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Professor Shafer’s historical perspective puts the
current discussion in an appropriate context, and em-
phasizes that many of the issues raised in expert
system research are by no means novel. The interest
in belief function methodology is understandable, as
it appears to provide a means of avoiding full subjec-
tive assessment of 'a joint probability distribution,
and—by formulating “uncertainty” in terms of relia-
bility of evidence—it seems to attach uncertainty
directly to the rule rather than the consequences of
the rule. All this is very attractive, but users of the
methodology also have to take on board a rule of
combination that can lead to somewhat unintuitive
results (Zadeh, 1986), problems in providing an oper-
ational interpretation of the numerical inputs and
outputs, and a considerable computational burden.

Shafer does show how computationally efficient
schemes are available on simple trees, but this is an
extremely restrictive class of model, excluding both
multiple causes of the same event, and an element
being a member of two taxonomic hierarchies (for
example, “gallstones” may also be part of a “dyspep-
sia” taxonomy). In contrast, efficient probabilistic
schemes are now being devised for general graphical
structures.

This still leaves the ability of belief functions to
deal with “unknown” or “unknowable” probabilities.
From a historical point of view, it would be easy to

Rejoinder

Glenn Shafer

Watson and Dempster and Kong underline the
point that belief functions are a form of probability.
I can only say that I agree wholeheartedly.

I still have some bones to pick, on the other hand,
with Spiegelhalter and Lindley.

Spiegelhalter’s comments on the computational sit-
uation are misleading. He suggests that computation-
ally efficient schemes for belief functions are available
only for a very restrictive class of models, whereas
efficient Bayesian schemes “are now being devised”
for very general models. In fact, most Bayesian com-
putational schemes have belief-function generaliza-
tions. It is true that the Bayesian special cases usually
require less computation; Bayesian models require
more complicated inputs than belief-function models,
and there is less need for computation when you begin
with more information. But the trade-off between
complexity of input and complexity of computation
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slip into the “likelihood versus Bayesian” debate at
this point. But I believe the objective of constructing
expert systems enables us to avoid such arguments.
In such technological applications, there is real un-
derstanding of the problem to be exploited, and from
a purely pragmatic point of view, unknown probabili-
ties just do not occur—an assessment can always be
obtained by careful questioning. Of course, the subject
may not feel too confident in his assessment, and will
not be able to list a set of independent sources of
evidence for his opinion. But the opinion is there and
can be used, although, as Professor Lindley empha-
sizes, in certain circumstances the imprecision may be
relevant. As Professor Shafer points out; explanation
of a system’s conclusions may be provided at many
levels, and probability judgments that have not been
“constructed” on specified evidence can, if necessary,
be identified. Provided a system’s predictive perform-
ance is being monitored by scoring rules, it seems
quite reasonable in a medical area to exploit “informed
guesses” rather than rely on a legalistic paradigm that
models unreliable “witnesses.”
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differs from case to case, and belief-function compu-
tations are manageable in a greater variety of situa-
tions than Spiegelhalter suggests.

~ In my article, I discussea Judea Pearl’s work on
propagating Bayesian belief functions in trees, and I
noted that Pearl’s Bayesian scheme is a special case
of a general scheme for propagating belief functions
in trees. This general scheme has now been described
in some detail by Shafer, Shenoy, and Mellouli (1986).
In recent unpublished work, Pearl and Spiegelhalter
have made progress in dealing with Bayesian networks
that are not trees. Similar work is also underway for
belief functions, with the most important contribution
so far being Augustine Kong’s dissertation at Harvard
(Kong, 1986). In the last chapter of this dissertation,
Kong shows how the belief-function scheme of Shafer
and Logan (1985) can be adapted to handle multiple
diseases with no additional computational cost.
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Spiegelhalter cites Zadeh in support of the view
that Dempster’s rule of combination can lead to unin-
tuitive results. For a reply to Zadeh’s arguments, see
Shafer (1986a).

The Bishop of Bath and Wells whose work on
probability Lindley discusses was named George
Hooper. Hooper actually became a bishop only in
1703, long after his work on probability was published.
Details about Hooper’s life and work are given by
Grier (1981). Hooper gave two rules for combining
testimony, a rule for concurrent testimony and a rule
for successive testimony. I have discussed these rules
and their Bayesian counterparts elsewhere (Shafer,
1978, 1986¢).

Hooper’s rules were widely admired in the 18th
century; they appear, for example, in Diderot’s Ency-
clopedie. The Bayesian analysis that Lindley reviews,
together with a corresponding analysis for the case of
successive testimony, displaced Hooper’s rules in the
early 19th century (see Shafer, 1978). But this Baye-
sian account of “the probability of testimony” quickly
became a laughingstock. It was roundly and justly
denounced both by logicians critical of probability,
such as John Stuart Mill, and by probabilists
who preferred a frequentist interpretation, such as
Antoine-Augustin Cournot.

Rejoinder

Dennis V. Lindley

I find myself in general agreement with the contri-
butions of Watson and Spiegelhalter. Watson is right
when he says we do not have to accept Savage’s
axioms. But it is desirable to have an axiom system to
support one’s calculations and the lack of them must
count against the alternatives to probability. Spiegel-

halter is right when he says that ultimately it’s the:

appeal of probability that matters: people will see that
it makes good sense. Just as with Euclidean geometry,
it is the operational aspect that counts, rather than
Euclid. Watson queries the existence of the Great
Scorer. I do not think it matters because one would
wish to behave in such a way that one could not be
exposed by his or her arrival. I would regard it as a
serious proposal to pay meteorologists, or even medical
doctors, according to their scores.

Whilst I find myself in dispute with Shafer, his
arguments command respect and are not easily re-
futed. He contends that the axioms depend on condi-
tional probability and expected utility, rather than

The theory of belief functions does not require us
to go back to Hooper’s rules. Instead it provides a
framework that includes both Hooper’s analyses and
the Bayesian analyses as special cases, along with
many intermediate possibilities. The virtue of this
flexibility is that we can tailor our analysis to our
actual evidence. If we have significant prior evidence,
we can use it. If we have evidence for causal depend-
ence between the witnesses, we can use it. If we have
instead evidence for dependence in our uncertainties
about the witnesses, we can use it. By relating the
numbers we offer to actual evidence in this way, we
can hope to escape the ridicule that so wounded sub-
jective probability in the 19th century.
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that these depend on the axioms. While it is true that
historically the concepts pre-date any axiom system,
Savage introduced the axioms in order to justify a
system, classical statistics, that denies conditional
probability (of a hypothesis) and does not admit ex-
pected utility (with an expectation over unknowns);
and he was much surprised when the axioms destroyed
that system.

The scoring-rule argument works for almost every
rule and does not depend on 0 or 1 as Shafer suggests.
The preferences in Bayesian decision analysis are not
necessarily sharp. If d; has expected utility 10.927 and
ds 10.926, then d; is preferred only slightly to d;. The
analysis is designed to select an act because only one
act is typically possible.

Shafer also raises the issue of constructive proba-
bility. It is difficult, having experienced A;, to think
of probabilities for A, if only because probability de-
scribes uncertainty and A, is no longer uncertain. My
response is that we should try to develop methods that



