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Comment

D. M. Titterington

1.. INTRODUCTION

It is a pleasure to comment on the paper by
Dr. O’Sullivan. The paper represents admirable blends
of review and new ideas, together with theory and
application.

It seems that the world is saturated with inverse
problems. At least, I am continually being surprised
to discover further manifestations of the general struc-
ture and, sometimes, substantively innovative devel-
opments. I was particularly grateful to discover the
work of Backus and Gilbert and to learn about the
notion and use of representers.

The paper, of course, discusses a particular class of
inverse problems, those which are ill-posed. Perhaps
the most surprising feature of the literature on this
topic is the comparatively late stage at which statis-
ticians have made an impact. After all, a major reason
for the inherent difficulties is the existence of the
random noise terms, ¢, in the model, and we note that
the ubiquitous prescription for estimation is of the
ridge-regression type, so it is certainly appropriate
territory for statisticians. I should like to base the
bulk of my remarks on the theme of what particular
contributions statisticians can make to the develop-
ment of the area.

Before I launch into this, I should admit that, as
the paper points out, other mathematical specialties
are also essential to a full treatment of the problem.
Particular areas are those of functional analysis,
matrix theory (singular-value decomposition), and
numerical methods for optimization. So far as the last
topic is concerned, the paper has concentrated on
linear or linearized problems, so that the optimality
criterion is a quadratic function for which the mini-
mizer can be written down explicitly. In other cases
we are left with a nonquadratic criterion, which leads
to the requirement of numerical methods; see, for
instance, the use of simulated annealing in finding a
regularized image restoration by Geman and Geman
(1984).

2. THE IMPACT OF STATISTICIANS

In this section I shall follow the pattern of the paper
in concentrating on linear problems. As a result, and
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with some apologies to the author for apparently triv-
ializing his achievements, the problems are “solved”
by ridge-regression estimators of which (3.1) is an
example. Crucial features of the prescription are a
matrix Q, and a scalar, A.

Depending on one’s statistical leanings, (X, Q) have
different interpretations. For a Bayesian, they are
hyperparameters in a notional prior density and the
ridge-regression estimator is itself interpretable as a
posterior mode. This Bayesian basis has the advan-
tage, in principle, of permitting the construction of
confidence regions for the true quantities of interest.
Of course, the validity of such regions is dependent on
whether the notional prior is a meaningful one. So far
as repeated sampling confidence statements are con-
cerned, more work requires to be done on the lines of
Wahba (1983b) to see to what extent Bayesian state-
ments carry similar confidence values from a frequen-
tist point of view.

Non-Bayesians interpret A and 2, somewhat differ-
ently. They regard Q, as the kernel of a roughness
penalty function, usually chosen to reflect some (ad-
mittedly “prior”) ideas about the local smoothness of
the underlying functions and/or to lead to tractable
prescriptions for the regularized estimators, in the
form of splines, for instance. If one can extrapolate
from the literature about kernel-based density esti-
mation, the choice of Q, (cf., the choice of kernel
function) should not be crucial to the performance of
the resulting estimator, computational difficulties
apart. Certainly, from the non-Bayesian point of view,
no one , seems sacrosanct. This last statement ap-
pears to conflict with the views of the adherents of
maximum entropy regularization, who contend that,
in a wide range of problems, a roughness penalty based

.on Shannon entropy is fundamentally special, an

opinion I do not share (Titterington, 1984).

The other parameter, A, called variously the
smoothing, ridge, or regularization parameter, is the
one to which the estimators should be more sensitive.
Furthermore it is here that the statistical impact is
most obvious. In principle there is no problem to the
Bayesian, in that A is a parameter of the prior which
is, of course, known! To other statisticians, it is nat-
ural to base the choice of A on some criterion of how
close the estimator is to the true, on average. As a
result, we obtain the mean squared error criteria of
Section 5 and the associated databased versions
such as cross-validatory choice, now familiar in
several types of smoothing problems. It has required
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statistical input, of Professor Wahba in particular, to
establish these apparently natural approaches. Given
the linearity, with the resulting rank-one update for-
mulae of Section 5, the GCV score is easily computed
(see also Silverman, 1984).

In the nonstatistical literature, the choice of A has
been approached differently and, in general, less sat-
isfactorily, as described in the next section.

3. ON THE CHOICE OF REGULARIZATION
PARAMETER

A crucial instrument for the choice of A is the
residual sum of squares, RSS()), defined by

RSS(\) = m™ Y (2 — )%

see Section 5.1 of the paper. RSS(\) appears in the
numerator of the GCV score and, in some contexts
(see Wahba, 1983b, for instance), it is suggested that
an estimator of the error variance, ¢2, can be obtained
from

(1) RSS(A) = ¢%{1 — m™'tr H\)}.

Conversely, if an estimator &2 is available for o2,

equation (1) provides another method of choosing A.
Hall and Titterington (1986b) show that, for a simple,
ridge-regression problem, the method is, so far as A is
concerned, asymptotically equivalent to GCV.

The early workers in cross-validation, however, used
o2 to find A > 0 such that

(2) RSS(\) = o2

Comparison of (1) and (2) suggests that this method
of choice leads to oversmoothing, a fact established
quantitatively, for some problems, by Hall and Titter-
ington (1986b).

The heuristic motivation for using (2) is that, if the
errors ¢; are independently, identically, and normally
distributed, then

m™ ¥ (2 — Ez)* ~ m™a*x*(m)
so that
3) E{m‘1 Z (z; — Ez,-)2}> = g2,

The two sides of (2) are then considered to be
estimates of the two sides of (3).

The scale of differences in the degrees of smoothing
resulting from (1) and (2) has been investigated by
Hall and Titterington (1986a, 1986b) for particular
inverse problems. As an example, consider a simple,
ridge-regression structure in which the model is

z=XB +e

where E(e) = 0, cov(e) = ¢2I, and X is m X s of rank

s. Suppose we assess the degree of smoothing by
examining the values of the equivalent degrees of
freedom for error,

EDF(A\) = m — tr H(M).

To keep calculations simple, suppose X'X =
I (s X s), and define the signal to noise ratio to be
r = B8'8/(sc?). Suppose we define A\; and A, to be the
solutions of

E{RSS(\)} = ¢*{1 — m™'tr H(\)}
and
E{RSS(\)} = ¢%,
respectively. Then (Hall and Titterington, 1986b),
EDF(\) =m —sr/(1 + 1)
and
EDF(\2) = m — s/[1 + {(1 + r)** = 1}7"].

Some numerical values are given in the following
table.

r EDF(A,) EDF(X,)
1 m — 0.5s m — 0.29s
3 m — 0.75s m — 0.5s
8 m — 0.89s m — 0.67s

It is clear that the difference can be substantial,
particularly in highly parameterized problems, that is,
if s is of the same order of magnitude as m. It should
be said, however, that more empirical work has to be
done to confirm whether or not these differences are
meaningful in practical terms.

4. ON THE VIRTUE OF SMOOTHING IN
GENERAL

In this closing section, I should like to reemphasize
the advantage that can be gained by regularization,
thanks to the often spectacular reduction of the insta-
bility caused by noise. The advantage of methods such
as cross-validation lies in their underlying methodo-
logical basis and theoretical properties. It would be
of great interest to apply a cross-validatory-based
smoothing rule to the inverse problems underlying
positron emission tomography, as discussed by Vardi,
Shepp and Kaufman (1985). (Their maximum like-
lihood solution corresponds to the unsmoothed ver-
sion of any reasonable prescription.) In some problems
there may also be scope for genuinely interpreting A
as a component of a prior density and estimating it
accordingly (see Besag, 1986, for instance).

It seems to me that future research should place
particular emphasis on the extension, to a wider range
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of ill-posed problems, of loss-based methods for choos-
ing smoothing parameters, supplemented by empirical
checks that the resulting smoothed estimates are ac-
ceptable from a practical point of view. I look forward,
in particular, to reading about the future exploits of
the present author in this important area!
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Professor O‘Sullivan has given us a nice overview
of some of the issues in ill-posed inverse problems as
well as some new ideas. The most important of these
new ideas I believe are the following: a) the extension
of the idea of averaging kernel to reproducing kernel
spaces, with the resulting formula

supremum | 6() — () |* = || e. — A®) |I°%?

and b) a new approach to the history matching prob-
lem of reservoir engineering. The formula bears a not
coincidental relationship to Scheffé’s S method of
multiple comparisons (Scheffé, 1959, page 65). In at-
mospheric sciences and possibly elsewhere, extensive
historical data allows the construction of a prior co-
variance for the unknown 6, from which reasonable
norms can often be constructed via the well known
duality between prior covariances and optimization
problems in reproducing kernel spaces. An example of
the use of prior covariances based on historical mete-
orological data to establish penalty functions can be
found in Wahba (1982a). The problems of reservoir
engineering are extremely important and would bene-
fit from the attention of statisticians. Letting

zij = ul(x;, t, a) + ¢,
as in Section 4.2, the method of regularization esti-

mate of a is the minimizer of

% 2 (2 — ulx;, t;, a))® + NJ(a)
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(see especially Kravaris and Seinfeld, 1985). This
problem is particularly difficult since, not only is u a
nonlinear function of a, but in general the relationship
is only known implicitly as the solution to a partial
differential equation. It is a good conjecture that the
GCYV for nonlinear problems as proposed in O’Sullivan
and Wahba (1985) can be used to choose A in this
problem. The details are far from obvious but it looks
like the present paper provides an important first step.
Of course this history matching setup leads to some
juicy experimental design problems—choice of the
forcing function g, the location of the wells, and the
times of observation.

Concerning robustness of the PMSE criteria (that
is, minimizing PMSE also tends to minimize other,
possibly more interesting loss functions), further re-
marks on that can be found in Wahba (1985, page
1381). The GCV extension proposed by the author is
an interesting one. Let C be the matrix with ijth entry
c/c;. If C is the identity then the extension is the same

‘as GCV. If C is a well conditioned matrix, then it

appears that one can show that the minimizer of
EV()) is asymptotically near the minimizer of EL()),
the associated (estimable) loss function. You need
(1/T)tr HC to be small near the minimizer of EL.
I think a problem may arise if you try to choose C to
approximate L(\) of the form

1 X o
L(\) = T ;1 | 6(t:) — 0,(t)|?

where the problem is very ill-posed. Consider the
operator which maps 6 to euclidean m space via the
formula 0 — (n(x;, 0), ..., n(xn, 8)). In practice the
theoretical dimension of the range space of this



