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To get a lower bound on the second term in (A.1),
we use the fact that inf(R}) = | R,, ||, from which
it follows that
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Since the columns of R, have norm one, | R,, |} =
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Combining (A.1), (A.2), and (A.3) we get
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which is equivalent to (4.4).
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Comment

Donald W. Marquardt

Statisticians and numerical analysts owe a large
debt of gratitude to Dr. Stewart for his demonstration
and lucid exposition of the mathematical connection
between the condition number and the parameter
variance inflation factors. In doing so, he has also
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clarified the reasons why the condition number is not
really helpful in the multiple regression context, nor
in many other contexts. The insights he provides in
this paper are important for all statisticians, because
collinearity problems occur in many statistical con-
texts, including multiple linear regression, nonlinear
regression, unbalanced analysis of variance, and esti-
mation from inverse integral transform models. In
this brief commentary I have selected three facets of
Dr. Stewart’s paper for discussion.
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HISTORY

The presentation by Stewart would leave the
impression that when during the 1960s, I selected the
name “variance inflation factors,” the connection be-
tween parameter variance inflation and collinearity
was not well understood. For example, Stewart claims
(Section 4) “variance inflation factors and multiple
correlations were not introduced to analyze collinear-
ity in regression models, and their names show it.”
Quite the opposite. I chose the name to emphasize the
critical effect which all practicing statisticians would
understand, rather than a name that would emphasize
the cause (i.e., collinearity), which was not yet so
widely understood. However, I was fully aware of the
general algebraic connection between the effect and
its cause. Thus, in my 1970 paper (page 606) I empha-
sized that “the inflation factors depend on the partial
correlation of each X with the other Xs.” I also showed
the algebraic relationship between the inflation factor
and the correlation between the Xs for a simple ex-
ample with only two Xs, and noted that “in problems
larger than 2 X 2 the variance inflation factors are not
usually equal for all parameters,” and that “in larger
problems attention is focused on the largest parameter
variance inflation factor.” I am sure that Cuthbert
Daniel also understood the algebraic relationship.

Moreover, the usefulness of the eigenvalues and
eigenvectors of (XTX)™* for diagnosing the detailed
structure of the collinearities was well understood, as
described in the 1970 example (pages 606 and 607).

NOMENCLATURE

Stewart’s collinearity indices are simply the square
roots of the corresponding variance inflation factors.
It is not clear to me whether giving a new name to the
square root of a VIF is a help or a hindrance to
understanding. There is a long and precisely analogous
history of using the term “standard error” for the
square root of the corresponding “variance.” Given
the continuing necessity for dealing with statistical
quantities on both the scale of the observable and the
scale of the observable squared, there may be a place

‘for a new term. Clearly, the essential intellectual
content is identical for both terms. However, with
Stewart’s proposed name we have the situation where
we create the misleading impression that the variance
inflation factors measure one thing, whereas the col-
linearity indices measure something else. Can we
count on software producers to always display both

quantities and both labels, and their close relation-
ship? I think not. I would prefer for the square roots
a name that focuses on the effect and is self-defining.
That would be to name them parameter “standard
error inflation factors.”

CENTERING OF PREDICTOR VARIABLES

Stewart correctly notes that although the variance
inflation factors (and their square roots) are invariant
with scale factor changes in the columns of X,
they are not invariant with changes of origin of the
predictor variables. He points out the ability of cen-
tering to remove what I have called “nonessential ill-
conditioning, thus reducing the variance inflation in
the coefficient estimates” (Marquardt and Snee, 1975,
page 3).

Stewart also discusses the numerical example from
Belsley (1984). As Stewart notes, the diagnostic re-
sults from this example should give one pause about
the model proposed by Belsley for the data. I fully
agree with Stewart that “when there is a constant
term in the model, the model should be centered before
the importance of the remaining variables is assessed”
and the “centering simply shows the variable for
what it is.” An analysis of the importance, and the
statistical-inferential basis of centering is given in an
extended discussion of Belsley’s paper (cf. Snee and
Marquardt, 1984) and in an extended discussion of an
earlier paper (cf. Marquardt, 1980).

SUMMARY

The present paper by Stewart summarizes a concep-
tual breakthrough relating variance inflation factors
to the condition number. The variance inflation fac-
tors (or their square roots) are the measures of choice
for assessing the structure of the predictor variables
in a data set when estimating the parameters of a
specified linear model in a relevant domain.
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