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in the linear x; — X term relating A toy; — y (1). With
this model the 6 should be compared directly, with
triangle dimension entering only in estimating the
precision.

2. For large strains dQ is not invariant (to within
a rotation) to choice of base edge (10).

3. One difficulty with the approach via triangles is
that measurement error is propagated through the
choice of a common baseline (in a quadrilateral say)
whereas variance considerations suggest averaging.
Only for each triangle of landmarks is the translation
of a single landmark always equal to the translation
of the landmark centroid, y; — A%, = y — AX.

The modelling inconsistencies in using triangles
have already been considered. However, this approach
does define a basis direction comparable across indi-
viduals and does extend the homology between indi-
viduals from landmarks to the whole form (using
pseudo-landmarks). As mentioned previously, modell-
ing of interindividual variation requires at least the
definition of a basis direction, and some tacit notion
of extended homology also. These are the principal
conceptual impediments to development of a theory
of morphometrics along the lines of this discussion.
They are no novelty to morphometrics, and it is sub-

Rejoinder

Fred L. Bookstein

Five able discussants have persuaded me that my
essay, however long already, spent too little space
reviewing themes other than its own. Each discussion
points out connections between morphometrics and
diverse topics both within biometrics and without.

Kendall’s shape space 3. David Kendall surmises,
correctly, that I had not previously encountered his
work. Indeed we have approached nearly the same

problem from two very different directions. Although

permutations and reflections of landmark configura-
tions are prohibited on biological grounds, the algebra
of my shape space is still that of a tangent space at
the point of his Y3 corresponding to the mean shape.
In the large, the plane of shape coordinates @ repre-
sents all of his shape space, except for one point
Z, = Z,, six times over.

The tensors supply a canonical geometric descrip-
tion of directions in any tangent plane of this space.
Also, they lead to a metric geometry throughout the
space, with infinitesimal element of distance equal to
| dQ|/Im Q, the difference of the log principal strains.
The geodesic arcs of this geometry are curves corre-
sponding to triangular shapes whose transformations
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stantially to Bookstein’s credit that he has dealt with
them.

As a final remark, the next generalization is to
longitudinal data, for which the positions of a set of
landmarks, possibly evolving in time, are recorded at
several time points. The deformation tensor field is
varying in space and time. Technically, many of the
issues are the same, as in fact approaches for the
analysis of finite deformation have been borrowed
from the analysis of longitudinal data itself.
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from a fixed starting triangle have the same principal
axes—the shapes that can be reached by fractional
powers of the same affine transformation. The geo-
desics, then, must be the circles involved in the con-
struction of the principal axes (Figure 11), the circles
orthogonal to the real axis. In this metric construction
for shape space we recognize one of the classic models
of hyperbolic geometry, the Poincaré half-plane (cf.
Coxeter, 1965, Section 14.8).

Such a space has negative Riemannian curvature,
whereas Kendall’s shape space, under the metric in-
herited from Euclidean distance, has positive curva-
ture. This and other interesting differences between
Kendall’s geometry and mine derive from the differ-
ences between their fields of principal application. My
morphometric shape space has a line of metric singu-
larities all down the real axis. Points (triangles) not
on this axis may not be transformed into points upon
it or across it by any proper affine transformation.
That axis, representing triangles of zero area, is the
Absolute of the hyperbolic geometry, the locus infi-
nitely far away. Its exclusion expresses the restriction
of the deformation model to transformations of
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positive Jacobian, so that straight angles are not ren-
dered oblique or the sign of small triangular areas
changed. In the vicinity of the real axis, the shape
coordinates @ in tangent space work perfectly well,
but the tensor-based metric breaks down: reports of
mean differences around straight angles cannot take
the form of tensors. In summary, the tangent spaces
of Kendall’s space” Y3 are equivalent to the space of
shape algebra, whereas the hyperbolic half-plane is
the space of shape change interpretation.

Goodall’s two-stage procedure. Colin Goodall sug-
gests an alternative set-up for morphometrics in which
the deformation itself is taken as the primary object
of observation and its natural parameters p, q, 0, ¢
modeled by some joint distribution. This is feasible
for strictly longitudinal analyses—growth, follow-up
after surgery, and the like—but longitudinal series
make up only one morphometric study design. The
other designs, not suited to this framework, include
the comparison of sample means, the analysis of clin-
ical deformity by matching to normative forms, stud-
ies of allometry and other influences on shapes ob-
served singly, and the computation of deformations
from serial data in order to study processes other than
individual change, such as the canonical deformation
visualizing shape stability in Figure 18.

Goodall’s own analysis of plant growth exploit
points at rather close spacing. Although such data
permit increased precision in the observation of true
deformations across time, specimen by specimen, the
multiplicity of points tends not to correspond across
specimens, making problematic the comparison of de-
formations or their averaging in population samples.
The principal strains p and g are tensor invariants,
but their gradients, and the angles § and ¢, are not.
For comparisons of p, g, 6, and ¥ to be biologically
interpretable across forms, one needs bridges among
the multiple coordinate systems involved. In the sys-
tem of morphometrics put forward in this essay, such
bridges are supplied by landmarks, whereupon 6 is no
longer a particularly natural parameter—rather, one
needs the full size-shape machinery. In other systems
of measurement the bridges between coordinate sys-
tems may be supplied instead by gravity, by an axis of
‘coiling or translation, or by fixed metallic implants.
For a single triangle of landmarks observed at two
times over a sample of organisms, I believe that
Goodall’s analysis is equivalent to the matched allo-
metric analysis of shape coordinates demonstrated in
Section 6. For more extensive collections of land-
marks, there is indeed a choice to be made between
interpolation and smoothing; I will return to this
matter at the end of this comment.

Shape as fixed vector. Gregory Campbell rejects the
stated purpose of my essay, the fusion of the geometric
and multivariate approaches to morphometrics. He

claims, for instance, that because my shape coordi-
nates are homeomorphic to ratios of edge lengths
(whenever the assumption of small shape variance
applies), it follows that “the geometry is effectively
removed from the problem, to be replaced by functions
only of distances,” with which one might work “just
as easily.” Such a statement misconstrues the role of
morphometrics in biological and biomedical research.
Morphometrics serves as the empirical link between
geometry and biology, the matching of geometric
measurements to the comparative biological context.
The morphometrician’s task is only secondarily sta-
tistical testing of hypotheses; it is primarily the con-
struction of a sensible set of descriptor variables by
which the biological phenomenon under study may be
captured.

In the presence of K landmarks, one has access to
K(K — 1)/2 interlandmark distances. To avoid sin-
gularities of the joint distribution, one must restrict
one’s attention to a basis of no more than 2K — 3 of
these distances, or 2K — 4 of their ratios. The appro-
priate basis for reporting an analysis is not, in general,
a subset of the larger, redundant basis, but instead is
a collection of linear combinations computable only
after statistical analysis is complete. Changes in a
network of interlandmark distances, whether meas-
ured in millimeters or in fractions of change, are best
reported as a pattern of loadings (conjoint changes)
along other directions entirely, directions whose spec-
ification depends crucially upon the mean form as well
as upon the pattern of distance changes. This depend-
ence of report on mean form is nonlinear even when
linear statistics suffice for the study of shape varia-
tions about that mean.

From a biological point of view, the existence of
discrete, recognizable landmarks is accidental. They
lie arbitrarily upon the form with respect to the bio-
logical processes taking place inside. The morphome-
trician’s description must be as independent of the
landmarks as possible, even when they are the only
data available. Our job is the extraction of the most
useful variables, not merely the statistical processing
of those edges of convenience or any other arbitrary
data archive. In summary, geometry is not “effectively
removed” from morphometric analysis by recourse to
any predetermined size or shape basis. It is only se-
questered; it must be restored at the end of an analysis
by a change of basis if the findings are to be of any
biometric use.

Robustification. Paul Sampson shows by example
how one supersedes multivariate normal assumptions
by a bootstrapped computation of realistic sampling
distributions. It would be captious to disagree with a
suggestion so reasonable. Noel Cressie, also concerned
with robustness, may find Sampson’s idea a satisfac-
tory resolution. There is already robustness in the
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method by virtue of its recourse to factor loadings
rather than multiple regression coefficients for the
depiction of systematic effects upon shape, especially
in dealing with size allometry or shape stability (Fig-
ures 17 and 18). As another instance, an elliptical
distribution of the shape coordinates € for a triangle
may be tentatively modeled as the superposition of a
circular distribution, of radius equal to the minor
diameter, over a distribution constrained to the major
axis and having variance equal to the difference be-
tween the squared axis lengths of the ellipse. This
rank one component of shape is now available for
attribution to an external factor, such as mean sample
size in the example of Figure 7. On the model put
forward here, only that part of shape variation need
be circular which cannot be attributed to the influence
of exogenous shape determinants in this fashion.
Goodall’s stricture that factor analysis is “a technique
to be viewed with caution” applies mainly to factor
rotation in its various psychometric incarnations, not
to the straightforward summary of directional deriv-
atives which is the role of the morphometric factor.
In contrast to Sampson’s and Cressie’s concerns
about robustness, Gregory Campbell develops the al-
gebra of covariance terms which are O(¢2), attends to
the difference between zero correlation and indepen-
dence, and, generally, deals with matters I would label
as “antirobustification.” In the face of the great re-
dundant span of biologically interpretable variables
with which morphometrics must cope in the applied
literatures, I think it is sufficient to explore mainly

their algebraically simplest aspects; one is not thereby

misled about real data. The lesser stringency of the
normal model—the replacement of probability by lin-
ear geometry—is inseparable from the simplicity of
the diagrammatic descriptions of morphometric phe-
nomena to which that model leads. Perhaps Campbell
could show us a landmark data set for which the
difference between the linearized normal model and
the generalized gamma model is sufficient to affect
one’s scientific inferences; I have never encountered
such an example.

Some clarifications. (1) Colin Goodall points out that

one cannot expect a nonaffine deformation to corrob-
. orate the behavior of distance ratios among all the
constructed landmarks. This is not as great a problem
as it seems. In practice, the pairs of landmarks in-
volved in the productions of Theorem 2 tend to belong
to the convex hull of the form—the optimal distance
measure tends to be an expression of growth gradients
that can be modeled as monotone. The interpolation
used in Figures 1 and 15 and elsewhere is driven by
just such a strictly linear correspondence of computed
landmarks around the boundary, so that it meets the
needs of Goodall’s requirement in practice. It happens
that this particular interpolator, like the thin plate

spline mentioned by Sampson, is based on harmonic
functions, so that it cannot lead to extrema of any
directional derivative except at landmarks. This suits
it well to the visualization of the results of Theorem
2. (2) Gregory Campbell observes that the null model
appears not to apply to several of the examples. Nat-
urally it does not; it was rejected. Both the data of
Figure 7 and the data of Figures 13 through 17 show
allometry: in one case, a correlation of size with shape;
in the other, a correlation of size changes with shape
changes. This is not the negation of the null model,
but its refinement, credible whenever the scatter of
shape coordinate residuals from the allometric model
appears suitably circular. (3) The point of my Theo-
rem 1 is not that criticized by Campbell in his first
paragraph (“Such approximations encourage zero co-
variances”). Theorem 1 is not about the covariances
of size S with ratios for which it serves as denominator.
Its subject is the covariance of S with any ratio of
distances between constructed landmarks, whatever
the denominator. That the covariances Campbell dis-
cusses are zero for any size variable has nothing to do
with the covariances involved in Theorem 1, which
are all zero, to first order, only for variables equivalent
to S. Incidentally, the shape vector H of Campbell’s
first paragraph is not satisfactory for morphometric
studies, as it is not invariant under rotation or trans-
lation of the coordinate system in which the land-
marks Z; are located. (4) Sampson and Campbell both
note that I omitted a crucial clause in my restatement
of Mosimann’s main theorem. The variables V; of the
first paragraph in Section 4 are, of course, to be taken
as multivariate normal. (5) Noel Cressie describes the
possible role of the symmetric axis in one’s thinking
about landmarks. There is a discussion along similar
lines in Section 4.1 of Bookstein et al. (1985); we share
his optimism.

Inhomogeneity and smoothing. 1 shall use the re-
mainder of my space to speculate along a line sug-
gested by Sampson and Goodall. Together they have
raised complementary horns of a morphometric di-
lemma. To detect deviations from homogeneity of
transformation in the individual case, one needs many
landmarks, so as to test for and localize significant
failure of fit in Goodall’s regression (1); but to detect
any signal at all in sample to sample comparisons, as
Sampson points out, one loses power as the number
of landmarks rises.

I suggest resolving this tension by considering com-
ponents of transformation loosely analogous to
Sneath’s (1967) polynomial regressions but tied
tightly to the algebra of landmark mean locations.
Consider first a quadrilateral of landmarks, taken, for
simplicity, in the form of an exact square. Choosing
either diagonal of the square, one can divide this
square into two triangles sharing that diagonal as
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baseline. The net shape change of the quadrilateral
from the square form to another can be described by
a four-variable shape basis made up of the pair of
pseudovectors describing the shape changes of either
pair of opposing triangles. Denote these two pseudo-
vectors as d@, and d@,. In Figure 13 the scatters of
such a pair of d@’s for the diagonal Sella-Menton are
shown in frames (a) and (b). The matching of scat-
tered points d@,, d@, between the frames is not shown,
but is crucial to the analysis to follow.

There are two summary quantities for the shape
change of a quadrilateral that, when properly cor-
rected for baseline change, are independent of the
triangulation chosen. Details of this invariance are
presented in Bookstein (1985). For a starting form
which is square, they take a particularly simple
algebraic form.

The homogeneous component of the transformation
is the vector difference dQ, — d@., representing the
average of the transformations on either side of the
diagonal, changes in lengths or angle of the diagonals
without change in their point of intersection; and the
purely inhomogeneous component of the shape change
is the vector sum d@, + d@,. This component mea-
sures the amount of translation of either diagonal with
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F1G. 23. Every shape change of a quadrilateral of landmarks has a
purely inhomogeneous component, the extent to which its diagonals
are translated with respect to each other without change of length or
angle. This component can be visualized as a transformation of the
interior of the quadrilateral. (a) The interpolated bilinear map, linear

respect to the other without change in length or angle.
Clearly the two components together are as informa-
tive as their sum and difference, the pseudovectors
d@, and dQ, with which we started.

The purely inhomogeneous transformations (re-
viewed in Bookstein, 1985) seem to be unfamiliar to
many applied geometers. A typical transformation of
this class is that taking the unit square with corners
at (1, +1) to the kite with corners at (—1.5, —1.5),
(1, —1), (0.5, 0.5), and (—1, 1). If this transformation
is to be modeled as linear upon the edges of the starting
square, then a reasonable interpolated distortion is
the bilinear map (x, y) — (x, y) — %(1 + xy, 1 + xy),
as shown in Figure 23a. This map bends one diagonal
and transforms the other diagonal nonlinearly along
itself. From its affine derivative, the matrix

Y  _x
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y x|

—_— 1___
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we see that the map has a singularity of principal
directions at the center (0, 0) of the square, where this
matrix is the identity. The biorthogonal grid for this
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on all four edges of the quadrilateral but not on the interior diagonals.
(b) The biorthogonal grids for the map in (a). There is a singularity
around which the integral curves and principal strains show unex-
pected threefold or sixfold symmetry (cf. Bookstein, 1985).
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map (shown in Figure 23b) has exactly hexagonal
symmetry of the grid lines and triple symmetry of the
principal strains near that singularity. (This pattern
was already hinted at in Figure 18.)

Another candidate for interpolating the distortion
from square to kite is the ordinary projection leaving
all straight lines straight, the diagonals as well as the
edges. The projection is not linear around the edges
of the starting square, and has a different singularity
inside, analogous to that at the origin of a parabolic
coordinate system. Other distinctions between these
two interpolants are reviewed in Bookstein (1985).

The simple shape variables suggested by the purely

inhomogeneous mapping are not ratios of perpendic- .

ular distances through a single point but either
(i) ratios of lengths of parallel edges on opposite sides
of the singularity, or (ii) ratios of collinear lengths
measured away from the singularity in opposite direc-
tions. Figure 23 suggests two ratios of the first kind,
that of the vertical edges and that of the horizontal
edges. Their composite is the sum of the north and
east edge lengths divided by the sum of the south and
west edge lengths. On the null model for variation
around the kite shape, this ratio is statistically equiv-
alent to the ratio of the heights of the two triangles
upon the diagonal from (1, —1) to (—1, 1), a ratio of
the second sort. Compare the less symmetrical analy-
sis of Figure 18, which afforded only one simple shape
ratio.

In a sample of forms represented by four landmarks,
the net 7? for shape may be partitioned into one
component testing the homogeneous part and another
testing the inhomogeneous part. Applied to the data
of Figure 13, for instance, we find that both these
components of change are statistically significant. A
biometric description of the growth of this splanch-
nocranial quadrilateral must refer to both the net
affine transformation and its regional variation. For a
quadrilateral, the regional variation cannot be local-
ized; like an interaction term in the analysis of vari-

ance, it is instead the assertion of a gradient (in this
context, a growth-gradient) across the form in one or
two directions.

This simple algebraic decomposition should be ex-
tendable to components of higher order for landmark
configurations more complex than quadrilaterals.
Such a scheme would replace the smoothing that
Goodall suggests by a noise-suppressing decomposi-
tion of the exactly interpolated transformation, a de-
composition which applies both to the individually
observed deformations (whenever the data support
such a notion) and to deformations representing dif-
ferences of sample means, allometry, or other designs.
These components will be somewhat analogous to
orthogonal polynomials, which are at once expressions
of the geometry of a domain and also planned com-
parisons suited to linear modeling. Just as the purely
inhomogeneous transformation can be recognized by
the characteristic hexagonal singularity of its grid, as
in Figure 23, a reasonable set of higher order compo-
nents might be expected to bear characteristic grid
“fingerprints.” I agree with Sampson that the influ-
ence of exogenous factors upon these or other com-
ponents of deformation could be construed as a factor
regression and studied very effectively under a version
of Wold’s soft modeling.

I thank the discussants for their conscientious scru-
tiny of an unusually long manuscript and for their aid
in establishing morphometrics as an arena for serious
biometrical thought. As did David Kendall, I would
also thank the Editor for boldly offering considerable
space to this new topic. If our development of this
field will further combine geometrical, biological,
and statistical themes so diverse, it will continue
to be worth the attention of the general statistical
community.
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