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unkindest remark (which is not so unkind): “It is
difficult to see how these questions can even be posed
within the frequentist framework.” This seems wrong.
There is no difficulty in posing the questions, in either
the frequentist or Bayesian framework; Hodges just
did it. The problem is finding answers.

Now there comes a shade of difference between us.
He is a little more optimistic than I am about the
potential usefulness of Bayesian techniques for prop-
erly integrating judgments about uncertainty. For ex-
ample, he discusses predictive distributions starting
from (i) a prior on models and their parameters and
(ii) a likelihood function for the data given the model
and parameters.

This is quite sensible, provided there is a sound
basis for choosing the prior and the likelihood. Unfor-
tunately, Bayesian policy analysts can be just as
slaphappy in such matters as us frequentists. For
discussion of this issue, see Freedman and Navidi
(1986) or Hill (1985).

Good statistical analysis can be done in either the
frequentist or the Bayesian framework. However, for
either approach to succeed, the analyst has to get the
model right, or close enough. That idea may seem
ridiculously old fashioned. As policy analysts can be
heard to sputter, “Models be right? How can they be
right? They’re all approximations. Even Newton was
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Now comes James Hodges to inform us on some of
the larger issues of statistics. And what are these
issues? They are the ones that statisticians have dealt
with—lo these many years—uncertainties from var-
ious sources. And there are other issues besides—is it
an observational study? a controlled experiment? a
‘retrospective investigation? a haphazard collection of
items? Is what is measured or observed actually what
one defines as measured? Are there flawed observa-
tions? Was the experiment or trial carried out accord-
ing to the protocols? Is there a temporal imperative
with regard to an action or a decision? There is, to
say the least, limited interest (other than procedural
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wrong. And a mystic besides.” Because nothing is
perfect, anything goes.

Hodges wants “to bring de Finetti to . . . practition-
ers.” As I understand him, for de Finetti a prior
represents a major intellectual commitment to be
adopted only after serious investigation of the subject
at issue. If policy analysts followed that percept, we
would all be better off. The real issues here are of
science, not statistical technique.
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validation perhaps) in the prediction of events that
already have occurred and been observed.

What is the point then? The point is that we have
here a lucid and trenchant exposition vividly remind-
ing us of three of the principal sources of uncertainty
or variation. What is more novel than most previous
explications is that the sources are related to predic-
tivism, which is stressed as the penultimate aim when
taking an action is the ultimate goal. Hence, from my
point of view, there is really nothing to quarrel with.
But it is the job of a discussant if not to be quarrelsome
to be at least quibblesome—to coin a neologism.

Hodges intimates that for proper application of
statistical methods, the implementation of de Finetti’s
approach is required. He also states that the approach
“lacks a crucial connection to real problems.” I would
like to quibble with both these points. In regard to the
latter point, we have only to realize that de Finetti
was involved in applications especially in finance,

WWww.jstor.org



278 J. S. HODGES

actuarial mathematics, censuses, football pools, lot-
teries, etc.—and these problems are just as real in
their own realm as spare parts is to the Air Force. In
fact I would surmise that de Finetti’s views were
molded to some extent by his actuarial experience.

In regard to the first point there is a fundamental
principle in the de Finetti canon that statisticians
(even Bayesian predictivists) often ignore. To be fully
coherent one’s view about the prior distribution should
not depend on the likelihood. This straightjacket is
almost always flouted when searching for models in
analyzing data. I believe the attitude that many rea-
sonable statisticians take is, if I assume this then I
will believe that, and decide, after examining the data
in various ways, what it is they eventually believe
about values as yet unobserved. Also the de Finetti
canon precludes testing one’s predictive methodology
against realized further observations or using some
other validation technique. But these methods are far
too useful in searching for and selecting appropriate
models to be summarily dismissed.

Of course the Neyman-Pearson approach is further
beset by even greater stringencies. My view of it is to
paraphrase a boxing manager’s lament over his fallen
fighter “N-P has some good qualities but its bad
qualities ain’t so good.”

With regard to the use of predictive distributions
for testing and as a diagnostic tool, I believe its most
appropriate application is in discordancy testing. In
such instances the bulk of the observations are as-
sumed to concord with the postulated model although
possibly a few may not and they are to be tested in
the absence of any discernible alternative, e.g., Geisser
(1980b, 1985, 1987), Johnson and Geisser (1983).

In discussing estimation risk and predictive risk the
prediction of future values from a N (6, 1) distribution
is presented in the frequentist framework. Because
X,+1 — X has variance 1 + n~!, Hodges asserts that
in terms of variance 1/n is the estimation risk and 1
the prediction risk. This is not so, although it is true
that n" is the estimation risk, 1 + n " is the prediction
risk. Estimation risk is inevitably embedded in predic-
tion risk. In fact a deeper interpretation of this ex-
ample indicates clearly the inappropriateness, even in
the classic frequentist setup, in using estimation pro-
cedures for predictive purposes, i.e., using N (%, 1) as
the “best” estimate of the distribution function clearly
leads to predictive confidence intervals for Xy.; that
are too short for the stated confidence level (Geisser,
1980a). For further discussion of these points see
Geisser (1982) and in particular for the relative im-
portance of the two risks see my rejoinder to the
discussion by DeGroot (1982) of that paper.

Although it is true that actual applications of pre-
dictive distributions to new data sets are relatively
rare—much the same could be said of Bayesian appli-

cations. And predictive distributions properly exist
only in Bayesian contexts. But to state that Duncan
and Lambert (1986) is the only application he can
find, indicates either myopia or tunnel vision, because
there are many others. For example, every Bayesian
model selection or classification procedure uses pre-
dictive distributions.

In other parts of this otherwise perceptive essay
there are some comments alluding to the use of mixing
models. It is true that in the context of Bayesian
prediction, when the number of entertained models is
exhaustive and prior probabilities for them are deter-
mined, then the predictive distribution is a mixture,
cf., Clayton Geisser, and Jennings (1986) and Geisser
and Eddy (1979). Aside from the fact that exhaustive-
ness is often not the case, it appears that most scien-
tific workers tend to opt for a single preferred model,
operating on some principle of parsimony, or some
latent loss function that heavily penalizes mixing dis-
crete models. I must admit to exhibiting ambivalence
about this issue, or more precisely, I have not really
formulated an appropriate loss function that I find
satisfactory. There is certainly something elegant
about a single reasonable model that appears to be
adequate for the data. On the other hand if the data
are such that no single model seems to adequately
capture all of the features in the data, then I would be
more inclined to mixing because it is more likely that
my predictions will be better (on some defined meas-
ure) than using a single model. A situation not alto-
gether different presents itself in the potential infinite
regress on hyperparameters and hyperpriors (Geisser,
1980c¢, page 466)—when does one stop? True solutions
to problems of this sort require a belief in the potential
reality of the models and the specified parameters.
Serious doubt concerning these and other aspects of
the modeling situation should, to a degree, relieve one
of the necessity of trying to conjure up distributions
for nonexistent entities especially if one is reasonably
satisfied with something workable and adequate.

The spread of penetrating predictive applications to

" social affairs and policy analyses is certainly an im-

portant and welcome development and one that re-
quires much thought and considerable effort in dealing
with these action-oriented problems. Hodges has made
a fine start in delineating some of the principal issues.
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This is a very stimulating paper, and the issues
raised and discussed in it—how to deal with three
distinct types of uncertainty: structural, stochastic
and technical—clearly are important not only in ap-
plied statistical work, but also beyond.

I shall confine my comments to two central issues
of this paper: the problem of the infinite regress and
the question of whether and when to combine different
kinds of uncertainty.

The main and obvious difficulty one faces with the
structural type of uncertainty is an infinite regress:
once one has quantified the structural uncertainty,
one also should quantify the uncertainty of this quan-
tification, and so on. The customary (perhaps: the
only?) way to cut this regress is to act as if at a certain
level there was certainty. Often (although not neces-
sarily), this means that one assumes some parametric
family of structural models; if one is a Bayesian, one
also posits a fixed prior on the space of parameters. It
is somewhat awkward in the case of the Bayesian
approach that at this stage of modeling the prior will
not reflect a reasonably accurate, objective or subjec-
tive probability; it rarely is anything more than a
¢onventional substitute for ignorance (e.g., a flat or a
conjugate prior). But what is much worse, and this
equally affects all approaches, is that the true struc-
ture with practical certainty will lie outside of the
parametric family. I am always surprised how glibly a
majority of statisticians (especially Bayesians!) are
able to talk around these difficulties. Roughly speak-
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ing, what happens is that in large samples the proce-
dure will pick some member of the parametric family
close to the true structure (whatever that means) and
then try to do the best possible for that member. It
depends on the parametric family, on the type of
procedure, on the true situation and on an unspecified
kind of closeness whether the “best possible” for the
model is any good at all for the true situation. Mere
intuition can be very misleading.

It would be a delusion to think that a Bayesian
approach, that is, the opportunity to choose also a
prior, in such situations provides more security than
the Neyman-Pearson version—if the family of models
chosen by the statistician (i.e., the support of his prior)
does not contain the true underlying situation, one
has to go outside of the Bayesian framework in order
to justify the use of a Bayes procedure.

For me, this infinite regress was a major conceptual
difficulty when I first got into statistics in 1961; the
stumbling block then turned out to be the stepping
stone leading into a theory of robustness. Some per-

" sonal reminiscences about the struggle preceding my

1964 paper may help to illustrate the point. Somehow,
I then wanted to capture situations describable by
statements like: “With this kind of data I would expect
about 2% grossly wrong observations, but probably
not more than 10%; these values could be anywhere.”
After some stillborn attempts with a nonparametric
version of maximum likelihood, I naturally tried Baye-
sian approaches next, since by then I knew that even
large data samples (I had had experiences with non-
linear least squares problems with a few thousand
observations) would not allow me to assess distribu-
tion tails reliably without using outside information.
However, I was unable to invent believable priors.
After a while I realized that the problem was not



