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where t; — £, is the best linear unbiased estimate of
the elementary treatment-control contrast t; — ¢, and
f is a convex, nondecreasing function. It is interesting
to speculate, therefore, as to whether or not A-optimal
BTIB designs are optimal over a large class of “rec-
tangular” optimality criteria. To answer this, of
course, requires coming up with suitable criteria as
indicated in my first comment. Similar questions
might be raised regarding optimal row-column designs
also.

As a third comment, I would like to thank the
authors for including material on Bayesian approaches
to the design problem. Such approaches seem fairly
natural in this setting because often the control treat-
ment is a standard treatment about which we have
considerable prior information whereas the test treat-

Comment

A. Giovagnoli and I. Verdinelli

This is a very useful survey of many known results
on optimal designs of experiments when one of the
treatments is a control. It comprises a wide variety of
results and it is impossible to comment on each one
of them in detail. We shall pick up some general
themes.

The first remark is on the choice of the optimality
criteria. The title is actually somewhat misleading,
because the only optimal designs that are surveyed in
it are A- and MV-optimal ones. A-optimality and MV-
optimality certainly appear to have very intuitive and
appealing statistical interpretations and, according to
the authors, are the most widely studied criteria for
this type of experimental design. It is a rather disturb-
ing thought, however, that neither of these criteria

takes into account the covariances of the estimated

treatment-control contrasts.

Besides, other criteria may be relevant in this
context. For pilot experiments- when the control is
taken to be known and the interest lies in testing
whether or not the overall effect of the new
treatments is appreciable, we may want to contrast
the average new treatment effect with the old one and
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ments are new and less is known about them. One’s
prior knowledge about the control should be incorpo-
rated into the design and, as one would expect, Baye-
sian results indicate the effect is to reduce the number
of replications of the control. To my knowledge, exist-
ing Bayesian results have been obtained by allowing
approximate designs and optimal designs are often
approximate designs. Although seemingly a hard prob-
lem, exact Bayesian design results would be quite
interesting. Are the authors aware of any research in
this direction?

In summary, Hedayat, Jacroux and Majumdar are
to be thanked for a readable and thorough survey
article. It is to be hoped that this article will stimulate
further research and such research will answer, among
other things, the questions I have raised above.

minimize var(}; £/v — to), ie., min var ¥, (& = to),
i =1, ..., v. This criterion, which can be easily
extended to the case of more than just one control, is
also mentioned by Majumdar (1986) and it seems
appropriate to call it J-optimality because it reduces
to minimizing trace(JPC, — P’), with J the v X v
matrix of all ones. In Giovagnoli and Righi (1985) and
Notz (1985), it is shown that certain J-optimal designs
are also E-optimal, where E-optimality is defined as
minimizing the maximum variance of all the estimated
contrasts Y ci(t; — to) with ¥, ¢? = 1, and conversely
some sufficient conditions for E-optimality turn out
to ensure J-optimality too. Thus although E-optimal-
ity does not appear to have a very natural statistical
interpretation when there is a control, E-optimal plans
may also deserve attention in some cases.

Lastly we would like to stress that in the Bayesian
approach, due to the (possibly) different prior as-
sumptions on the test treatments and the control, it
is no longer true that designs which are D-optimal for
inference on treatment-control contrasts, i.e., which
minimize the determinant of the posterior covariance
matrix of those contrasts, are always D-optimal for
any set of contrasts. Thus in this case it is worthwhile
to look at D-optimality too.

J-optimality shares with A- and MV-optimality
(and also with E- and D-optimality, and others) the
property of being invariant under all relabeling of the
test treatments which leave the control unchanged.
We believe this invariance under a suitable group to
be the key to many results on optimal designs, and in
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particular to explain the reason why, as pointed out
by the authors, “all the optimal designs given in Sec-
tions 2 and 3—and also the Bayesian designs, we may
add—possess a high degree of balance in many re-
spects.” We shall now illustrate this claim. We shall
use the symbol Cyo for the information matrix of
model (1.1), namely Cy) = diag(rao, a1, - - -, raw) and
C,q) for that of (1.2), which is called C, in Section 2.1,
whereas Cy(;) is defined as in Section 2.2: C, will stand
for any of the above matrices, when either the context
is clear or it does not matter which one is meant.
Denote by C, the v X v matrix obtained from the
corresponding C, by deleting the first row and column
so that ' = PC;P’ is proportional to the covariance
matrix of f, - fo, i=1, ..., v. It is easily seen that
all the criteria mentioned so far are functions of Cy
which are (i) convex; (ii) nonincreasing with respect
to the Loewner ordering of non-negative definite
matrices (which from now on will be denoted =,
namely A =; B iff A — B is non-negative definite);
(iii) invariant under relabeling of the test treatments,
ie., under congruence of C; by elements of P,, the
group of v X v permutation matrices.

Some general results concerning optimality with
respect to criteria satisfying (i), (ii), (iii) (also for more
general groups than P,), are given by Giovagnoli,
Pukelsheim and Wynn (1987) in the case of continu-
ous (approximate) designs. Roughly speaking, for all
criteria as above, “balanced” designs are optimal for a
given number r, of observations on the control, with
only the optimal choice of r, depending on the partic-
ular criterion. This seems indeed to be the main unify-
ing idea that, more or less explicitly, runs through the
literature on designs for this type of experimental set-
up in the exact case too. We should like to expand on
this concept by making separate statements for the
zero-, one- and two-way elimination of heterogeneity.

STATEMENT S,

For zero-way elimination of heterogeneity, a design
d* such that the test treatments are “as equireplicated
as possible” is optimal for a given r, with respect to
all optimality criteria ® satisfying (i), (ii) and (iii).
This is also true under a Bayesian model with the
normality assumptions of Section 7.0.

To show this, let 7y = (rg;, -+, rey) and note
that C, = diag(f;) — n~'F,7); if 7% is such that
|rh,—v'(n—r)| <1lforalli=1, ..., v, then by
integer majorization (see Marshall and Olkin, 1979,
page 134) for any 7y such that Y, ry;, = n — ro, there
are permutation matrices II; and real numbers \; = 0,
Y N\, = 1 for which 7} = Y, NILi7;. This implies
diag(F*) = ¥, \IL;diag(7y)II; and (see Marshall and
Olkin, 1979, page 468, Proposition E.7.a) Fify’ <.

3 NILFFL I so that CF = diag(F%) — n™ 74 =,
2,‘ )\,H,(dlag(fd) - n—lfdf;)l'[,-' = 2,’ )\,H,C'dﬂ,’ From
properties (i), (ii) and (iii) of & it follows that <I>(C~;")
< &(C,) for all d so d* is optimal for a given ro.

The optimal values of r, for A- and MV-optimality
are obtained, respectively, from equation (2.3) and, as
indicated in Section 3.0, from ming(1/rg + 1/p(ra)).
For J-optimality we must solve mingv?/rgo + (v —n +
rao + vp(rao))/p(rao) + (n — rao — vp(rao))/(p(rao) +
1). Thus J-optimal designs will in general be different
from A- and MV-optimal ones.

Clearly in the Bayesian case the very same proper-
ties of the criteria hold as functions of the posterior
covariance matrix of treatment-control contrasts. For
zero-way elimination of heterogeneity the posterior
information matrix for the treatment-control con-
trasts is given by Cy + T7', where T is the prior
covariance matrix, which under our hypotheses is
invariant under congruences by P,. Special cases of
such T are obtained from matrix C, of Section 7.0 and
matrix H of Equation 11 in Smith and Verdinelli
(1980). Clearly C* + T7' =, ¥ MIL(C, + T7HII,.
Optimal values of ry have been computed, however,
only in the continuous case, as pointed out in the
present paper.

Our next statement will be based on the following
proposition which is a very easy generalization of a
well-known result by Kiefer (1975).

PROPOSITION

Given a class of v X v matrices C = {C,}, if a matrix
C* € C (1) is completely symmetric, i.e., invariant
under congruences by P,, (2) maximizes tr(JC,) in C,
(8) maximizes tr[(I — v'J)C,] in C, then C* minimizes
in C all criteria with properties (i), (ii), (iii).

This is Proposition 3 of Giovagnoli and Wynn
(1985b).

STATEMENT S,

For one-way elimination of heterogeneity, with b
blocks of size k, a design d* such that (a) C* is
completely symmetric, (b) n}, are “as equal as possi-
ble,” 1 < j < b, and (c) nj}; are “as equal as possible”
foreachgivenj=1, ---,b(Vi=1, ...,v) (if k=,
this means that ng; € {0, 1} Vi # 0), is optimal for a
given r, with respect to all criteria satisfying (i), (ii)
and (iii).

The proof of this statement follows from the prop-
osition above, if one computes the trace and the sum
of the elements of the matrix C,. Condition (b) implies
(2) of the proposition, and (c) implies (3), by minimiz-
ing 3, [T niy — v (k — na)?).
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Statement S, is very similar to Theorem 4 of
Giovagnoli and Wynn (1985), but note that there
optimality criteria were taken to be invariant under
congruence of C, by orthogonal transformations
(Schur-optimality) which leaves out MV-optimality.
S, explains the A- and MV-optimality of the ABIB-
and BTIB-designs (both of the rectangular and of the
step type) mentioned in Sections 2.1 and 3.1 of the
present article, whose number r, of observations on
the control is “right.” Observe that design d; of Section
5.2 satisfies (b) but not (a) of S;, while the converse
holds for ds.

Condition (a), i.e., the complete symmetry of the
matrix C,, ensures that <I>(C';1) can be easily com-
puted. It may be argued that (a) is not simple to
achieve, either in the exact or in the continuous case,
and this is where the GDTD’s of Theorem 2.2 come
in as “second best.” For such designs the invariance
is under, with obvious notation, the group P,, ® P,.
We do not know of a theory of invariant matrix
orderings developed for this group.

For Bayes designs, whatever the prior covariance
of the blocks: For one-way elimination of hetero-
geneity, with b blocks of size k, under normality
assumptions and with completely symmetric prior
- covariance matrix for the treatment-control con-
trasts, a design d* such that the nj;’s are all equal,
i=1,---,v;j=1, -+, b, is optimal for a given r,
with respect to all criteria satisfying (i), (ii) and (iii).

This may be a suitable point to remark that

Cay = Cay — k'Na(I — b7'J)N; <1 Ca).

If ng; = ri/b Vj (this is known in design theory as
orthogonality of treatments and blocks), then C,») =
Ca0). Thus a designm d* which is orthogonal and opti-
mal—with respect to any criterion satisfying (ii)—for
zero-way elimination of heterogeneity is also optimal
for one-way elimination of heterogeneity.

For two-way elimination of heterogeneity,
the same argument holds, because Cyo = Cya) —

b *My(I — k'J)M), <1 Cuuy. Thus, orthogonality of

treatments and rows (mentioned as condition (ii) both
in (2.8) and in Section 3.2) leads to optimal designs
for one-way elimination of heterogeneity being opti-
mal for two-way elimination of heterogeneity too.

STATEMENT S,

For two-way elimination of heterogeneity, with k
rows and b columns, a design d* such that (a) C} is

completely symmetric, (b) n},; are “as equal as possi-

ble,”j=1, ---, b, (c) n}; are “as equal as possible” for
eachgivenj =1, ..., b(Vl =i <v) and (d) m}, =
r/k foreach h=1, ..., k,i=1, -.-, v, is optimal

for a given r, w.r.t. all criteria satisfying (i), (ii)
and (iii).

Theorem 2.1 of Notz (1985) is a special case. The
optimal designs of Sections 2.2 and 3.2. satisfy the
conditions (a), (b), (c) and (d) of S,.

One further remark may be made about the exam-
ples of Section 7. Individual numerical examples
sometimes look fairly artificial—like the choice of
n = 36 and the values % and Y1s for the ratios of the
prior treatment variance and the prior variance of the
control to the error variance in example 7.1. It might
have been more interesting for the readers to show
the behavior of the Bayes designs for zero-way elimi-
nation of heterogeneity for various values of the pa-
rameters in the prior distribution. Such comparisons
may lead to a better qualitative understanding of the
optimal designs obtained. When the prior variance of
the control is very small with respect to the error
variance, as in Example 7.1, it means that our knowl-
edge about the control is fairly accurate, and the
number of the observations on the control will be
much smaller than in the classical case when no prior
information is available (prior variances going to in-
finity). On the other hand, making use of the three-
stage hierarchical model with vague knowledge at the
third stage as in Example 7.2. corresponds to vague
knowledge about the control treatment and precise
information on the test treatments; this gives an even
larger number of observations on the control. Note
that the considerations on the limiting behavior of the
Bayes A-optimal designs in Smith and Verdinelli
(1980) hold true despite an algebraic error in the
quartic equation at page 617 of that article.
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