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Collinearity and Least Squares Regression

G. W. Stewart

Abstract. In this paper we introduce certain numbers, called collinearity
indices, which are useful in detecting near collinearities in regression
problems. The coefficients enter adversely into formulas concerning signif-
icance testing and the effects of errors in the regression variables. Thus
they provide simple regression diagnostics, suitable for incorporation in

regression packages.
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1. INTRODUCTION

Statisticians and numerical analysts share a con-
cern about the effects of near collinearities on re-
gression models—and with good reason. For the
statistician, near collinearities inflate the variances
of regression coefficients and magnify the effects of
errors in the regression variables. For the numerical
analyst, they combine with rounding errors to intro-
duce inaccuracies in computations. It is not surprising
then that both groups have devoted a great deal of
effort to issues related to collinearity. In spite of this
the subject has a certain vagueness about it, and it is
instructive to ask why.

In Section 3 we are going to survey some measures
of collinearity that have appeared in the statistics and
numerical analysis literature. It is significant that,
with one exception, none of these measures was orig-
inally introduced to measure collinearity. For exam-
ple, we shall see that large variance inflation factors
imply near collinearity. Yet they were introduced by
C. Daniel to show how the variance in a response
vector is magnified in the regression coefficients (the
name is due to D. W. Marquardt). Similarly, the
numerical analysts’ condition number was introduced
by Turing (1948) to bound perturbations in the solu-
tions of linear systems and was later extended by
Golub and Wilkinson (1966) to least squares solutions.
Its relation to collinearity usually appears as a curious
incidental. While such a way of proceeding is likely to
leave one with the (correct) impression that collinear-
ity is troublesome, it is not the same as a systematic
development of the subject (however, see Belsley, Kuh,
and Welsch, 1980).

G. W. Stewart is Professor in the Computer Science
Department and Research Professor in The Institute
for Physical Science and Technology, University of
Maryland, College Park, Maryland 20742.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

68

In this paper we will turn things around by starting
with a set of “collinearity indices,” one for each col-
umn of a regression matrix. When the regression
matrix has been centered and scaled so that the cross-
product matrix is a correlation matrix, the numbers
are simply the diagonals of the inverse cross-product
matrix—the variance inflation factors; however, they
are defined in such a way that they are independent
of column scaling and are applicable to models without
a constant term. We will first show that the indices
indicate the presence of near collinearity in a precisely
quantifiable manner. We will then show that near
collinearity is a bad thing by showing how the indices
appear adversely in formulas concerning significance
testing and the effects of errors in the variables. A
bonus of this approach is that it provides simple
diagnostics, suitable for incorporation into regression
packages.

The paper is organized as follows. In Section 2 we
will introduce the notation and conventions that will
be observed throughout the paper. In Section 3 we will
survey certain numbers associated with regression
problems that have been found to be related to col-
linearity. This survey will lead us to our collinearity
coefficients, whose definition and properties are the
subject of Section 4. Since the justification for intro-
ducing these coefficients lies in their practical conse-
quences, we will analyze the effects of near collinearity
on significance testing in Section 5 and its interaction
with errors in the variables in Section 6. The paper
concludes with a summary and a discussion of further
areas for research.

2. NOTATION AND CONVENTIONS

In this section we will introduce the notation that
will be used throughout the paper. We will deal with
least squares estimation in the linear model

(2.1) y = Xb + e,
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where X is an n X p matrix of rank p and e is a vector
of uncorrelated random variables having mean zero
and variance o2 Since it is sometimes a source of
confusion, let us state at the outset that the matrix X
is simply a fixed array of numbers; for example, X
could be a design matrix from an unbalanced, fixed-
effects analysis of variance or could consist of levels
of controlled variables in an experiment. If the rows
of X can be regarded as coming from some multi-
variate distribution or if the true value of y bears some
underlying functional relationship to the columns of
X, no account of it will be taken here. In other words,
our model is specified by the matrix X alone.

To make our results as widely applicable as possible,.

we will not assume that the model (2.1) has a constant
term. When there is one, we will assume that it is
present in the regression matrix as a column of ones,
unless it has been explicitly stated that X has been
centered by subtracting column means. Similarly, we
will not assume that the columns of X have been
scaled so that the cross-product matrix X*X has the
form of a correlation matrix. Note that we do not
preclude any of these things—we just do not assume
them.

The jth column of X will be written x;. The cross-
product matrix will be written

A =X"X,

and the (i, j)-element of A~* written «|;”. The pseudo-
inverse of X will be written

Xt =ATXT,

and its jth row as x".

Many of our results will be more easily derived from
the QR decomposition of X (for details see Stewart,
1974). Specifically, there is an orthogonal matrix
@ = (@x Q1) with Qx an n X p matrix such that

Q%) « _ (R
o (e

where R is an upper triangular matrix with positive
diagonal elements. Multiplying this relation by @, we
get ’

(2.3) X = QxR,

from which it follows that the columns of @x form an
orthonormal basis for the column space of X and the
columns of @, a basis for its orthogonal complement.

The QR decomposition is related to A and X' as
follows: '

(2.4) A =R"R
and
(2.5) X'=R'Q%.

From these relations and the triangularity of R it
follows that

(2.6) pon = af” =[x %

where p,, is the (p, p) element of R. We shall have
occasion to refer to these relations later.

The norm in (2.6) is the usual Euclidean norm
defined by | x [|2 = x Tx. We shall also use two matrix
norms: the spectral norm defined by
(2.7) I XN = max | Xo|

bl=1
and the Frobenius norm defined by
(2.8) | XI1% =3 x? = trace X"X.
ij

For more on these norms, see Golub and Van Loan
(1983).

3. MEASURES OF NEAR COLLINEARITY

In the course of analyzing regression problems, nu-
merical analysts and statisticians have introduced cer-
tain diagnostic numbers which turn out to be related
to collinearity. Numerical analysts work with singular
values and condition numbers. Statisticians work with
correlations, both simple and multiple, and with vari-
ance inflation factors. The inexperienced in both
groups sometimes suggest looking at the determinant

‘of the scaled cross-product matrix. In this section we

will discuss these numbers and their relations.

If a numerical analyst who is familiar with the art
of matrix computations were asked for a reliable way
of detecting near collinearity (or rank degeneracy as
he might say), his first reply would probably be to
compute the singular value decomposition and look at
the smallest singular value. This is equivalent to look-
ing at the number '

3.1) inf(X) & min | Xvl,

whose square is the smallest eigenvalue of the cross-
product matrix A. The justification is the following
result due to Eckart and Young (1936), as generalized
by Mirsky (1960):

inf(X) is the spectral norm of the smallest matrix E
such that X + E is exactly collinear.

Thus inf(X) measures the absolute distance of X from
collinearity.

The fact that inf(X) is an absolute measure makes
it difficult to interpret in the absence of information
about the size of X. There are two solutions to this
problem: scale X according to some fixed convention
before computing inf(X), or scale inf(X) itself. Nu-
merical analysts have tended to follow the latter
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course, which leads directly to our second measure of
collinearity—the condition number.
The condition number of a matrix X is defined by

(3.2) K(X) = [ XX,
Since inf(X) = || X' || 7}, it follows that

inf(X)
rxn -

(X)) =

Thus ™ is just inf(X) scaled by the norm of X. This
means that the condition number is always greater
than one (cf. (2.7) and (3.1)), and it does not change
when X is multiplied by a nonzero constant.

In terms of the condition number, the Eckart-
Young-Mirsky theorem reads as follows.

The smallest matrix E for which X + E is collinear
satisfies

(3.3) LEN/IX] = «(X).

In other words «~! gives a lower bound on the relative
distance to collinearity.

We shall give assessments of inf(X) and «(X) a
little later. But first let us use the Eckart-Young-
Mirsky result to dispose of the unhappy notion that
det(A) bears a close relation to near collinearity. The
rationale is that when X is exactly collinear, A is
singular and det(A) = 0. Consequently, a small value
of det(A) ought to indicate near collinearity.

One difficulty in working with the determinant is
its excessive sensitivity to scaling. This may be seen
from the relation det(aA) = aPdet(A), which implies
that a 10-fold variation in the size of a 10 X 10
matrix A makes a 10 G-fold variation in the size of
det(4). Anyone rash enough to make judgments about
the size of such a sensitive number must expect diffi-
culties.

Even when X has been scaled so that its columns
have length unity, the determinant is unreliable. For

example, consider any matrix X whose R factor in the

QR factorization (2.3) has the form illustrated below
, forp=25: .

1 1/v¥2 1/¥3 1/v4 1/v5
0 1/v2 1/v3 1/vV4 1/V5
0 0 1/v3 1/v4 1/5
0
0

Rs
0 0 1/vV4 1/v5
0 0 0 1/v5

(We leave it as an exercise to construct a seemingly
uncontrived, centered regression matrix X with this
property.) If A, denotes the corresponding cross-
product matrix, then from (2.4) det(4,) = det*(R,) =
1/p!. Thus the determinant of A, decreases factorially

with p. However, it is easily verified that

1 -1 0 0 0
0 V2 V2 0 0
Ri*=1]10 0o V3 -v3 o0 |,
0 0 0 V4 -4
0 0 0 0 5

so that | Ry < p and inf(X) = |R;'|™' = p~~
Hence with increasing p the regression matrix suffers
a gentle descent into collinearity, but not at the ex-
aggerated rate suggested by the determinant.

Returning now to inf(X) and «x(X), we note that
these numbers have the virtue of simplicity. The con-
dition number, in particular, carries its own scale with
it. Thus, if the columns of X are roughly equal in size
and «(X) = 10° then we can attain collinearity by
perturbing the elements of X in their fifth digits.

Moreover, a body of useful perturbation theory has
been cast in terms of the condition number. For ex-
ample, let b = X'y be the gstimated vector of regres-
sion coefficients and let b = X'y be the estimated
regression coefficients for the perturbed regression
matrix X = X + E. Then

Ib—0ol _ Il E|

Ol 120
TR

IEN__lel
TXnnxunol

+O(IE?),

where é = y — Xb is the residual vector (see Stewart
(1977) for this and other related inequalities). Thus
the condition number can be used to predict the effects
of errors in the regression variables on the regression
coefficients.

However, the condition number has its defects. The
statistician who attempts to use a bound like (3.4) will
find that it is disappointingly pessimistic. The reason
is that the bound is derived by repeated applications
of the triangular and submultiplicative inequalities for
matrix norms, and each application represents an-
other backing off from sharpness. Numerical analysts
are not overly concerned with this because their errors
originate from rounding on a digital computer and are
very small (see for example Wilkinson, 1963). How-
ever, the statistician must deal with measurement
errors or errors made in recording data to a small
number of figures, and here the lack of sharpness
hurts.

Moreover, the condition number has its own scaling
problems. For if we partition

(35) X = (X*xp)

and write X, = (X,ax,), where a approaches zero,

(3.4) + *(X)
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then limao | X« = | X, || and X} = a7 | x| It
follows that

K(Xa) = a I X M " || — oo

Thus by scaling down any column of X, the condition
number can be made arbitrarily large. This situation
is known as artificial ill-conditioning.

The remedy for this problem is to adopt a standard
scaling of the columns before computing the condition
number; but what the standard should be is by no
means clear. Belsley, Kuh, and Welsch (1980, pages
183-185) argue that the columns of X should all be
scaled so that they are of equal length on the grounds
that this scaling approximately minimizes the condi-
tion number, a result due to van der Sluis (1969).
Moreover, if the quantity | X| in (3.4) is to truly
represent the size of the matrix X, all the columns x;
should be represented in equal measure—something
that equal column scaling achieves.

However, this last heuristic argument cuts several
ways. For example, if | E || in (3.4) is to truly represent
the size of E, then X should be scaled so that the
columns of E have equal norms (additional arguments
for this kind of scaling have been given by the author
(Stewart, 1984), and it is recommended by the authors
of LINPACK (Dongarra et al., 1979)). Furthermore,
although the righthand side of (3.4) gives us precise
information about the accuracy of the larger compo-
nents of b, it is less precise about the smaller ones
(cgnsi@er, fqr example, the mee}ning of the inequality
l6=">5l/1b] = 107 when b = (1 107" 1072 107
107497T). Thus the problem should also be scaled so
that the components of b are roughly the same size.
Needless to say, none of these three scalings have to
be compatible.

To summarize, although the condition number is a
useful indicator of collinearity, it is too crude for
statistical applications. This is because it uses matrix
norms to distill a large amount of information into a
single number. What is needed is a set of numbers
that can probe the effects of collinearities more deli-
cately. Fortunately, two closely related sets of such
numbers have been around for a long time, under the
names of variance inflation factors and multiple cor-
relation coefficients.

Our first order of business is to connect these num-
bers with the distance inf(X) of X collinearity. Since
the definition of variance inflation factor presupposes
that the cross-product matrix is a correlation matrix,
for now we will assume that the matrix X has been
centered and scaled so that XTX is a correlation
matrix.

Let us first suppose that X is nearly collinear in the
sense that inf(X) is small. Let v be the vector for

which the minimum in (3.1) is attained and write
v = (v --- vp)". Suppose without loss of generality
that the largest component of v is v,. Since | v | = 1,
we must have |, | = 1/vp. If we set u; = v;/v,, then

Il Xp — M1X1 — M2X2 — -+ — HUp-1Xp-1 [

(3.6)
= | 5! |inf(X) = Vp inf(X).

-, ip-1 be the regression coeffi-
-, Xp—1 t0 xp, and let

Now let a1, a2, -
cients obtained by fitting x;, x2, - -

_1 def A « «
(3.7) Kp1 = Il Xp — M1X1 — MoX2 — - T Mp—1Xp-1 Il

By its very definition, «,' must be smaller than the
righthand side of (3.6). Consequently we have the
relation

k;' < Vp inf(X),

so that a near collinearity in X must make itself felt
by at least one of the numbers «1%, k3%, - - -, k5" being
small (here the other numbers «;' (j < p) are defined
in analogy with «,").

Before we relate the numbers «;' to variance infla-
tion factors and multiple correlation coefficients, let
us derive the reciprocal relation between these num-
bers and near collinearity. Suppose that of all the
«;%, the number «," is the smallest. If we define v by

T = (fups --- ﬁp—l - 1)
i+ ai+ -+, + 17

where the g, are the coefficients appearing in (3.7),
then || v || = 1, and it follows that

-1
Kp -1

R =2 = Kps
pr+pzt+ - Fpupa t+1

inf(X) =

so that the smallest of the «;' is a bound on the
distance to collinearity.

To establish the connection between «," and other
well known quantities, we shall first show that

(3.8) Kp' = Dpps

" where ppp is the (p, p)-element of the R factor

in (2.3). Let X be partitioned as in (3.5) and let
m = (1, fg, - - , fip-1)"- Then m is the unique vector
satisfying

| x, — X,m | = min.
Since the norm is unchanged by orthogonal transfor-

mations, we may multiply x, — X, m by the orthogonal
matrix Q from the QR decomposition to get

% = X,mll = 11 @ (x, — X )|

|Gz)- (%) )
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where we have partitioned

(3.9) R= <R5* ’*P).

Ppp

This norm is clearly minimized when i = R .r,, and
its minimum value, which by definition is %, is pyp.
This establishes (3.8).

It now follows from (2.6) that «2 is the (p, p)-
element of the inverse cross-product matrix A™". But
since A is a correlation matrix, this is just the pth
variance inflation factor, so called because the vari-
ance of the pth estimated regression coefficient is
apVe? (Marquardt, 1970). Since reordering the col-
umns of X simply reorders the diagonals of A7}, it
follows by interchanging the last column of X with
the jth that

2=aY (j=1,2,---,p).

Kj Ji

(Note, incidentally, that since we have assumed that
| x,]| = 1, by (3.7) we must have x, = 1. This is an
independent verification of the well known fact that
the variance inflation factors are greater than one and
really do inflate variances.)

The multiple correlation of x, with x;, x2, ---,
Xp-1 18 by definition the simple correlation of x, with
the predicted value X,m. There is a wealth of expres-
sions for these numbers. In particular, from Seber
(1977, (4.30)) it follows that if R; denotes the multiple
correlation of x, with the other columns of X then

Rj =1 — K]'_Z.

Thus multiple correlations near one are associated
with near collinearities. This has been noted in the
literature, simply on the basis of the definition of
multiple correlation. The above development provides
a precise, quantitative connection.

In defining «;', we have presupposed correlation
scaling. However, numerical analysts, who are equally
affected by collinearity, seldom bother with such scal-

ing in solving least squares problems. It is therefore |

desirable to produce a definition that is independent
of scaling. We will do this in the next section, where
" we will define our collinearity indices and derive their
properties.

4. COLLINEARITY INDICES AND THEIR
PROPERTIES

In this section, building on the results of Section 3,
we will introduce numbers, called collinearity indices,
which are scale invariant measures of collinearity, and
then describe their properties. With one exception,
the results in this section are rather easy to establish
and will be left as exercises (a useful technique is to

use the QR decomposition to establish the result for
the pth index and then generalize).

Definition

The numbers «; of the last section were defined
under the restrictive assumption that the regression
matrix X was centered and scaled. To remove this
restriction, we note that from (3.8) to multiply x; by a
constant is to divide «; by the same constant. Hence,
if we augment our original definition by a factor of
[ x; ||, we will always obtain the number x; however
the columns of X have been scaled. This leads to the
following definition.

Forj=1,2, .-, p the jth collinearity index is the
number

def +
(4.1) Ml EANEAG B

The analogy in definition and notation between «;
and the condition number (3.2) is deliberate. Like the
condition number, the collinearity indices are invari-
ant under scaling; however, whereas the condition
number is invariant only under multiplication of X by
a constant, the collinearity indices are invariant under
any column scaling.

Since our collinearity indices (or rather their
squares) are already present in the statistics literature
as variance inflation factors, the introduction of new
nomenclature requires some justification. There are
four reasons why a change is desirable.

First, we have already noted that the scale invari-
ance of the definition (4.1) makes it useful to people,
like numerical analysts, who seldom bother with scal-
ing. The notation «; also emphasizes the link with the
condition number, which is widely used by numerical
analysts and not unknown to statisticians.

Second, as we noted in the introduction, variance
inflation factors and multiple correlations were not
introduced to analyze collinearity in regression
models, and their names show it. The nomenclature
adopted here is more to the point.

Third, collinearity coefficients vary linearly with
the relative distance to exact collinearity, whereas
variance inflation factors vary as the square. Not only
are the collinearity coefficients more readily inter-
preted, but their use removes unsightly square roots
from formulas.

Finally, the use of collinearity indices represents a
commitment to cast results in terms of relative errors.
To see the utility of this, compare the statement we
are safe if the components of x; are accurate to three
figures with the statement we are safe if the errors in
the components of x, are less than 10. The former
makes sense in itself; the latter is hard to interpret
unless the size of x; is known.
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Elementary Properties
Here we shall recapitulate the results of Section 3.

o If X has correlation scaling, then

K? = aj(-;l);
L.e., the square of the jth collinearity coefficient is
the jth variance inflation factor.
e If R; denotes the multiple correlation between x;
and the other columns of X, then

Rj = V1 — Kj-_z.
o If pyp is the (p, p) element of the R factor of X,
then .
(4.2) g = 1%l
Ppp

e The index «; is greater than or equal to one, with
equality if and only if x; is orthogonal to the other
columns of X.

o If X has unit column scaling, then

max{k;} < inf 1(X) < vp max{x;},
and

max{x;} < x(X) < p max{k;}.

Another Relation with Collinearity

An unsatisfactory aspect about the last item above
is that the columns of X are required to have norm
unity. However, there is a more direct relation between
collinearity and collinearity indices.

The smallest perturbation e; in x; that will make X
exactly collinear satisfies

led _
TR

This result was stated by the author without proof

(4.3)

in 1984. A proof of a more general theorem may be -

found in Golub, Hoffman, and Stewart (1984). Note
the analogy between (4.3) and (3.3). Here, as there,
" everything carries its own scale: collinearity can be
attained by a relative perturbation of size ;.

A Single Variable Is Not Collinear

Collinearity is a group phenomenon. A single col-
umn cannot alone be a source of collinearity, since it
must be collinear with other columns. The equivalent
statement for near collinearity is that if one collinear-
ity index is large then another must also be large. The
following inequality quantifies this statement (a proof
will be found in the Appendix).

Forj=1727""p

k-1
(4.4) max k; = \/ 1+ —+——.
i) (p - 1)

This result has been included to discourage the
naive use of condition coefficients in selecting a vari-
able to be thrown out of an unsatisfactory model.
The temptation here is to choose the variable with
the largest condition coefficient. However, (4.4) says
that where there is one large coefficient there will
also be others. Something as important as selecting
or rejecting a variable should have a sounder basis
than minor variations in the magnitudes of large
collinearity indices.

Effects of Centering

Although the collinearity indices are invariant un-
der column scaling, they shrink wheén the regression
matrix is centered; however, they do it in an interest-
ing way. To see this, let X be partitioned in the form
X = (x,X,). In our application, x;, will be a column of
all ones representing the constant term, but that is
not necessary for what is to follow.

Now centering amounts to computing the matrix
X, = PX,, where P is the projection onto the space

orthogonal to x; (e, P =1 — || x| “2x,xT). Conse-
quently, for any column %; of X,, we have
(4.5) &l < N,

which certainly has potential for decreasing the colli-

nearity indexes.
Let us now partition

()
X' = <x1 )
X

Then it can be shown that X} = X", whence

(4.6) B0 = 1™
It now follows from (4.5) and (4.6) that
=150 E" ] < lallx"] = «.

Thus the collinearity index does indeed decrease under
centering, but all of the decrease comes from the
decrease in the norm of x,.

This phenomenon is a consequence of the fact that
our definition of collinearity index compels us to work
with relative errors. Consider, for example, the size
(4.3) of the smallest perturbation of column j that
makes X exactly collinear. The absolute size of this
perturbation is not affected by centering, but the
relative error |l e;||/|l x, || becomes larger when x, is
replaced by the smaller %,. To compensate for this, «;
must become smaller, precisely in proportion as x,
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becomes smaller. We will meet with this phenomenon
again in §6.

5. SIGNIFICANCE

If ||x;]] = 1 then «? is the jth variance inflation
factor, and the standard deviation of the jth regression
coefficient is

g; = Kjo.

Thus near collinearity, as it is made manifest by large
collinearity indices, is associated with large variances
in the regression coefficients. This undesirable aspect
of near collinearity has frequently been noted in the
literature.

However, it is not a simple matter to state precisely
what we have to fear from large variances. Informally,
the problem is that a large variance could swamp an
important regression coefficient. But if we attempt to
replace the vague term “important” with the mathe-
matically precise term “statistically significant,” we
become involved in a paradox; for a statistically sig-
nificant regression coefficient is almost by defini-
tion one that is substantially greater than its standard
deviation. This suggests that if we wish to use col-
linearity indices to assess the ill effects of near
collinearity on regression coefficients, we must intro-
duce concepts from outside the classical model. The
following definition does just this.

In the model (2.1), the importance of the variable x;
is the number

(5.1) , = Bl
Iyl

In the expression
y=B1x1 + Baxa + --- + Bpx, + e

the term B;x; represents 1004;% of the total observed
response, and a small value of ¢; therefore means that
the contribution of x; is unimportant. The point at
which a variable becomes important must be deter-
mined by the application and by the judgment of the
analyst. Most people will undoubtedly feel that a
variable whose importance is greater than 0.5 is not
one to ignore.

Let us suppose that we have chosen levels of impor-
tance )\; above which the x; would be considered im-
portant. Then the model (2.1) must be considered
unsatisfactory if variables with importance above
these levels are in danger of being declared insignifi-
cant. Since the \; must be fixed by extrastatistical
consideration, there is no need to be overly precise
about levels of significance. We shall therefore say
that the model is unsatisfactory if the estimated stand-
ard deviation of a regression coefficient is half the size

of the smallest value of the coefficient that would
make ¢; > )\;. From (5.1) it is seen that this smallest
value is

Iyl
g Eq
The estimated standard deviation of 8, is
(ETH

where ¢ is the usual estimate of ¢. We thus require
that

Iyl

(B

When this inequality is recast in terms of collinearity
indices, it yields the following regression diagnostic.

+ ~
2z 6= N

Having chosen levels of importance \; for the vari-
ables x;, reject the model if for any j

A

g
Iyl

The criterion (5.2) has two particularly nice prop-
erties. First, it is scale invariant, not only with respect
to the scaling of the columns of X but also the scaling
of y. Second, it does not depend on estimates of the

(5.2) IMP; € 2

> A

- regression coefficients; only on the estimate ¢. For ¢

to be a good estimate all that is required is that the
response vector be a linear combination of the col-
umns of X. This will be true even if the model is
overspecified, which is one of the most common
sources of near collinearity.

However, the diagnostic (5.2) is not invariant under

. centering. The difficulty here is not only with the

collinearity indices but with the definition (5.1), which
is also not invariant under centering.

Now there is a sense in which we should be surprised
if the notion of importance were to be invariant under
centering. Centering amounts to removing x;, which
is a column of ones, from the other variables. If x;

. were anything but a column of ones, we would feel

that we had defined a new set of variables—combi-
nations of x; with the remaining variable—and the
importance of the new variables would be open to
reassessment. It is only the simplicity of the centering
operation that makes us take exception to the lack of
invariance in (5.1).

. For example, consider the data in Table 1, which
were introduced by Belsley (1984a) in an interesting
discussion of the effects of centering on collinearity
diagnostics. These data do not look promising, since
their leading figures agree to three places, and the
collinearity indices for the uncentered problem

K1 K2 K3

632 447 447
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TABLE 1
Belsley’s example
X X2 X3 y
1 .996926 1.000060 2.69385
1 997091 .998779 2.69402
1 997300 1.000680 2.70052
1 997813 1.002420 2.68559
1 .997898 1.000650 2.70720
1 1998140 1.000500 2.69550
1 .998556 999596 2.70417
1 998737 1.002620 2.69699
1 999414 1.003210 2.69327
1 .999678 1.001300 2.68999
1 1999926 997579 2.70003
1 1999995 .998597 2.70200
1 1.000630 .995316 2.70938
1 1.000950 995966 2.70094
1 1.001180 997125 2.70536
1 1.001770 1998951 2.70754
1 1.002310 1.001020 2.69519
1 1.003060 1.001860 2.70170
1 1.003940 1.003530 2.70451
1 1.004690 1.000210 2.69532

are rather large. The norm of the uncentered y is
Iyl = 12.1 and the estimated standard deviation is
¢ = 0.00555. Thus the diagnostics numbers (5.2) are

IMP,
0581  0.411

which should give one pause about the model.

Centering does not much affect these results. The
collinearity indices for the centered problem are both
one (the columns of the centered regression matrix
are orthogonal to working accuracy). The norm of the
centered y is 0.0275, and hence the diagnostics are
both 0.4029. The reason that centering has so little
effect is that x,, x3, and y have the same number of
constant leading figures, so that the decrease in the
collinearity coefficients is almost exactly balanced by
the increase in the relative error ¢/| v ||.

Things become more complicated when the number
of constant leading figures is different in the variables
and the response vector. To see this, consider the
diagnostics for the uncentered regression matrix and
the centered y, which are

IMP;
255 180 180

The reason for these large diagnostic numbers is that
the constant part in x;, x,, and x3 inflates their
importance in relation to the comparatively small
centered y. : ‘

I feel that when there is a constant term in the
model, the model should be centered before the im-
portance of the remaining variables is assessed and
the test (5.2) applied. In order for centering to have a

0.411

gross effect on the diagnostic, some variable x; must
have a large constant part, and in fact the larger the
constant part the more “important” the variable be-
comes. Now a large constant part is usually an artifice
of the way the data are collected, especially in the
sciences where it is not uncommon to make very
precise measurements over a narrow range. In these
cases it is appropriate to regard the “importance” of
such a variable as equally artificial. Otherwise put, the
real variable is masked by the large constant part.
Centering simply shows the variable for what it is.

6. ERRORS IN REGRESSION VARIABLES

In this section we shall use the collinearity indices
to assess the effects of errors in the regression vari-
ables. This is a large subject, with a voluminous lit-
erature (Seber, 1977, pages 155-162, and Anderson,
1984, for surveys and further references), and it is
important that we place the material in this section
in context.

Approaches to errors in regression variables may be
roughly divided into two classes. The first approach
attempts to extract useful information from the
regression model in spite of the presence of errors in
the variables. Invariably, some precise information
about the structure of the error is needed; for example,
one may be required to furnish ratios of the variances
of the errors in each column.

The second approach, to which our development
belongs, attempts to determine when the errors are so
small that they can be ignored or tolerated. Again
information about the errors is required; but compared
with the first approach it can be relatively imprecise—
say the orders of magnitude of the variances of the
errors. In many treatments (e.g., Davis and Hutton,
1975, or Beaton, Rubin, and Barone, 1976) the focus
is on the well known asymptotic inconsistency of the
estimates. When n is large, the errors tend to bias the
estimates in a fixed way, which can be approximated
from a rough knowledge of the size of the errors. The

" resulting diagnostic is to reject the model when the

bias is unacceptably large.

The principle difficulty with the asymptotic ap-
proach is that the limits are attained so slowly (as
1/vn) that it is hard to know what to make of the
diagnostics when n is small. Accordingly, we shall
attempt to ascertain the bias in regression coefficients
due to errors in the variables for fixed n. However, in
its full generality this problem is analytically intrac-
table, at least in the sense of yielding realistic results.
It is easy to use norms to get suggestive inequalities
like (3.4), but they are too crude for practical work.
Consequently, we will analyze the case where the
model is exact (y = Xb) and only a single column is
in error. In spite of the special nature of this case, it
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gives a great deal of insight into the way errors in
regression variables cause bias and other untoward
effects in regression coefficients.

As we did in Section 3 we shall derive our results
for the pth collinearity index in such a way that the
generalization to the other indices is obvious. Al-
though the following exposition is not technically very
demanding, it is detailed, and to aid the reader we
have broken it into short subsections.

The Problem
Let us suppose that we have the exact linear relation
(6.1) y = Xb;

1.e., eis zero in (2.1). Let X be partitioned as (3.5) and
let an error vector e, be given. Define the perturbed
set of regression b as the solution of the least squares
problem of minimizing

y— (X, x, + e,,)(%*) H .

We wish to determine how b compares with b.

(6.2)

Formulas from the QR Decomposition

The solution of the above problem is best cast in
the form of the QR decomposition (2.2). Let @ be
partitioned in the form

Q= (Q* qp Q).

<QI> <R** r*P>
qg‘ (X, xp) = 0 o,
QT ‘ 0 0
a» ly=\%&]
QT 0

If (6.1) is multiplied by @, then

R** r*P b Z*
0 pmp (,3*> =\&)s
0 0 P 0

from which we get the following formulas for the
components of b:

Set

and

(6.3) Bp = —fﬂ
Ppp
and
(6.4) b, = R;;z* - ,BpR;fkr*p.

To derive corresponding formulas for the compo-

nents of b, note that the norm of the vector in (6.2) is
not changed when it is multiplied by Q. Hence if we

set
Qr g\
qg €=\
QT hp

then b is determined by minimizing

2y R** Typ + 8« 5
| — 0 pop + Yp ,é*
0 0 hp P

The solution of this problem is easily seen to be

5 _ (Ppp + 'Yp)g‘p
(6.5} b = (pop + 7p)2 + hghp

and

(66) 5* = R;iz* - IBNPR;}k(r*P + g*)

We are going to determine the effects of the error
vector e on g, by comparing (6.3) with (6.5), but first
we must pause to consider the error itself.

The Error

As we indicated in the introduction to this section,
to determine the effects of errors in regression vari-
ables, the analyst must supply independent informa-
tion about the errors. To fix on something definite,
we shall assume that the components of e, are uncor-
related random variables with mean u, and variance
o2. The analyst is then expected to provide a rough
estimate of

(6.7) e = Vui + di.

For later use, we will require an estimate of h} h, =
| @Te, ||% 1t is easily verified that

E(I Qe I*) = uz Il QI1 1% + (n — p)oj,

. where 1 denotes the vector of ones. Since @, has

orthonormal columns, unless 1 bears some special
relation to Q., the elements of @11 should all be
about unity in magnitude, and hence

(6.8) 1QI1|* = (n — p).
Thus if (6.8) is valid, we may approximate
(6.9) hyh, = (n — p)e2.

However, there is one important case where (6.8)
does not hold: when the model has a constant term.
For in this case the columns of @, are orthogonal
to 1, and hence QT1 = 0. In this case we should
replace ¢, in (6.9) with ¢,, or what is equivalent
take p, = 0 in (6.7).
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In the same way we will approximate the size of
vp by

(6.10)

|7P| iepa

where we take u, = 0 in (6.7) if the model has a
constant term.

We shall use (6.9) and (6.10) freely in deriving our
results. However, since they are merely rough approx-
imations, it is important to distinguish which results
depend on them. We shall signal this by placing a dot
over any relation involving them.

Bias in 4,

Comparing (6.3) and (6.5), we see that the error e,
affects the coefficient 8, through the numbers hh,
and v,. It will be convenient to look at each of these

effects separately, beginning with the former.
If we set v, = 0 in (6.5), we get

3, = PepSp
? P;zzp + hg hp

Since

w1
ppp + hphy " pyp

)

we see that 8, < B,; that is, the effect of hyh, is to
bias 3, downward. Let us agree to measure this bias
by the relative error

Bp — Bp — h; hp
Bp pzzw + hpT hp

REbias =

If we use the approximation (6.9) for h h,, we get

(n — p)ej

REpies = 477" .
b p,?;p + (n — p)e,?;

Finally, if we set

2
(6.11) 75 =(n— p)%p = (n = p)x; i ;5"2,
_then
‘ s
(6.12) RE.i.s = 1—+—T—§ .

The right-hand side of (6.12) provides an approxi-
mation to the relative error due to h,. When 72 is
small, it is essentially the square of the product of
a relative error vn — pe,/| x,|| in x with the pth
collinearity index. Thus the collinearity index serves
as a factor showing how relative errors in the columns
of X are amplified in the bias in the regression coef-

ficient.

The Effects of v,

Turning now to the effect of v, let us set h, = 0 in
(6.5) to get v
~ &
(6.13) Bp=—"".
g Pop + Yp

If we define the relative error in 8, due to vy, by
:3p ? :3p

Bp

RElin =

)

then it is easily seen from (6.3) and (6.13) that

|'Yp|

Ppp

R/Elin =
Finally, if we use the approximation (6.10), then

L€ &
RE;, = 2 = Kp—p .
Ppp [EA

In this way we can approximate the relative error due
to v.

(6.14)

Relation between RE,.; and RE;,
From (6.12) and (6.14) it follows that
(n — p)RER,

Since REj;, depends linearly on ¢, (hence the subscript
lin), we see that for fixed n as the error decreases,
RE..s decreases quadratically and must ultimately
become unimportant compared to RE;,.
On the other hand, if we invert (6.15) then
REbias

REn = \/<n ~ 21 — REom)

Hence if with increasing n the number RE,;, ap-
proaches a constant (as in the models of Davies and
Hutton (1975) and Beaton, Rubin, and Barone
(1976)), then REy;, ultimately becomes unimportant.

(615) REbias =

Stability of the Collinearity index

One of the major problems with diagnostics for the
effects of errors in the variables is that they must be
computed from the perturbed regression matrix and
are therefore contaminated by the very errors whose
effects they are supposed to diagnose. We must there-
fore insure that this contamination is not great enough
to invalidate the diagnostic. Although a formal anal-
ysis is possible, here we shall present an informal
analysis based on our simplified model, which has the
advantage that it shows clearly how the diagnostic is
affected.
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The number 7, on which our approximation to
REias depends must be calculated from p,,. In practice
we will be unable to compute p,, directly, instead we
must compute an approximation p,, from the per-
turbed regression matrix. If we ignore the effect of v,,
we get

f’zzzp = pzzzp + hghm
and, estimating h h, by (6.9),

(6.16) brop =

Thus the number we actually compute is

Ppp + (n— p)ef,.

2 2
s (n-p) L= (n-p) m—P—s.
i Pzzzp pzzw + (n — p)ef,
Dividing the numerator and denominator of the right
hand side of this expresssion by pp,, we get

2
Tp

1+'r,2,'

(6.17) 7L =

Although the relation (6.17) is only approximate, it
suggests that errors in x, tend to depress the diagnos-
tic, rendering any diagnostic based on (6.12) optimis-
tic. However, if we invert the relation and write

we see that if 77 < 0.1, then 72 < 0.112 and the effect
of the error on the dlagnostlc is small. On the other
hand, if 72 < 0.5, then 7} can be as large as one, and
the diagnostic can be quite misleading. For this reason
we recommend that 75 not be used in a diagnostic
unless it is less than Q.1.

Similarly, we see from (6.16) that the relative error
in ppp 18
ﬁgp — Pzzvp

- .2
= 75.

pzzvp
Consequently if 72 < 0.1, we can use p,, in computing
RE, in (6.14).

A Diagnostic Procedure

In this subsection we will collect the results of the
preceding subsections into a diagnostic procedure.

Let the errors in the jth column of X have mean u;
and variance o}, and set

. = Vu? + o? if there is no constant term,
! o; otherwise.

Fix thresholds A\yas < 0.1 and Ay, < 0.32 for the
relative errors REy.s and REy,. Letting «; denote
the jth collinearity coefficient computed from the

perturbed regression matrix, set

= (n — pkj——,
I pll2

and reject the model if for anyj
2

T
. Eias‘= ! >}\ias
(6.18) REpias,; 1+ 12 b
or
T
6.19 RE;, = === > Min-
( ) lin, j m— 1 Kj" 1" 1

Comments on the Diagnostic

In this subsection we will offer some observations
on the diagnostic procedure just proposed.

Limitations. Since the diagnostics are based on the
analysis of a simplified model, they cannot give abso-
lute security. The analysis is straightforward enough
that any problem failing the diagnostic is surely sus-
pect (the trouble with a norm-based analysis of the
general problem is it yields diagnostics that reject
tractable models). However, a model that passes the
diagnostic is not home free. For example, we have not
considered the effects of e, on coefficients other than
By, although one can make an a posteriori assessment
from (6.4) and (6.6). Again, we have not considered
the effects of the error e in the observations. Although
there is reason for believing that if RE;, is small
enough, errors from these sources will be tolerable,’
this must be left for future analyses or experiments to
decide.

Invariance. It is obvious that scaling a column of a
regression matrix will not affect the influence of errors
in that column, since the error is scaled along with
the column. Further reflection will show that center-
ing also makes no difference, except to remove bias
from the error. This corresponds to the fact that the
diagnostic inequalities (6.18) and (6.19) are invariant
under both scaling and centering.

The Diagnostics in Terms of 7;. The numbers 7;
represent a combination of collinearity indices and
the errors in the regression variables, and with a little
practice can be interpreted by themselves. Table 2 is
given as an aid. First for selected values of REy;, it
gives values of 7 such that 72/(1 + 72) = REp.s. Then
for each value RE,.. and for selected values of
RE;in, it gives the smallest values of n — p such that
T/Vn —p= RE]in.

Since the bias behaves quadratically with the error,
we see that a small decrease in 7 causes a big decrease

! For example, the inclusion of e in the model adds a term of the
form h}h, where h = QTe, to the numerator of (6.5). Not only does
this term have mean zero, but its influence wanes as h, decreases.
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TABLE 2
Critical values of T and n — p

n — p for values of REy;,

REbias T
01 005 001 0.005 0.001
0.1 0.34 12
0.05 023 " 6 22
0.01 0.10 2 5 102
0.005  0.07 1 3 51 202
0.001  0.03 1 1 11 41 1011

in RE.. On the other hand, once a level of bias has
been chosen, n — p must be very large (roughly
RE;L) to bring RE;, down to the same level. How-
ever, if the errors have mean zero or the model has a
constant term, then it is not as critical to have a small
value of REj;,. To see this note that if REy, < 0.1, 3,
in (6.13) is well approximated by 8,(1 + v,/pp). Thus
the contribution of v, is to add to 8, an approximately
unbiased term whose standard deviation is less than
| B | REjy; i.e., less one-tenth the size of 8,. In other
words, the linear errors, provided they are not too
large, increase the variability of the regression coeffi-
cients, but do not bias them. However, if REy;, is too
large, then it will introduce biases of its own, owing to
the singularity of (1 + v,/pp) ™" at vp/ppp = 1. For this
reason we have recommended that A\, < 0.32 in our
diagnostic.

Assumptions about the Errors. For convenience we
have introduced stochastic assumptions about the er-
ror; however, they should not be taken too seriously.
The main use of randomness was to justify the ap-
proximations (6.9) and (6.10). But clearly all that is
required is that if e, is written e, = u,1 + w,, where
1"w, = 0, then the component of @ w, are all about
g, in magnitude.

Our assumptions fail for polynomial regression. For
example, suppose the rows of X are given by (1 & £7)
and we observe perturbed values £; + #;. Even if the #;
meet our assumptions, the errors in the third column
will be &m:; + 1%, and their sizes will vary with §&;.
Obviously, this and other models in which the columns

_are not independent will require a.separate analysis.

Relation to Other Measures. Hodges and Moore
(1972) develop a general expression for the expected
bias that is closely related to ours. They assume that
X is perturbed by a matrix E whose elements are
independent with mean zero, the elements in e; having
variance o?. By expanding b = (X + e)'y in a series
and taking expectations in the second order terms,
they obtain :

EG)=b—-—(n—m—1)A"'Zb,

where T = diag(s?, 03, - - -, ¢2). The fact that their
estimate of bias essentially reduces to ours when only

one g; is nonzero, tends to confirm the validity of both
estimates. However, it is not clear when we can use
the perturbed values of A and b in their estimate.

Under the assumption that X is perturbed by a
constant matrix U, Swindel and Bower (1972) derive
the bound

voTUTUb
I

for the relative bias in an arbitrary linear combination
of the components of b. However, here the bias is
taken relative to the variance of the linear combina-
tion. Moreover, since U is regarded as fixed, the bias
includes linear terms, which, as we observed above,
contribute more to the variability of the regression
coefficients than to their bias. Thus the measure is
best suited to problems where the same regression
matrix is to be used to analyze several different re-
sponses. Davies and Hutton (1975) discuss when b
and ¢ can be used in place of b and ¢.

Both Davies and Hutton (1975) and Beaton,
Rubin, and Barone (1976) introduce diagnostics that
amount to
(6.20)

2
Tj,

Tt

J

i.e., the sum of our diagnostics for REy;,s when the 7;
are small (cf. (6.11)). Thus the diagnostics are closely
related, with ours being less conservative. However, it
must be kept in mind that (6.20) was derived to
measure asymptotic (large n) bias, whereas ours
measures the bias for fixed n.

An Example

Let us return to the example of Table 1 and assume
that the only error is in the rounding of the data.
Unfortunately, this makes the errors fall into two
categories: numbers less than one will have errors of
order 10~® while those greater than one will have errors
of order 107°. We will take a worst case approximation
and set ¢ = 107°. With this, the diagnostics to be
compared with REy;, are both 0.17 - 107, and those
to be compared with REj;, are 1072, Thus at this level
of error, the problem is quite insensitive.

On the other hand if we set ¢; = 0.01, which corre-
sponds to an example in Belsley (1984a), we get
diagnostics 0.94 and 1.0. Thus, at this level of error
the problem is completely intractable. Note that our
model predicts a strong downward bias in the regres-
sion coefficients, which is exactly what Belsley
observes.

Another Example

Belsley’s example was concocted to illustrate some
of the issues surrounding centering and is patently
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TABLE 3
Woods, Steinour, and Starke problem

X1 X2 X3 X4 X5 Yy
7 26 6 60 2.5 78.5
1 29 15 52 2.3 74.3
11 56 8 20 5.0 104.3
11 31 8 47 2.4 87.6
7 52 6 33 2.4 95.9
11 55 9 22 2.4 109.2
3 71 17 6 2.1 102.7
1 31 22 44 2.2 72.5
2 54 18 22 2.3 93.1
21 47 4 26 2.5 115.9
1 40 23 34 2.2 83.8
11 66 9 12 2.6 113.3
10 68 8 12 2.4 109.4

artificial. The data in Table 3 concerns the heat gen-
erated by cement during curing and were collected by
Woods, Steinour, and Starke (1932). The independent
variables are components of the cement, measured as
percent of the whole, and the dependent variable is
the heat generated. The data are actually one of a
sequence of data sets taken at different times in the
curing process, and the originators fit a linear model
to each set. Daniel and Wood (1980, Ch. 9) (where the
data were taken from) give a masterful treatment of
the entire set of data using nonlinear least squares.

We first need to assess the size of the errors in the
variables. Since the details of the experimental setup
are not available, we shall assume that the data are
accurate to all reported figures, subject only to round-
ing error. Following Beaton, Rubin, and Barone
(1976), we will model as a uniformly distributed error
over [—0.5, 0.5] - 10%, where ¢ is the digit at which the
rounding occurs (i.e., t = 0 for the first four columns
and t = —1 for the last). The standard deviation of
this error is 10Y/ V12. Hence we take for our values
of &

& . &2 €3 €4 &5

0.289 0.289 0.289 0.289 0.029

This gives relative errors ¢/ | x; || of

&/ Il x|l
0086 .0016 .0060 .0024 .0030

There is reason to believe that this is a model which
cannot support a constant term, since the rows in the
regression matrix sum to about 100; i.e., the compo-
nents measured make up the entire sample. Conse-
quently, the inclusion of a constant term would make
the model nearly collinear. This is confirmed by com-
puting the collinearity indices of the model with a
constant term appended:

Ko K1 Ko K3 K4 K5

148 14 75 21 50 6

From (4.3) we see that a relative error of 1/75 = 0.013
in x, can make the problem collinear—a cause for
concern since x; is reported to only two figures. More-
over, the REy;, diagnostics for the first four variables
are all approximately 0.12, which is too large for
comfort.

The collinearity indices for the problem without
constant term are

K1 K2 K3 K4 Ks

27 42 32 24 39

which are suitably small. We now get for our bias
diagnostics

REbias
.0041 .0004 .0029 .0003 .0011

and for the linear diagnostics

RElin
0227 .0067 .0191 .0057 .0116

From this we see that if the numbers reported are
accurate, the inaccuracies due to their rounding have
little effect. It is therefore appropriate to go on to
compute the diagnostics for importance. Since ¢ = 2.6
and ¢/ v | = .0074, we have

IMP;
0391 0622 .0466 .0356 .0569

which says that the model can detect variables of quite
small importance. Thus the collinearity indices have
alerted us to the dangers of inserting a constant term
in the model and have certified the model without a
constant term.

Another Diagnostic

Collinearity indices have the nice property that they
can be computed without any knowledge of the im-
portance of regression coefficients or the sizes of the
errors in the regression variables. This means that the
analyst is not forced to come up with importance or
error estimates at the time the data is run through a
computer. However, the price paid for this is that he
must now work with p separate numbers. Things are
different when error approximations can be furnished
at the start of the analysis. In this subsection we shall
show how to combine the errors with the regression
matrix to produce a single, worst case diagnostic.

Let us suppose that the rows of the error matrix £
are uncorrelated random vectors with mean zero and
common variance X. For the moment, assume that =
is nonsingular. If we replace X by Xy = X="? and E
by Es = EZ~2, then we shall have transformed the
problem into one with uncorrelated errors with mean
zero and variance one. Let bs = 2'2b denote the
transformed regression coefficients.
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We now ask: Of all linear combination v by, which
is most sensitive to the errors? To answer this question,
assume without loss of generality that v | = 1 and
let (V, v) be an orthogonal matrix. Set Z = (Z, z) =

X:(V, v) and let
D** d*p
0 Opp

be the partitioned R factor of Z. Now the pth regres-
sion coefficient for the matrix Z is v*bs. Consequently,
if we agree to measure the sensitivity of v7bs by the
pth diagnostics (6.18) and (6.19) with ¢; = 1, then the
most sensitive linear combination is that one for which
0pp 1S minimized.

In fact the minimum is attained for that vector v
for which y, L inf(Xs) = | Xsv .2 To see this, note
that for this choice of v we have ¥, = V62, + [ d,, [I®
and since for any choice of v we have ¥, < §,,, it
follows that d,, = 0 and hence 6,, = V.

Thus if we set

__vyn—p
"7 inf(Xz?)°
and estimate the size of the error by one, the diagnos-

tics for the transformed problem become

T2

(621) 1+ T2 > REbias
and

T
6.22 ———— > REj,.
( ) m 1

The inconvenient restriction that ¥ be nonsingular
may be removed by observing that 7 has the alterna-
tive definition

(6.23) r=+n—p|Z2X"].

Since this is continuous in 2, the singular case can be
treated as a limit of the nonsingular case.

For the Woods, Steinour, and Starke problem
7 = 0.0802, and the diagnostics (6.21) and (6.22)
are, respectively, 0.0064 and 0.0284. This is in agree-
ment with our previous analysis using collinearity
coefficients.

The number 7 as defined by (6.23) has the drawback
that the spectral norm || ZV2X"| is difficult to com-
pute. If in place of the spectral norm one uses the
Frobenius norm (2.8) and if further X is diagonal, then
7 reduces to (6.20), i.e., the diagnostic proposed by

2Since inf(X) is the smallest singular value of X (Golub and
Van Loan, 1983, Chapter 1), the letter ¥ here stands for psingular
value. Puns aside, ¢ would not be a bad notation for both statisti-
cians and numerical analysts to adopt (the latter use o, which is
impossible for the former).

Davies and Hutton (1975) and Beaton, Rubin, and
Barone (1976).

7. CONCLUDING REMARKS

Although we have given a continuous mathematical
exposition of our subject, the parts a person would
want to use in practice are scattered in pieces through
the last six sections, and it is desirable to have some
sort of recapitulation. Perhaps the best way to do this
to imagine ourselves documenting a regression pack-
age that uses collinearity indices. The relevant section
might read as follows.

Collinearity Indices

Collinearity. A regression problem is said to be col-
linear when there is a nontrivial linear combination of
the variables that is zero. Collinear problems suffer
from a number of difficulties. For example, the cross-
product matrix A = XX is singular, and there are an
infinite number of regression coefficients that minimize
the residual sum of squares. The cure for collinearity is
to furnish additional information that makes the
regression coefficients well determined.

Fortunately, regression problems with exact collin-
earities usually arise in circumstances where it is clear
how to fix them. Far more difficult to handle are near
collinearities, in which a linear combination of the
columns is merely small. The chief sources of near
collinearities are overspecified models (the kitchen-sink
approach to designing experiments) and poor choices of
basis functions in problems like polynomial fitting. Near
collinearities can affect a regression model adversely by
inflating the variance of regression coefficients and
magnifying the effects of errors in the regression vari-
ables. Here there is no easy fix, and a careful reexami-
nation of the original problem is usually in order.

Collinearity Indices. Although our package cannot
tell you how to resolve near collinearities, it does print
out numbers called collinearity indices, labeled kappa

_in the output, which can help you assess the effects of

near collinearities. There is one such number «; for each
variable x;, and they are always greater than one. In
other contexts the squares of the collinearity indices are
known as variance inflation factors.

Collinearity indices can tell you three things about
your problem. First, they can tell you how near your
regression matrix is to one that is exactly collinear.
Second, they can estimate the ill effects of errors in the
regression variables. Finally, they can tell you if you
are in danger of declaring an important variable to be
insignificant. Let us examine each in turn.

Distance to Collinearity. It can be shown that if a
problem is nearly collinear, it can be made exactly so
by perturbing the values of one of the variables. With-
out going into details (for which see (4.3)), the rule of
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thumb is that if ;' = 10° then perturbations in the
t-th digits of the components of x; can make the problem
collinear. Another way of saying the same thing is that
you should be troubled about your model if the number
of digits in «; is not less than the number of accurate
digits in the components of x;.

Errors in the Variables. With the exception of
specialized problems whose regression matrices have
integer entries, most regression problems have errors
in the components of the regression variables. These
errors affect regression coefficients in two ways. First,
if they are large enough, they can introduce bias into
the coefficients. Second, even when the bias is small
they can increase the variability of the coefficients.
Let us see how collinearity coefficients can be used to
measure both effects.

The first thing you must do is provide an estimate of
the size of the errors in the components of the carriers.
To use the collinearity coefficients, you must first satisfy
yourself that the errors in the components of a variable
are all roughly of the same size, say they have mean
w; and standard deviation o; (if your model has a
constant term take u; = 0). If this is so estimate the error
by ¢ = Vu} + of. For example, if your data has
been rounded in the digit corresponding to 10°, you
might set ¢; = 0.3 - 10°, which amounts to approximat-
ing the rounding error by a uniform random variable.

To use the collinearity coefficients to assess the effects
of errors in the variables, carry out the following three
step procedure:

1. Compute
7; = vn — p &

K .
B E

If 7; > Y5, reject the model. The errors are so
influential that the diagnostic procedure cannot
be trusted.

2. Calculate REp, = 77/(1 + t;%). This is an estimate
of the relative bias in (; due to the error in the jth
variable; that is, the errors in x; can be expected
to depress the value of 8; by 100 - REy;ss%.

3. Compute REy, = 7;/v(n — P), which is an

' estimate of the second source of error. If it is
less than Y, it will contribute an approximately
unbiased error that is roughly REy, percent of £;.

The above calculations require you to perform some
simple calculations (to help you the package prints out
the numbers | x;||). This price you must pay for not
being required to enter estimates of the errors when the
package is run. If you so desire, you may enter the
errors and ask the package to print a single number 7,
which corresponds to the most sensitive linear combi-
nation of the regression coefficients. The package will
also print the corresponding values of REvi.s and REy;.

Two words of caution. First, do not apply the above
procedure to models, like polynomial regression, where
error propagates from variable to variable through func-
tional relationships. Second, keep .in mind that our
current knowledge about errors in regression variables
is far from complete, and the above procedure does not
rigorously guarantee that all the procedures in this
package are free from their influence. We feel that if all
the numbers 1, are less than 0.1, then there is not much
to fear; but this feeling is based more on intuition than
analysis.

Important Regression Coefficients. Finally, the
package prints out numbers IMP; to help decide whether
an important variable may be declared insignificant.
The importance of a variable is how much it contributes
to y in the sum

y=61x1+62x2+ +,3pxp+e.

Specifically, the importance of x; is the number 1 =
1Bl lx; I/N¥ll. Thus x; explains 1004% of y. The
number IMP, is the level of importance at which | ;|
is equal to twice its estimated standard deviation, and
is therefore in danger of being judged insignificant. For
example, one would almost certainly feel that a model
which produced a IMP; of 0.5 was unsatisfactory, since
x; could account for 50% of the response and still be
Jjudged insignificant.

If your model has a constant term, we recommend
that you use the centering option of the package, which
subtracts column means from the variables before com-
puting the IMP; This will not make much difference
unless some variables have a large number of leading
digits. Without the leading digits, it is easier to judge
at what level the variables are truly important.

Of course our regression package is imaginary, but
most regression packages actually print out collinear-
ity indices, usually as the diagonals of the inverse
cross-product matrix (after X has been centered and
scaled). If the package also prints out the norms of
the centered x,, then the above procedures can be
carried out with a hand calculator.

We have indicated above that errors entering lin-
early into the regression coefficients may not be as
harmful as the ones causing bias. Since this observa-
tion is a potential source of further research, I would
like to conclude this paper by expanding on it.

The idea of using linear approximations to nonlin-
ear functions of random variables in regression prob-
lems goes back at least to Gauss (1821, Art. 18-19),
who used it to justify applying his theory of linear
least squares to the nonlinear problems which were
his chief concern. Hodges and Moore (1972) apply the
same idea to the problem of errors in the regression
variables, obtaining approximations to the variances
of the regression coefficients.
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One difficulty with this approach is that regression
coefficients perturbed by errors in the variables may
not have nice distributions. To take a simple exam-
ple, if ¢ is distributed N(1, ¢2) the approximation
(1 — ¢)™" =1 + ¢ will with high probability be very
accurate when ¢ is small. But (1 — ¢)™! does not have
a first moment whatever the value of ¢. How then is
a variance computed from the approximation 1 + ¢ to
be interpreted?

An answer is provided by the following result
(Stewart, 1983).

Let f: R™ — R" be differentiable at x. Let e be a
random m vector with mean zero and variance 2.
Then

plim flx +e) — fx) — f'(x)e

20 | =12

The key here is the denominator which renormalizes
the collapsing distributions of f(x + e) and its linear
approximation f(x) + f’(x)e. These renormalized dis-
tributions converge to one another, so confidence in-
tervals calculated from one apply approximately to
the other. The author (1983) has used his to establish
a linearized version of Gauss minimum variance theo-
rem for regression coefficients computed by ordinary
least squares when there are errors in the variables.

However, I feel that a more fruitful approach is to
recognize that problems with errors in the variables
can in many respects be regarded as a model with an
altered error in the response. To see this, let X =
X + E and write the model (2.1) in the form

(7.1) y = Xb + (e — Eb).

= 0.

Let X' = X" + F7, deﬁmng F. Then the vector of
regression coefficients b = X'y computed from X is
given by

b=b+ X'(e — Eb) + F (e — Eb).

Since F goes to zero with E, when E is sufficiently
small, b behaves as if it came from the model

y = Xb + (e — Eb).

It is important to stress here that E does not have to
be so small that its effect is negligible. For example e
could be zero so that all the variability in the model
comes from E.

The residual vector é behaves in much the same
way. Let P, be the projection onto the orthogonal
complement of the columns space of X and let P, =
P, + G be the correspondmg projection for X. Then
from (7.1) we have

6 =P,y =P.(e — Eb) + G(e — Eb).

Thus for small E the residual can be used to estimate
the variance of e — Eb. In fact using this approach,

David and Stewart (1982) have shown that the clas-
sical F tests of significance remain approximately
valid for small E. Again it must be stressed that small
does not mean negligible.

The chief problem with this approach—or any other
approach through linearization—is how to determine
from contaminated data when the approximations are
sufficiently accurate to allow an analysis to proceed.
There are two dangers here. The first is that an inept
analysis of the general case might yield pessimistic
diagnostics that reject good models. The second is the
temptation to summarize complex issues in a few
numbers. What progress we have been able to make
in this paper came from applying rough approxima-
tions to special cases and recognizing that near col-
linearity has many adverse affects, each of which must
be tested separately. I believe this will continue to be
true for some time to come. Occasionally rigor must
wait for insight and elegance give way to utility.
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APPENDIX: PROOF OF (4.4)
As usual we will give the proof for j = p. With-

- out loss of generality we may assume that || x;|| = 1,

j=1,2, ---, p, so that by (2.5) «; = || x}ﬂ || is the

norm of the jth row of R™. Since

-1 _
(R** r*P) = <R*}k —ple #Tx >
0 0 Pow
it follows that
(A1) Y «iI=IR,
J#p
Now since the columns of R,, have norm one, the
diagonal elements of R, are less than or equal to one,
and the diagonal elements of R} are greater than or
equal to one. It follows that

(A.2) IRGIF=p—1

NE+ IR, 12
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To get a lower bound on the second term in (A.1),
we use the fact that inf(R.) = | R, || 7%, from which
it follows that

IR ten | = inf(R) N7l
c= IR 17 s
IR 5 I ryp Il

. 2
Since the columns of R, have norm one, | R,, ||§ =

v

p—1land«,?=pl=1—|r,,| % Hence
_ 1 — k2
(A3) IR l* = p—:f

Combining (A.1), (A.2), and (A.3) we get

2 _
kp — 1

(p—1max«?= Y k?’=p—1+ ,
] i p—1

which is equivalent to (4.4).
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clarified the reasons why the condition number is not
really helpful in the multiple regression context, nor
in many other contexts. The insights he provides in
this paper are important for all statisticians, because
collinearity problems occur in many statistical con-
texts, including multiple linear regression, nonlinear
regression, unbalanced analysis of variance, and esti-
mation from inverse integral transform models. In
this brief commentary I have selected three facets of
Dr. Stewart’s paper for discussion.



