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strength of the evidence against a null hypothesis.
The fail-safe sample size can likewise be considered
as measuring the weight of evidence. Thus, n(0) is the
number of hypothetical studies, conducted under the
null hypothesis, that need to be added to the database
to just offset a significant result. Here “offset” is used
in the sense that'the updated test statistic should have
its expected value, conditional on the published studies,
just equal to the critical point.

The authors’ equation (4) modifies the foregoing in
two respects: (i) the hypothetical studies are replaced
by actual and unpublished studies and (ii) a weight
function is made available for modeling the publica-
tion bias. Now we have difficulty interpreting the
numerator of (4) as a conditional expectation. Granted
the values reported in the published studies are non-
informative for the unpublished studies, but the num-
ber k of published studies, when coupled with the
weight function, is informative and should be reflected
in the conditional expectation. Thus, does n(a) in
equation (4) refer to actual studies (in file drawers) or
to hypothetical studies?

As an alternative, we suggest using the weight func-
tion to estimate the number of unpublished studies.
For example, letting k& and &, be the number of pub-
lished and unpublished studies and N = k + k,,

kosz(l—w(x))f(x) dx,

k=N f w(x)f(x) dx,

Comment

M. J. Bayarri

“Meta-analysis, like rock and roll, is here to stay”

claim the authors of this interesting and stimulating
paper, and they are right. Similar experiments are
conducted and replicated, providing informaiton about
the same unknown quantity, and statisticians have to
face the challenge of providing methods for pooling
this information. In a sense, the problem is similar to
that of combining a set of expert opinions. Unfortu-
nately, results from experiments are not, in general,

M. J. Bayarri is Titular Professor at the University of
Valencia (Spain). Her mailing address is Departamento
de Estadistica e 10, Facultad de Matemadticas, Av. Dr.
Moliner 50, 46100 Burjasot, Valencia, Spain.

[ fv;
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

S. IYENGAR AND J. B. GREENHOUSE

and k, can be estimated as the solution of

ko _ E[l — w(X)]
3) B Elw(x)]

Note that the righthand side of (3) reduces to a
(1 — a)/a in case of a dichotomous weight function.
Also, w(x) must have a phenomenological interpreta-
tion as a probability. It will not do to replace w by a
scalar multiple or to use an unbounded w.

The solution of (3) is sensitive to the weight func-
tion, and one may prefer to look upon the estimate of
ko as shedding light upon the reasonableness of the
chosen w instead of upon the “true” significance of the
published results.
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expressed as distributions of the unknown quantity.
If they were, then not only would the publication bias
due to statistical significance be greatly reduced, but
also the techniques for combining probability distri-
butions would be available (for an excellent summary
and comprehensive annotated bibliography about
these techniques see Genest and Zidek, 1986). More-
over, meta-analysis is usually based on results that
got published in the scientific literature. Due to the
overabuse of hypothesis testing as a statistical
methodology and to the overappreciation of statis-
tical significance, it does not come as a surprise that
publications are highly biased toward studies showing
statistically significant results. This publication bias
should be taken into account when carrying out a
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meta-analysis. The authors present an elegant solu-
tion that explicitly models the selection bias when
building the model governing the statistical behavior
of the observables. Also, their general formulation
contemplates the use of different weight functions for
each study to be included in the meta-analysis, thus
allowing the consideration of different publication
policies.

In spite of my general agreement with the approach
taken by the authors, I don’t quite understand why
the fail-safe sample size (FSSS) approach and the
maximum likelihood (ML) approach are treated as if
they were two different complementary or exclusive
approaches to dealing with the publication bias effect.
As a matter of fact, both approaches are just trying to
draw conclusions based on two aspects that are always
present in a meta-analysis, namely what is observed
(the published studies) and what is not observed (the
unpublished ones).

The FSSS approach proposes to analyze reported
results as if they were generated by the underlying
density f(x|8) to decide whether or not data are
significant at a certain level «a (0.05 for instance). If
data are declared significant, then it proposes to use
the subjective opinion that the reader of that conclu-
sion might have about the number of unpublished,
nonsignificant results in a rather limited way, namely
whether or not this number is believed to be smaller
than the FSSS. If it is, then the original conclusion
would still be the same. Notice though that even if the
conclusion (significance) remains unchanged, this
should no longer be true with other characteristics,
such as p-values, of the statistical analysis. Indeed,
for a given set of data, the larger the reader thinks the
number of unpublished null results is, the larger the
overall p-value should be. This part is usually forgot-
ten in the FSSS approach: it merely takes into account
the influence of the unobserved, unpublished results
on the decision about significance or nonsignificance
of the observed data, but not on the general statistical
analysis of the data.

On the other hand, the ML approach taken by the
authors in Section 3 somehow does the opposite. That
is, it carefully takes into consideration the modified
behavior of the observed data due to selection bias,
but it does not provide explicit information about the
number of unobserved studies, which may or may not
be of interest and may or may not influence the
conclusions of the analysis. In other words, once we
have agreed on the weight function to be used in a
given problem (the model for the observables) it looks
like we don’t have to worry about what we don’t get
to see. When a Bayesian approach is used, it is of
course true that, in some problems, the explicit con-
sideration of the (unobserved) number of performed

experiments has no effect on the statistical analysis
of the observed data. There are problems, however, in
which the opinions about this unobserved number
have a dramatic influence on the conclusions of the
analysis, as we will shortly show. Moreover, this influ-
ence cannot be avoided by using a ML approach.
On the contrary, the mere consideration of this unob-
servable can change a ML analysis of the problem
(Bayarri, DeGroot and Kadane, 1987).

My main point is that, when analyzing the results
from published experiments that are suspected to be
subject to statistical selection bias, the analysis should
take into account both the effect that the selection has
in the model for the observables and the influence
that the number of unobservable, unpublished studies
might have in the final conclusions of this analysis.

To illustrate this point, I will consider a simple
situation in the framework of a one-sided test of
hypotheses on the mean of a normal distribution with
known variance. Assume that independent experi-
ments are carried out by the same or different exper-
imenters around the world. In each of them a random
sample of size n is taken from the normal distribution
with unknown mean p and known variance ¢ and the
uniformly most powerful test is used for testing

1) Hy:pu=0 vs. H:u>0

at some level a. In this case, the distribution of the
test statistic T = (n'/2X,)/s is normal with mean
0 = (n*?u)/o and variance 1, where X, represents, as
usual, the sample mean of a given experiment. The
restriction of equal sample sizes n and variances o? is,
of course, quite unrealistic and it is used here just to
ease the presentation.

Assume that the results of one such experiment
appear in some scientific journal, declaring the data
significant at the level a = 0.05 and yielding a p-value
of p = 0.033. (Here the number & of studies in the
meta-analysis is taken to be 1 just for simplicity. In
the simple scenario that we are considering, an anal-

- ogous argument would apply with any other value of

k.) How should these significant results be inter-
preted? If we use the FSSS approach, even Rosen-
thal’s FSSS is strictly less than one. What should be
concluded from the published experiment is just not
clear, apart from the caution that “the finding is not
resistant to the file drawer threat” (Rosenthal, 1984,
page 108). It does not seem possible to draw further
conclusions or make inferences about §. Furthermore,
even a reported p-value as small as 0.0001 would yield
a FSSS smaller than 4. Thus, under a FSSS approach
a single published study will generally be regarded as
highly unreliable, with no indications about what can
be concluded from it.
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A ML approach, which explicitly includes the selec-
tion bias, seems more appropriate. More information
is then needed in order to assess the weight function.
We will assume that we have read about this experi-
ment in a journal that we know, with certainty, only
publishes experiments yielding statistically significant
results at the level a = 0.05. In this case, we will only
observe values of T greater than or equal to 1.645 so
that the density of any value of T that we will actually
get to observe is given by the selection model

ot —6)
1 — ®(1.645 — 0)

and g(t|6) = 0 otherwise, where ¢ and & denote
the standard normal pdf and df, respectively. Here,
the weight function is known and it is simply given
by the indicator function of the set [1.645, «). From
(2) it can be seen that the MLE of 8 is the unique
solution to

3) (t—06)M(1.645 —0) =1,

where M(-) stands for Mills’ ratio. In our example,
with a reported p-value of 0.033 (so that ¢t = 1.844)
the solution to (3) is § = —3, an estimate which is at
least three standard deviations away from the param-
eter values in H;. Thus, the significant results are in
fact providing strong support to the null hypothesis,
and the MLE of § would no longer be 1.844 as it would
have appeared in that published experiment, but
rather —3 as derived from (3). This is an improvement
over the FSSS approach because it does allow a mod-
ified statistical analysis of the reported data. Notice
though that, in order to reach this conclusion, we have
implicitly assumed that the experiment has been
performed repeatedly (not necessarily by the same
experimenter, but possibly by different experimenters
working on the same problem) until one significant
report was obtained and got published. The unknown
number N of performed experiments does not provide
further information about ¢ and it should not change
our inferences about 6 even if we explicitly introduce

for t = 1.645,

(2) g¢lo9) =

it into the analysis in order to learn about it. We will -

turn to this point later on.

The situation would be completely different if we
knew that only one experiment with the characteris-
tics of the published one had been performed in the
entire world. In this case all we learn when reading
about it in the journal is that it turned out to yield
significant results and thus got published. Then the
reported statistical analysis should be accepted at face
value, including the p-value and the MLE. Notice that,
in this situation, the value of k(k = 1) itself carries
information about 6. Indeed, if we did not observe this
experiment to get published then we would have
known that it had turned out to be nonsignificant.

A general Bayesian approach to the problem of
analyzing our significant result could proceed as fol-
lows. For simplicity of notation we will use the symbol
p to denote an arbitrary generalized density, without
any implication that it is the same for all variables
whose distribution it is representing. Also, as the
number & of published studies can provide information
about 6, it will be regarded as an observable random
variable and explicitly introduced in the notation. Our
observation then is the pair (¢, k) where t = 1.844 and
k = 1. Under the Bayesian approach, a joint posterior
density p(N, 6| t, k) is obtained, which can be repre-
sented in the following convenient way:

@) p(N, 01t k)
«p(t|k N,0)pk|N,0)p(N|0)p(@).

Here N and 0 are unobservables, so that p(IN | 60) p(9)
= p(N, 0) represents the joint prior density of N and
6. In our example, p(t| k=1, N, 0) =p(t|k=1,0) is
given by the selection model (2), but we will alter the
notation a little bit (in order to mimic the one in the
paper) and represent by f(-|6) and F(- |0) the pdf
and df, respectively, of the normal distribution with
mean # and variance 1. Thus, g(- | 6) represents the
selection model and f(-|#) the underlying density.
Also, for convenience, the known value 1.645 will be
represented by 7. Then, (4) becomes

p(N, 0|t k)

) f(t16)
“ = re gy PRIV PV 10)pO)
The two situations above in which data should be
analyzed according to g(¢t|8) = f(t]6)/[1 — F(7|6)]
in the first one and according to f (¢ | 8) in the second
one, are just particular cases of (5). In the first case,
when the experiment was repeatedly performed until
one significant report was obtained, p(k = 1[N, 6) =
1 (irrespective of N) in (5) so that the data are
analyzed according to g(t|6). Notice that, inde-
pendent of whether or not we are also interested in
N, the marginal posterior density of § would be

(6) p@|¢t k) = g(t|0)p(0),

for every p(IN | #). Thus, posterior inferences about 6
would be the same independently of whether or not
we explicitly introduce N in our analysis. This result
is to be expected because, in this case, the unobserv-
able N does not provide any information about 6,
although we could learn about it if we wished. This
is no longer the case with a ML approach. Indeed,
N — 1 being the number of unpublished results,
it seems natural to assume that it has a geometric
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distribution with parameter P = Pr(T = 7|0)
so that

p(N16) =[1 — F(r|®IF (|91
for N=1,2,....

If the MLEs of N and 6 are now derived from a
likelihood function of the form g(¢|8)p(N|6) then
the MLE of 8 will not be the same as the one derived
from g(t| #). Thus, just contemplating the possibility
of learning about this uninformative, unobserved N
will change our estimate of 6.

In the second case, when we knew that just one
experiment was performed, we have p(N=1|60) =1
and

p(k=1|N=1,9)
=Pr(Tz7|N=1,0)=1-F(]90).

(7

Then
8 p(0|t, k) < f(t]|6)p(0)

so that we analyze the data (¢, k) using the original
underlying density f (¢ | 9).

Intermediate situations between these two can oc-
cur, and knowledge about N more vague than that
considered above can be incorporated in a natural way
into the analysis. The example presented here is just
a particular case in which two selection mechanisms
(geometric and Bernoulli) have been considered to
generate £ = 1 published studies out of N performed
ones. In Bayarri and DeGroot (1987) more general

Comment

C. Radhakrishna Rao

Meta-analysis is an important area of research and
any contribution to its methodology is welcome. I am
glad to see that Iyengar and Greenhouse extended the
scope of meta-analysis by modeling selection bias us-
ing simple classes of weight functions that cover a
" variety of situations. However, some caution is nec-
essary in pooling information from different sources.
Often the parameter under estimation like 6 in the
example of Table 4 may not be the same in all studies.
So modeling must take into account variations in 6
also. In that case one must specify what exactly is
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selection mechanisms are considered, as well as con-
ditions under which the selection mechanism can be
ignored in the analysis of the data, either because it
does not provide additional information about 6 or
because, even if it does, the particular form of the
prior distribution makes it ignorable when making
inferences about .

To conclude this comment, I would like to stress
my personal opinion that meta-analysis is one of the
areas in statistics that really calls for a Bayesian
analysis. As we have seen, conclusions from a meta-
analysis rely very heavily on the prior information;
even the assessment of the weight function can be
highly subjective. All these subjectivities must be in-
corporated in an explicit form into the analysis. In
this way, different readers can judge whether or not
the different components of the analysis agree with
their own particular beliefs on the subject and, if not,
reach their own particular conclusions.
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being estimated by meta-analysis. If 6 is considered as
a variable, it would be of interest to estimate its mean
value and variance. The anomalies noted by the au-
thors in the estimation of # can be explained by the
possibility that 8 is not the same in all the studies.

Perhaps a preliminary test for homogeneity of dif-
ferent studies with respect to the parameters of un-
derlying distributions is one way of approaching the
problem. Of course, in constructing such a test, one
must take into account selection bias. If the test
reveals inhomogeneity, then other problems arise,
such as comparison of estimates between studies and
possible explanation of the differences. A more satis-
factory method may be to introduce a prior distribu-
tion on 0; the problem in such a case is the estimation
of the prior distribution of 8, which provides all the
information.



