s_{N,o}^{\vee}\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i,\gamma}^{\vee}$ be the analytic continuation of $s_{i,o}^{\vee}$ along γ . We denote by $s_{i,\mu\nu}$ the section of \mathcal{L} over $U_{\mu} \cap U_{\nu}$ whose germ coincides with $s_{i,o}$. (In the case $\pi_1(U_{\mu} \cap U_{\nu}, o) \neq$ $\{1\}, s_{i,\mu\nu}$ indicates zero.) Then, the morphism $\Psi : H^1_{\nabla}(X_x) \longrightarrow H^1(\mathfrak{U}, \mathcal{L})$ given by

$$\Psi(\eta) = \left(-\sum_{i} s_{i,\mu\nu} \int_{\operatorname{reg}_{\mu\nu} s_{i}^{\vee}} s_{i}^{\vee}(\eta)\right)_{\mu\nu}$$

is well defined and an isomorphism, where

$$\operatorname{reg}_{\mu\nu} s_i^{\vee} = \sigma_{\mu} \otimes (M_{\sigma_{\mu}} - \operatorname{id})^{-1} s_{i,\sigma_{\mu}}^{\vee} - \sigma_{\nu} \otimes (M_{\sigma_{\nu}} - \operatorname{id})^{-1} s_{i,\sigma_{\nu}}^{\vee}.$$

198

Proof

We have the following commutative diagram:

In this diagram, both of the two vertical sequences are exact due to the twisted Poincaré lemma (Theorem 2.1), and both of the two horizontal sequences are exact because X_x and $U_{\mu_0} \cap U_{\mu_1} \cap \cdots \cap U_{\mu_k}$ are Stein (Cartan's theorem B). Here we have

$$H^{1}_{\nabla}(X_{x}) \cong \operatorname{Ker} \partial_{1}^{0} / \operatorname{Im} \nabla \circ \iota,$$
$$H^{1}(\mathfrak{U}, \mathcal{L}) \cong \operatorname{Ker} \nabla / \operatorname{Im} \partial_{0}^{0} \circ \iota',$$

and Ψ should be defined by $\partial_0^0 \circ \nabla^{-1}$. A standard argument by diagram chasing tells us that Ψ is well defined and an isomorphism. For a \mathcal{V} -valued 1-form η , we calculate $\Psi(\eta)$ explicitly by using formula (3.1) in the proof of the twisted Poincaré lemma:

$$\begin{split} \Psi(\eta) &= \partial_0^0 \left(\sum_i s_{i,[o,p]}(p) \int_{\operatorname{reg}_{U_\mu}[o,p] \otimes s_{i,[o,p]}^{\vee}} s_i^{\vee}(\eta) \right)_\mu \\ &= \left(\sum_i s_{i,[o,p]}(p) \int_{\operatorname{reg}_{U_\nu}[o,p] \otimes s_{i,[o,p]}^{\vee}} s_i^{\vee}(\eta) \right)_{\mu\nu} \\ &- \sum_i s_{i,[o,p]}(p) \int_{\operatorname{reg}_{U_\mu}[o,p] \otimes s_{i,[o,p]}^{\vee}} s_i^{\vee}(\eta) \right)_{\mu\nu} \end{split}$$

Note that [o, p] is on $U_{\mu} \cap U_{\nu}$. Thus $s_{i,[o,p]}(p) = s_{i,\mu\nu}(p)$, and we have

$$\operatorname{reg}_{U_{\nu}}[o,p] \otimes s_{i,[o,p]}^{\vee} - \operatorname{reg}_{U_{\mu}}[o,p] \otimes s_{i,[o,p]}^{\vee} = -\operatorname{reg}_{\mu\nu} s_{i}^{\vee}.$$

(In the case $\pi_1(U_{\mu} \cap U_{\nu}, o) \neq \{1\}$, the restriction of $\sum_i s_{i,[o,p]}(p) \int s_i^{\vee}(\eta)$ to $U_{\mu} \cap U_{\nu}$ vanishes.) We have thus proved the theorem.

REMARK 2

The integral $\int_{\operatorname{reg}_{\mu\nu} s_i^{\vee}} s_i^{\vee}(\eta)$ is a so-called *Euler-type integral*, that is, a pairing between $H^1_{\nabla}(X_x)$ and $H_1(X_x, \mathcal{L})$ because $\operatorname{reg}_{\mu\nu} s_i^{\vee}$ can be thought of as a representative of an element of $H_1(X_x, \mathcal{L}^{\vee})$.

5. Explicit description of twisted Čech-de Rham isomorphism

In this section, we give a covering satisfying Assumption 4.1 explicitly, and we take integration paths (twisted *cycles*) accordingly. Using integrations over these paths, we describe the twisted Čech–de Rham isomorphism.

Let g be the genus of the compact Riemann surface \overline{X} , and let $\gamma_1, \ldots, \gamma_{2g}$ be the (ordinary) cycles on \overline{X} whose ends are at the point x_0 , that is, the generators of $\pi_1(\overline{X}, x_0)$. We assume that the complement of the γ_i 's is a simply connected region Δ and contains x_1, \ldots, x_n ; Δ is identified with the interior of a convex 4gsided polygon D, and each side of it is identified with some γ_i . Fix a vertex $\widetilde{x_0}$ of D. Let $[\widetilde{x_0}, x_i]$ be a segment connecting two points $\widetilde{x_0}, x_i$. We assume that each two of $\gamma_1, \ldots, \gamma_{2g}, [\widetilde{x_0}, x_1], \ldots, [\widetilde{x_0}, x_n]$ intersect in \overline{X} only at x_0 . Now we have the open covering $\mathfrak{U} = \{U_\mu\}_{\mu \in \{\gamma_1, \ldots, \gamma_{2g}, x_1, \ldots, x_n\}}$ of X_x satisfying Assumption 4.1:

$$U_{\gamma_i} = \overline{X} \setminus \left(\bigcup_{j \neq i} \gamma_j \cup \bigcup_{k=1}^n [\widetilde{x_0}, x_k] \right),$$
$$U_{x_k} = \overline{X} \setminus \left(\bigcup_{i=1}^{2g} \gamma_i \cup \bigcup_{j \neq k} [\widetilde{x_0}, x_j] \right).$$

REMARK 3

Let U be the open set of X_x deprived of all γ_i 's and all $[\widetilde{x_0}, x_k]$'s from \overline{X} :

$$U = \overline{X} \setminus \left(\bigcup_{j=1}^{2g} \gamma_j \cup \bigcup_{k=1}^n [\widetilde{x_0}, x_k] \right).$$

Each two of \mathfrak{U} intersect on $U: U_{\mu} \cap U_{\nu} = U$. We can take linearly independent N sections s_1, \ldots, s_N of \mathcal{L} over U because it is simply connected.

We take a point $o \in U$ and generators σ_{μ} of $\pi_1(U_{\mu}, o)$: In the case $\mu = \gamma_i$, σ_{μ} is a loop transverse to γ_i ; and in the case $\mu = x_k$, σ_{μ} is a loop surrounding the point x_k .

PROPOSITION 5.1

We assume that the eigenvalues of the monodromy action of σ_{μ} on the stalk \mathcal{L}_{o} do not contain 1. The first cohomology $H^{1}(\mathfrak{U}, \mathcal{L})$ of the Čech complex has a basis formed by the N(n + 2g - 1)-cocycles $e_{\mu} \otimes s_{k}$ ($\mu \in \{\gamma_{1}, \ldots, \gamma_{2g}, x_{1}, \ldots, x_{n-1}\}$, $k = 1, \ldots, N$) defined by

$$e_{\mu}\otimes s_k:=(e_{\nu\lambda}^{(\mu)}s_k)_{\nu\lambda},\quad e_{x_n\lambda}^{(\mu)}=-\delta_{\mu\lambda}, e_{\nu\lambda}^{(\mu)}=e_{x_n\lambda}^{(\mu)}-e_{x_n\nu}^{(\mu)}.$$

Proof

By Remark 3, an arbitrary cochain $(s_{\nu\lambda})_{\nu\lambda}$ can be expressed by such a form as $s_{\nu\lambda} = \sum_k a_{\nu\lambda}^k s_k$, where $a_{\nu\lambda}^k \in \mathbb{C}$. Note that $\Gamma(U_{\mu}, \mathcal{L}) = 0$ because the eigenvalues of the monodromy action of σ_{μ} do not contain 1 by the assumption. So $H^1(\mathfrak{U}, \mathcal{L})$ coincides with cocycles Ker ∂^1 . The cocycle condition is equivalent to $a_{\nu\lambda}^k - a_{\mu\lambda}^k + a_{\mu\nu}^k = 0$. Hence $a_{\nu\lambda}^k = a_{x_n\lambda}^k - a_{x_n\nu}^k$, and $(a_{\nu\lambda}^k)_{\nu\lambda}$ can be expressed by a linear combination of $\{e_{\nu\lambda}^{(\mu)}\}_{\mu}$, whence the assertion.

Applying Theorem 4.1 for the covering given above, we obtain the following.

COROLLARY 5.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk \mathcal{L}_{o}^{\vee} do not contain 1. Let $\{s_{1,o}, \ldots, s_{N,o}\}$ be the germs of $\{s_1, \ldots, s_N\}$ at o, and let $\{s_{1,o}^{\vee}, \ldots, s_{N,o}^{\vee}\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i,\gamma}^{\vee}$ be the analytic continuation of $s_{i,o}^{\vee}$ along γ . Then, the isomorphism $\Psi: H_{\nabla}^{\vee}(X_x) \longrightarrow H^1(\mathfrak{U}, \mathcal{L})$ is given by

$$\Psi(\eta) = \sum_{\mu,k} \left(\int_{\operatorname{reg}_{x_n\mu} s_k^{\vee}} s_k^{\vee}(\eta) \right) e_{\mu} \otimes s_k.$$

REMARK 4

This implies that $\{\operatorname{reg}_{x_n\mu} s_k^{\vee}\}_{\mu,k}$ forms a basis of $H_1(X_x, \mathcal{L}^{\vee})$.

6. Relative twisted Čech-de Rham isomorphism

The punctured Riemann surfaces of the form X_x are parametrized by x. We shall fix x_0 . Then x runs through the configuration space S of n-points on $\overline{X}: S := \overline{X}^n \setminus \bigcup_{i \neq j} \{x_i = x_j\}$. So the collection $\{X_x\}_{x \in S}$ forms an analytic family $\pi: \mathcal{X} \longrightarrow S$, where $\mathcal{X} = \{(t, x) \in \overline{X} \times S \mid t \neq x_0, \ldots, x_n\}$. We consider a rank N vector bundle $\mathcal{V}_{\mathcal{X}}$ with an integrable connection $\nabla_{\mathcal{X}}$ over \mathcal{X} :

$$\nabla_{\mathcal{X}}: \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega^{1}_{\mathcal{X}}.$$

Let $\mathcal{L}_{\mathcal{X}}$ be the kernel of $\nabla_{\mathcal{X}}$, which is a local system because $\nabla_{\mathcal{X}}$ is integrable. It induces a vector bundle \mathcal{H}^1 over S, each of whose fibers is isomorphic to $H^1_{\nabla}(X_x)$. Let $DR^{\bullet}_{\nabla_{\mathcal{X}/S}}$ be the relative de Rham complex with the differential $\nabla_{\mathcal{X}/S}$ induced from the above connection $\nabla_{\mathcal{X}}$:

$$0 \longrightarrow \mathcal{V}_{\mathcal{X}} \stackrel{\nabla_{\mathcal{X}/S}}{\longrightarrow} \mathcal{V}_{\mathcal{X}} \otimes \Omega^{1}_{\mathcal{X}/S} \longrightarrow 0.$$

The vector bundle \mathcal{H}^1 is the first cohomology of $\mathbb{R}\pi_*DR^{\bullet}_{\nabla_{\mathcal{X}/S}}$. Because $\pi: \mathcal{X} \longrightarrow S$ is Stein, we have the identification $\mathcal{H}^1 \cong \pi_*(\mathcal{V}_{\mathcal{X}} \otimes \Omega^1_{\mathcal{X}/S})/\nabla_{\mathcal{X}/S}(\pi_*\mathcal{V}_{\mathcal{X}})$, whose sections are represented by $\mathcal{V}_{\mathcal{X}}$ -valued relative 1-forms.

The vector bundle \mathcal{H}^1 has a natural connection ∇^{GM} (*Gauss-Manin connection*): for $[\eta] \in \mathcal{H}^1$ represented by a 1-form on \mathcal{X} and a vector field v over S, $\nabla^{\text{GM}}_v[\eta] := [\nabla_{\tilde{v}} \eta]$, where \tilde{v} is a lift of v to \mathcal{X} and $[\bullet]$ indicates the element of \mathcal{H}^1 represented by a 1-form \bullet on \mathcal{X} .

We have another vector bundle $\check{\mathcal{H}}^1$ corresponding to Čech cohomology. Let $\mathcal{L}_{\mathcal{X}/S}$ be the kernel of $\nabla_{\mathcal{X}/S} : \mathcal{V}_{\mathcal{X}} \longrightarrow \mathcal{V}_{\mathcal{X}} \otimes \Omega^1_{\mathcal{X}/S}$. The vector bundle $\check{\mathcal{H}}^1$ should be defined by $R^1\pi_*\mathcal{L}_{\mathcal{X}/S}$. By the projection formula, $\check{\mathcal{H}}^1$ is isomorphic to $R^1\pi_*\mathcal{L}_{\mathcal{X}} \otimes_{\mathbb{C}_S} \mathcal{O}_S$ because $\mathcal{L}_{\mathcal{X}/S}$ is isomorphic to $\mathcal{L}_{\mathcal{X}} \otimes_{\mathbb{C}_S} \pi^{-1}\mathcal{O}_S$. We construct and compute $R^1\pi_*\mathcal{L}_{\mathcal{X}}$ by means of Čech resolution.

We use the symbols $\widetilde{x_0}$, γ_i , Δ , and D, the same as in Section 5. Fix an identification of Δ with the interior of D. For $x_i, x_j \in D$, we denote by $\theta(x_i, x_j)$ the angle contained in D whose sides are $[\widetilde{x_0}, x_i]$ and $[\widetilde{x_0}, x_j]$. For $I = (i_1, \ldots, i_n)$, we take an open set $V_I := \{\theta(x_{i_1}, x_{i_n}) > \theta(x_{i_2}, x_{i_n}) > \cdots > \theta(x_{i_{n-1}}, x_{i_n})\} \subset S$ and compute $\Gamma(V_I, R^1\pi_*\mathcal{L}_{\mathcal{X}})$. We have the following Čech resolution:

(6.1)
$$0 \longrightarrow \Gamma(V_I, \pi_* \mathcal{L}_{\mathcal{X}}) \longrightarrow \bigoplus_{\mu} \Gamma(U^I_{\mu}, \mathcal{L}_{\mathcal{X}}) \xrightarrow{\partial^0} \bigoplus_{\mu \prec \nu} \Gamma(U^I_{\mu} \cap U^I_{\nu}, \mathcal{L}_{\mathcal{X}}) \longrightarrow \cdots,$$

where μ, ν belong to an ordered set $\{\gamma_1 \prec \cdots \prec \gamma_{2g} \prec x_{i_1} \prec \cdots \prec x_{i_n}\}$ and

$$U_{\gamma_i}^{I} = \left\{ (t, x) \in \overline{X} \times V_I \ \middle| \ t \notin \left(\bigcup_{j \neq i} \gamma_j \cup \bigcup_{k=1}^{n} [\widetilde{x_0}, x_k] \right) \right\},\$$
$$U_{x_k}^{I} = \left\{ (t, x) \in \overline{X} \times V_I \ \middle| \ t \notin \left(\bigcup_{i=1}^{2g} \gamma_i \cup \bigcup_{j \neq k} [\widetilde{x_0}, x_j] \right) \right\}.$$

Let U^I be an open set given by

$$\Big\{(t,x)\in \overline{X}\times V^I \ \Big| \ t\notin \Big(\bigcup_{i=1}^{2g}\gamma_j\cup \bigcup_{k=1}^n [\widetilde{x_0},x_k]\Big)\Big\}.$$

Note that $U^I_{\mu} \cap U^I_{\nu}$ coincides with U^I .

LEMMA 6.1

Let o be a point in U^I . The fundamental group $\pi_1(U^I_\mu, o)$ is a free group generated by one element σ_μ , and U^I is contractible.

Proof

We have the chain of smooth surjective morphisms

$$V_I^{(1)} \longleftarrow V_I^{(2)} \longleftarrow \cdots \longleftarrow V_I^{(n)} = V_I \longleftarrow U_{\mu}^I,$$

where $V_I^{(r)}$ is the image of V_I under the projection $\overline{X}^n \longrightarrow \overline{X}^r$. Each fiber of the above surjective morphisms is contractible except for the rightmost one. The fiber of $V_I \longleftarrow U_{\mu}^I$ is homeomorphic to U_{μ} in Section 5. Thus $\pi_1(U_{\mu}^I, o)$ is isomorphic to the fundamental group of U_{μ} , which is a free group generated by one element. The fiber of $V_I \longleftarrow U^I$, the restriction of $V_I \longleftarrow U^I_{\mu}$ to U^I , is also contractible. Thus U^I is contractible.

Due to Lemma 6.1, we can take N (single-valued) sections s_1^I, \ldots, s_N^I of $\mathcal{L}_{\mathcal{X}}$ over U^I . Thus $\Gamma(U^I_{\mu} \cap U^I_{\nu}, \mathcal{L}_{\mathcal{X}})$ is generated by s_1^I, \ldots, s_N^I . And we take the generators σ_{μ} of $\pi_1(U^I_{\mu}, o)$. Now we have the following.

PROPOSITION 6.1

We assume that the eigenvalues of the monodromy action of $\sigma_{\mu} \in \pi_1(U_{\mu}^I, o)$ on the stalk $\mathcal{L}_{\mathcal{X},o}$ do not contain 1. The first cohomology of the Čech complex corresponding to (6.1) has a basis consisting of the N(n+2g-1)-cocycles $e_{\mu}^I \otimes s_k^I$ $(\mu \in \{\gamma_1, \ldots, \gamma_{2g}, x_{i_1}, \ldots, x_{i_{n-1}}\}, k = 1, \ldots, N)$ defined by

$$e^{I}_{\mu} \otimes s^{I}_{k} := (e^{(\mu)}_{\nu\lambda} s^{I}_{k})_{\nu\lambda}, \quad e^{I,(\mu)}_{\lambda x_{i_{n}}} = \delta_{\mu\lambda}, e^{I,(\mu)}_{\nu\lambda} = -e^{I,(\mu)}_{\lambda x_{i_{n}}} + e^{I,(\mu)}_{\nu x_{i_{n}}}.$$

Note that we have the following commutative diagram:

where $\Phi_{\mathcal{X}}^{-1}(s \otimes h) = sh$. Put $\mathcal{L}_{\mathcal{X}}^{\vee} := \mathcal{H}om_{\mathbb{C}_{\mathcal{X}}}(\mathcal{L}_{\mathcal{X}}, \mathbb{C}_{\mathcal{X}}).$

COROLLARY 6.1

We assume that the eigenvalues of the monodromy action $M_{\sigma_{\mu}}$ on the stalk $\mathcal{L}_{\chi,o}^{\vee}$ do not contain 1. Let $\{s_{1,o}^{I},\ldots,s_{N,o}^{I}\}$ be the germs of $\{s_{1}^{I},\ldots,s_{N}^{I}\}$ at o, and let $\{s_{1,o}^{I\vee},\ldots,s_{N,o}^{I\vee}\}$ be its dual basis. For a path γ with its initial point at o, let $s_{i,\gamma}^{I\vee}$ be the analytic continuation of $s_{i,o}^{I\vee}$ along γ . Then, the isomorphism $\Psi_{\mathcal{X}}: \mathcal{H}^{1} \longrightarrow \check{\mathcal{H}}^{1}$ is given by

$$\Psi_{\mathcal{X}}(\eta) = \sum_{\mu,k} \left(\int_{\operatorname{reg}_{x_{i_n}\mu}} s_k^{I^{\vee}}(s_k^{I^{\vee}} \otimes 1) \left(\Phi_{\mathcal{X}}(\eta) \right) \right) e_{\mu}^{I} \otimes s_k^{I}.$$

REMARK 5

This fact implies that solutions of the differential equations corresponding to a *Gauss-Manin* connection, that is, the induced connection on relative de Rham cohomology, have integral representations of Euler type. This conforms with the following fact: De Rham cohomology classes are represented by differential forms, which should be integrated; there is a nondegenerate paring between \mathcal{H}^1 and $\mathcal{H}_1 := \bigcup_{x \in S} H_1(X_x, \mathcal{L}_{\mathcal{X}}|_{X_x})$ whose basis is given by the regularizations of paths.

Acknowledgment. The author thanks Professor F. Kato for valuable comments.

References

- K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo 27 (1977), 49–61.
- [2] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts in Math. 82, Springer, New York, 1982.

[3] K. Mimachi, K. Ohara, and M. Yoshida, Intersection numbers for loaded cycles associated with Selberg-type integrals, Tohoku Math. J. (2) 56 (2004), 531–551.

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa-Oiwakechou, Sakyoku, Kyoto 606-8502, Japan; koki@kurims.kyoto-u.ac.jp