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of ill-posed problems, of loss-based methods for choos-
ing smoothing parameters, supplemented by empirical
checks that the resulting smoothed estimates are ac-
ceptable from a practical point of view. I look forward,
in particular, to reading about the future exploits of
the present author in this important area!
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Comment

Grace Wahba

Professor O‘Sullivan has given us a nice overview
of some of the issues in ill-posed inverse problems as
well as some new ideas. The most important of these
new ideas I believe are the following: a) the extension
of the idea of averaging kernel to reproducing kernel
spaces, with the resulting formula

supremum | 0(t) — E6(t) | = |le. — A(¢) ||%0*
lol2=u?

and b) a new approach to the history matching prob-
lem of reservoir engineering. The formula bears a not
coincidental relationship to Scheffé’s S method of
multiple comparisons (Scheffé, 1959, page 65). In at-
mospheric sciences and possibly elsewhere, extensive
historical data allows the construction of a prior co-
variance for the unknown 6, from which reasonable
norms can often be constructed via the well known
duality between prior covariances and optimization
problems in reproducing kernel spaces. An example of
the use of prior covariances based on historical mete-
orological data to establish penalty functions can be
found in Wahba (1982a). The problems of reservoir
engineering are extremely important and would bene-
fit from the attention of statisticians. Letting

zij = u(xi, tj’ a) + &,
as in Section 4.2, the method of regularization esti-

mate of a is the minimizer of

% 2 (zij — u(xi, tj, @))% + AJ(a)
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(see especially Kravaris and Seinfeld, 1985). This
problem is particularly difficult since, not only is u a
nonlinear function of a, but in general the relationship
is only known implicitly as the solution to a partial
differential equation. It is a good conjecture that the
GCYV for nonlinear problems as proposed in O’Sullivan
and Wahba (1985) can be used to choose A in this
problem. The details are far from obvious but it looks
like the present paper provides an important first step.
Of course this history matching setup leads to some
juicy experimental design problems—choice of the
forcing function g, the location of the wells, and the
times of observation.

Concerning robustness of the PMSE criteria (that
is, minimizing PMSE also tends to minimize other,
possibly more interesting loss functions), further re-
marks on that can be found in Wahba (1985, page
1381). The GCV extension proposed by the author is
an interesting one. Let C be the matrix with ijth entry
cic;. If C is the identity then the extension is the same

‘as GCV. If C is a well conditioned matrix, then it

appears that one can show that the minimizer of
EV(}) is asymptotically near the minimizer of EL(}),
the associated (estimable) loss function. You need
(1/T)tr HC to be small near the minimizer of EL.
I think a problem may arise if you try to choose C to
approximate L(\) of the form

1 Z o
L(\) = T '2:1 | 0(t:) — 0,(t)|?

where the problem is very ill-posed. Consider the
operator which maps 6 to euclidean m space via the
formula 0 — (n(x;, 6), ..., n(xn, 6)). In practice the
theoretical dimension of the range space of this
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operator can be m, whereas the “computer dimension”
is much less than m. In that case L(\) may be “theo-
retically” estimable but practically C behaves like the
inverse of a matrix with computer rank much less
than m. For an example of a convolution operator
with a range space with effective dimension very much
smaller than m see Wahba (1982b).

There are many interesting open questions remain-
ing in connection with ill-posed inverse problems and
I trust Professor O’Sullivan’s paper will generate more
interest in them among statisticians. Some of the open
questions are really at the intersection of statistics
and numerical analysis, in particular, those involving
extremely large data sets such as occur in x-ray and
satellite tomography (the three-dimensional recovery
of the atmospheric temperature distribution) and as
occur in nonlinear problems and implicit problems
like the history matching problem. One needs good
approximation theoretic methods to solve extremely
large, sometimes nonquadratic optimization problems,
and, in the case of the history matching problem,
partial differential equations. One would like the ap-
proximations to simultaneously be the right sort of

Comment

John A. Rice

Finbarr O’Sullivan has presented us with a very
nice survey and discussion of topics in ill-posed inverse
problems. There are many practical problems of this
kind in which one is given noisy direct or indirect
measurements of an object which one then wishes to
reconstruct. The object is often inherently infinite-
dimensional whereas there are only a finite number of
measurements. In this context one is forced into the
healthy exercise of directly confronting problems of
bias, which have typically been swept under paramet-
ric rugs by professional statisticians.. Backus-Gilbert
kernels provide a simple and easily interpretable
means of qualitatively assessing bias. It is interesting
that texts on linear statistical models rarely show
figures which give the kernels for linear and quadratic
regression. These kernels are, of course, just the rows
(or columns) of the matrix X(X7X) X7, if the x; are
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“low pass” filters. For example, instead of solving a
variational problem exactly in some function space,
one solves it in a carefully chosen finite-dimensional
subspace. This lowers the complexity of the numerical
problem, while at the same time, if the subspace is
chosen appropriately, performs further low pass filter-
ing. One would like to choose the approximation the-
oretic methods so that they simultaneously give a
desirable result from a statistical and a numerical
analytic point of view.
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listed in increasing order. It is amusing to plot the
kernels for higher order polynomials as well.

Examination of the functionals O’Sullivan denotes
by 7 is often very instructive. As in O’Sullivan’s first
example, the data often consist of the result of a linear
operator applied to the object of interest plus noise.
By carrying out a singular value decomposition of the
operator and plotting the singular values and vectors,
one can often see what information is being inherently
degraded by the data collection process, that is, which
features of the solution can be resolved well and which
cannot.

The applications of regularization presented in this
paper make use of a prior assumption of smoothness
of the solution. Other sorts of prior information can
be useful as well. An assumption of positivity, or
monotonicity, can be very effective in eliminating
highly oscillatory solutions (cf. Wahba, 1982). One of
the reasons for the highly advertised effectiveness of
maximum entropy solutions is that they are forced to
be positive. In various forms of spectroscopy, the
solutions are known a priori to be composed of very



