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prolific output). They have spent their lives together,
they have read the same books, and are in fact zwei
Seelen und ein Gedanke. Specifically, they share the
same subjective probabilities. Give them both the
same data and the same problem. The Doogian for-
mula implies that they will come to different conclu-
sions for two different reasons.

1. IJG may have more time to introspect upon
the problem that IJG’, so that the twins settle
upon different interval-valued probabilities.

2. Even if the twins decide upon the same inter-
vals, there may be several sorts of analysis that
do not contradict these beliefs; thus IJG and
IJG’ could pursue different analyses and reach
different conclusions.

The first problem is intrinsic to the Type II view; the
second problem is what seems most awkward for the
Bayes/non-Bayes compromise. One needs a basis for
deciding when enough thought has given to the prob-
lem, and a protocol for choosing among equally justi-
fied analyses.

CAUSALITY AND CASUISTRY

Probabilistic causality is an elegant piece of argu-
ment, and the concept seems potentially important,
but it is not yet clear that the subject will be relevant
to statisticians. After rereading the expanded treat-
ment of the subject given in Good (1983f, Chapters 21
and 22), I am left with the fear that this is a case of
molto fumo e poco arrosto. The philosophical side of

Rejoindér

l. J. Good

I’'m most grateful to the discussants for their com-

ments, both the generous and the critical ones. All
four discussants seem to approve of some form of
Bayes/non-Bayes compromise and with some other
things I've said, but they have raised various issues
that demand some response. I shall respond in the
order in which the contributions are printed, but I
deal first with probabilistic causality because three of
the discussants have commented on it.

1. PROBABILISTIC CAUSALITY

The notation Q(E:F) is an abbreviated notation,
and, as I mentioned, the full notation mentions “the
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the house seems very pleased with it, but one should
note the historical tendency for a subject to split off
from philosophy as soon as it becomes respectable
(e.g., cosmology, mathematics, decision theory, etc.).

Good’s rationale for the statistical value of proba-
bilistic causality rests on the fact that Q(E:F) agrees
with a measure of association in contingency tables,
and that it can be used to interpret the expected
influence of a change in the regressor variables in
linear regression. This does establish a connection
with statistics, but I look forward to future develop-
ments in this area that will be more compelling. One
possible application that enjoys the advantage of top-
icality is a plot over time of the estimated value of
Q(E: F), the tendency of smoking to cause lung cancer,
based on the data available to the tobacco industry in
1945, 1950, .. ., 1985.

A similar comment applies to explicativity, in that
it isn’t clearly crucial to modern statistics. There is
the possibility of important connections with model
selection, and Good mentions the work of Akaike
(1974) and Schwarz (1978), but the key comparisons
have yet to be made. This is another area in which
one hopes that Good’s article will strike sparks.
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true laws of nature” (and other things) as given (to
the right of a vertical stroke). When there are two or
more scientific theories there will therefore be two or
more estimates of Q(E:F), and at most one of those
estimates can be correct. This is my reply to one of
the comments by Suppes where he described two
different theories of learning only one of which can be
(approximately) true.

I agree with Suppes’s analogy with regression the-
ory, in fact it is somewhat more than an analogy. If
much of some other science is taken into account in a
statistical or philosophical project, then the project is
no longer regarded as just statistics or just philosophy.
A physicist usually wants a better explanation of his
data sets than can be provided by regression theory
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(or by estimated probabilistic causal tendency) alone;
but a chemical engineer, a physician, an economist or
a sociologist is usually somewhat less ambitious.

One advantage of any quantitative or semiquanti-
tative rather than a purely qualitative theory, apart of
course from quantitative applications, is that it shows
more clearly the self-consistency of the assumptions
(desiderata) and can thus make a qualitative theory
more acceptable. Also, as I said, a formula can encap-
sulate many words.

Barnard expressed doubts about the value of the
word cause within science, rather than within legal
matters. Bertrand Russell expressed a similar senti-
ment in 1913, mainly in regard to physics, and is
quoted at some length by Suppes (1970, page 5) who
goes on to say “Perhaps the most amusing thing about
this passage from Russell is that its claim about the
use of the word ‘cause’ in physics no longer holds.”
Suppes supports his assertion with irrefutable evi-
dence as of 1970. Outside of physics, as in medical and
agricultural science, it seems to me that the attempt
to discover causes, as distinct from correlations alone,
is usually a goal in the design of randomized statistical
experiments. We are controlled by nature, but by
discovering causes we can recover some of the control.
I believe Barnard must have been exaggerating when
he expressed doubts about the value of the word cause
in science.

An aspect of probabilistic causality that should be
investigated would be its potential use in path analy-
sis, as understood by Sewall Wright. See, for example,
Wright (1968, pages 299-372).

I agree with Banks that philosophical topics, when
sufficiently well developed, tend to move into other
disciplines, and I, and probably others, have made the
same point elsewhere, at least orally. (Banks uses
the description respectable instead of sufficiently well
developed.) But my essay was about the interface
between philosophy and statistics so it was appropri-
ate to discuss some topics that have not yet crossed
right through the interface. Don’t forget that influ-
ences flow in both directions through the interface. I
am interested in fundamental questions and surely
the notions of probabilistic causality’ and explanation
are fundamental. Check again in another fifty years.
Philosophical ideas in science usually start as minority
views and therefore usually take a long time to become
“respectable.”

I liked Banks’s suggestion of plotting, as a time
series, the estimated values of the tendency of smoking
to cause lung cancer. It would be a large project but
would be a nice example of a quantitative method in
the history of science. The same idea could be applied
elsewhere, such as the effects of other drugs, both
“recreational” and medical.

I shall now respond to the discussants individually.

2. RESPONSE TO PATRICK SUPPES

2.1 Randomness and Complexity

I agree that one must distinguish between random
procedures and random results, and that the distinc-
tion is often not made clearly enough. I made the point
in 1983f; page 87 ff. (quoting Good, 1972; compare
Good, 1956) when referring to suspicious-looking
sequences. I cited Kendall (1941) and Scott (1958) on
this topic, and recently presented a colloquium on the
topic in Blacksburg. In that colloquium I gave the
example of the sequence

(1) 99992128599999399

which occurs as 17 consecutive digits in the expansion
of = — 3, beginning at the 19437th digit. Few statisti-
cians would be happy to use this sequence in a random
design, although most would regard the expansion of
= as a satisfactory pseudorandom sequence. (It would
be amusing to ask for the next digit after sequence (1)
in a nontimed very high 1.Q. test. The reader of this
article will be nearly sure that it is not a 9, but not by
appealing to the crude fallacy of the “maturity of the
chances”!)

One simple description of the sequence (1) is “digit
number 19437, and the next 16 digits of = — 3.”
Another is “AA21285AA934 where A = 99.” The
probability of getting at least eleven of the same digit
in a flat-random sequence of 17 digits is about 7.0 X
1077, but we should “pay” a factor of 20,000 for special
selection if the pseudorandomness of the expansion of
= is being tested (because I scanned 20,000 digits to
find the sequence (1)).

I don’t think it is sufficient to reject (finite) se-
quences of lowish complexity. This method would not
lead to the rejection of all sequences that get decisively
rejected even by standard statistical tests.

2.2 Determinism

The theorem that Suppes quotes is indeed remark-
able, as are some of the results in recent chaotics, but
I don’t see that those results contradict my 1972
comment which Suppes also quotes. In his example
each possible infinite sequence is a possible outcome
of a deterministic set-up, corresponding to initial con-
ditions that would have to be given with infinite
accuracy to predict the output. This shows that the
infinite output sequence of integers does not logically
determine whether the process is deterministic or
indeterministic. I wonder whether it would support
the hypothesis of indeterminism, but I suppose this
question is purely theoretical.

Note that the number of possible outputs is non-
countably infinite, and so is the number of possible
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inputs. But the number of possible inputs that can be
specified cannot be noncountably infinite because a
specification must be of finite length. (I am liberally
allowing for finite but unbounded lengths of the spec-
ifications.) In an indeterministic model, involving con-
tinuous distributions, the output can be any infinite
sequence even if the inputs are fully specified in finite
terms, but this is not true for a deterministic model
because the cardinal number of possible outputs can-
not then exceed the cardinal number of possible in-
puts. So there is a philosophical distinction between
determinism and indeterminism. But, as I said in the
1972 passage, indeterminism arises out of determin-
ism, for all practical purposes, because infinite accu-
racy of specification or measurement of the initial
set-up cannot be achieved in practice. I did not then
know that extreme sensitivity to the initial conditions
occurs even for very simple nonlinear deterministic
physical models as is familiar to chaoticians.

3. RESPONSE TO GEORGE BARNARD

3.1 Maximum Likelihood

A maximum likelihood estimate may or may not be
associated with an estimate of spread. It is hardly a
mistake to use a point maximum likelihood estimate
on some occasions. I recall Barnard saying, some time
in the 50s, that he suspected that most of the differ-
ences between statisticians might turn out to be se-
mantic. That might be the case here. When there are
r successes in n independent and identically distrib-
uted (iid) trials, people do sometimes regard r/n as
the appropriate betting probability for the next trial,
and this is the pdint maximum likelihood estimate.
I believe that, if your state of information borders
on ignorance, then even Laplace’s point estimate
(r + 1)/(n + 2), although not ideal, is more reliable
than r/n. Perhaps I should have said that no sensible
person would bet on the basis of the point maximum
likelihood estimate when r = 0 or r = n, in the sense
of giving “infinite” odds (a soul versus a sou), unless
possibly n were extremely large.

3.2 Model Adjustment Parameters and the
Bayes/non-Bayes Compromise

Barnard mentions the concept of a model adjust-
ment parameter, and asks how it fits in with the
Bayes/non-Bayes compromise. I think the adjustment
parameter could be regarded as just one of the param-
eters of the model. But it might sometimes be expe-
dient, partly because of the available non-Bayesian
software, to assign it a prior distribution while treating
the other parameters in a non-Bayesian manner.

This procedure would exemplify a Bayes/non-Bayes
compromise.

3.3 Summarization of Data Sets

One reason why I did not say more on this topic
was that I have written an article on the philosophy
of exploratory data analysis (1983e). I argued that it
has Bayesian aspects although superficially it might
seem to be brutally empirical. Some of that discussion
would apply also to the allied topic of the summari-
zation of data sets.

As in exploratory data analysis, some devices for
the summarization of data implicitly take some phys-
iological psychology into account, as when data is
represented in abstract creature-feature space and is
then projected into two dimensions. There is some
discussion of such matters in Good (1983e).

I think I agree with much of Barnard’s partial
formalization of data summarization, and that the
reporting of a likelihood function (which he has ad-
vocated in the past and I think is exemplifying here)
can be regarded as a Bayes/non-Bayes compromise.

3.4 Fiducial Probability

Barnard finds it hard to believe that Fisher was
misled by not using a notation for conditional proba-
bility. It is also almost unbelievable that Bronstein, a
world-class chess player, left his queen en prise in a
game against Petrosian, but he did make that begin-
ner’s blunder. Fisher, like Bronstein, was human and
it is easy to be misled by an incomplete notation just
as most people, including philosophers, can be misled
by ill-defined or ambiguous words. (But some ambi-
guity is necessary to avoid having to go on talking
forever, an “uncertainty principle” that has been
around for decades.) Please read carefully my reason
for making the assertion without taking foregone con-
clusions for granted: the argument is only one page
long and is I think clearly written. After eighteen
years I'm still waiting for a refutation. By mentioning
Kolmogorov, Barnard makes the matter seem more
complicated than necessary.

In Barnard’s example of the fiducial argument the
absolute probability that (A, o) belongs to the set
{(X\, 0); (to, 20) € S} can be computed, without assum-
ing a prior distribution for (), ¢), as in the definition
of a confidence set (in Neyman’s sense). But this
probability is not in general equal to the probability
conditional on knowing the values of (%, s) which is
what the fiducial argument claims to provide. The
calculation of this conditional probability, unlike the
absolute probability, requires the assumption of a
prior distribution for (A, o).

Two statements, such as x > y and y < «x,
can be logically equivalent but can have different
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probabilities. That seems like a paradox only if you
forget that the statements might be conditional on
two different propositions or, expressed differently,
one might be a conditional probability and the other
an absolute one. When we include the “given” propo-
sitions in the notation we are not tempted into a
paradox. ’

Mistakes always look worse when they are pin-
pointed. George, why not publicly capitulate on this
issue?

Similarly where Fisher and Barnard emphasize that
likelihood does not obey Kolmogorov’s axioms I would
make the point by saying that P(A | B) # P(B| A).

3.5 Weight of Evidence

Weights of evidence need not be at all precise to be
useful. I believe that when a doctor, a detective or a
cat smells a rat, he, she or it behaves as if she had
made an implicit judgment of a weight of evidence in
the technical sense.

Barnard points out that Peirce’s book Chance, Love,
and Logic discussed the technical concept of weight of
evidence. I find that Chapter 4 of that book is a
reprinting of Peirce (1878) to which I had referred.
Barnard says that, according to his recollection, Peirce
did not mention the condition that H and not-H were
initially equally probable. In brief my reply is “yes and
no” and, to explain this, I shall try to clarify some
aspects of Peirce’s obscurely expressed article.

As Isaac Levi first pointed out to me, Peirce’s article
anticipated the Neyman-Pearson concept of confi-
dence intervals though not with clarity. One reason
why I did not at first see this was that Peirce used the
expression weight of evidence to mean log-odds, which
sounds close to the definition as the logarithm of a
Bayes factor, and he also pointed out an additive
property of his definition. (I return soon to the two
interpretations of “odds”.) Moreover he then applied
the terminology of “weight of evidence” to show that

the “conceptualistic” (Bayesian or Laplacian) point of .

view is not entirely without merit.

Peirce says “It is entirely in harmony with this law
[Fechner’s law] that the feeling of belief should be as
the logarithm of the chance [that is, of the odds] . ..
The rule for the combination of independent concur-
rent arguments takes a very simple form when ex-
pressed in terms of the intensity of belief, measured
in the proposed way.” At this point Peirce seems to
be confusing, or causing the reader to confuse, the
Neyman-Pearsonian odds of “rules of inference” being
right (before conditioning on the outcome of an ex-
periment) with the Bayesian posterior odds that a
hypothesis is correct. Within the Neyman-Pearson
theory one is not supposed to talk about the odds of a
hypothesis, whether prior or posterior. Note too that

later Peirce exemplifies an “argument” by means of
an event (discovering that a bean is black).

Peirce goes on to say “take the sum of all the feelings
of belief which would be produced separately by all
the arguments pro, subtract ... the similar sum for
arguments con, and the remainder is the feeling of
belief which we ought to have on the whole.” Appar-
ently the resultant “feeling of belief” is now to be
understood as the final (posterior) log-odds of the
hypothesis. It is here that we need to assume that the
initial log-odds are 1. In fact he says later “In the
conceptualistic view ... complete ignorance ... is
represented by the probability “%.” The condition
P(H) = % did not appear in the nonconceptualistic
part of Peirce’s discussion, so Barnard’s recollection
was correct in that context.

At one point Peirce’s article shows a lack of under-
standing of the conceptualistic position. He considers
a bag containing a large number of beans each known
to be either black or white, and one bean is selected
at random and placed under a thimble without its
color being observed. Then 2n random drawings are
made at random with replacement. Suppose that n +
10 are black and n — 10 are white. This provides
evidence that the bean under the thimble is black
(hypothesis H). Peirce states that the conceptualist
will incorrectly think the weight of evidence in favor
of H is the same whether n = 10 or n = 1000 because
the excess of blacks is 20 in both cases. He did not
notice that the drawings were physically but not sub-
jectively independent. He overlooked that the prior
distribution of the physical probability has to be con-
tinually updated unless the density is a Dirac function.
Or, in other terms, W(H:F|E) need not equal
W(H:F)!

My present view is that Peirce did not after all
clearly anticipate the correct Bayesian interpretation
of weight of evidence although he came close enough
to it to suggest it to the mind of a Bayesian reader.
Incidentally, I have recently suggested a new and very
succinct justification for the Bayesian interpretation
(Good, 1988d).

The reading of much of Peirce’s article, most gen-
erous to him and expressed in modern terms, is that
it would be wrong to put a Bayesian interpretation on
a confidence interval (although it is still done). I
wonder if any of his readers in 1878 understood him
in this manner.

Barnard has recently informed me that Cournot
(1843) anticipated the concept of confidence intervals,
and that this book is to be republished as Volume 1 of
Cournot’s collected works under the auspices of the
French Centre National de la Recherche Scientifique.
Hurrah for that kind of national pride! Laplace (1820,
page 281) also anticipated the concept, but I don’t
think he gave it much emphasis.
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3.6 Scientific Induction

I think it would be a pity if the word induction were
expunged from the dictionary even though it is used
ambiguously. It is better to try to disentangle its
various meanings and this attempt is consistent with
Barnard’s belief in the value of taxonomy of concepts.
I agree that induction is surrounded by confusion but
it is worth more than the paper it is printed on.

I have recently noticed (Good, 1988¢) that the form
of argument, used by Popper and Miller (1983, 1987)
against probabilistic induction, an argument that does
not convince me at all, can, if valid, be used to dem-
onstrate an absurd consequence. I have pointed this
out to Popper and Miller and am waiting for a reply.

3.7 P-values

The proposal of using standardized p-values, when
the null hypothesis is a simple statistical hypothesis,
is not by any means intended to solve all problems of
interpretation. My thesis is only that if you must use
p-values in these circumstances, as measures of evi-
dence against the null hypothesis, then they are less
misleading when standardized than when they are not.
I recall Barnard’s saying, from the floor at a meeting
of the Research Section of the Royal Statistical Soci-
ety in the ’60s, that a p-value is a “primitive concept”
or that it is more primitive than a Bayes factor. I
think this is still the attitude of many users of statis-
tical methods, although I recognize that Barnard, in
agreement with Fisher, has shifted somewhat from
this opinion. At one time in the ’50s, in conversation,
he used to agree with Fisher’s interpretation of a very
small p-value: “Either an exceptionally rare chance
has occurred, or the theory of random distribution is
not true” (Fisher, 1956, page 39). I don’t know whether
Barnard was quoting Fisher, or vice versa. A difficulty
with this interpretation is that all events are highly
improbable when described in much detail. This dif-
ficulty does not occur when sets of all possible simple
likelihood ratios are used, or when Bayes factors are
used, and perhaps the difficulty can also be avoided
by using surprise indexes.

When a Bayes factor is vague enough, or too difficult
to estimate, or when dealing with a community edu-
cated to regard p-values as clearer than Bayes factors,
we may have to fall back on p-values or on surprise
indexes. As Bayesian techniques become more and
more developed, and when Bayesian software becomes
more readily available, the fraction of applications in
which one needs to use p-values may well decrease,
but I don’t think the need will disappear within the
next hundred years unless civilization disappears first.
There might be a period of a few decades during which
it will be common to provide both a Bayesian and a

non-Bayesian analysis of each applied problem. (For
an example see Haldane and Smith, 1947.) Meanwhile,
examples of the very approximate relationships be-
tween p-values and Bayes factors, although not the
simple relationship that a few might expect, should
soon constitute a part of an elementary education in
statistical methodology. This is especially important
because the popular p-value of 0.05 is usually only
weak evidence against a sharp null hypothesis.

The result that Barnard ascribes to Pitman (1965)
is true but does not appear there explicitly. An extreme
case is when an experiment is performed that has no
bearing at all on the scientific matter at issue. Then
no p-value, however small, standardized or not, would
be relevant, and the weight of evidence would be zero.
Standardization is not intended to be a panacea.

I say more about p-values in my reply to Berger’s
comments.

Regarding Fisher’s changing views from the *20s to
the ’50s, these changes might well have been caused
in part by the opinions of others such as Neyman
and Egon Pearson and various Bayesians or near-
Bayesians. The father of statistics presumably learned
something from his descendants, including Barnard.

3.8 Subjective Probability

When I said that subjective probability was the most
basic kind, I have to confess to an ambiguity. I meant
that subjective probability should be used even when
estimating a physical probability and I had mainly in
mind the contexts of ordinary statistical practice and
ordinary life. I tend to believe also in the reality of
physical probabilities in relation to quantum mechan-
ics, and in their usefulness as convenient fictions in
many deterministic contexts. Even in quantum me-
chanics a physical probability can be interpreted as a
subjective one when a decision needs to be made.

4. RESPONSE TO JIM BERGER

4.1 Hierarchical Bayes

Perhaps I exaggerated by implying that all Bayesian
methods will eventually be hierarchical. Presumably,
for the sake of simplicity, or for the sake of Type II
rationality, the hierarchy will often continue to be
mowed at the lowest level, before the hierarchy grows.
For example, a beta prior with specific hyperparame-
ters might often be assumed although at the back of
your mind you know that you don’t believe in these
exact values. If you have time you should do a sensi-
tivity analysis at any level of cut-off.

4.2 Bayes Factors

I like Jim Berger’s remark about some anti-Baye-
sians “recoiling in horror.” The expression “weighted
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likelihood ratio” is perhaps used by some to capture
the Bayesian concept of a Bayes factor while pretend-
ing to be non-Bayesian. Weighted likelihood ratios
are closely related to the work by Crook and myself
on the strength of a statistical test (1982). This is a
weighted power function where the natural weight
function is a prior distribution. Kempthorne had pre-
viously suggested an averaged power function. This is
the anti-Bayesian way of using a “Bayes postulate”
(uniformity of the prior).

4.3 P-values

Berger’s modified standardization might improve
the one I proposed, but mine is a little simpler. He
agrees that my 1957 notion of using a possibly crude
Bayes factor as a significance test criterion (with
p-values) should be beneficial to classical testing but
he questions whether p-values should ever be used.
My reply is partly contained in that to Barnard’s
contribution.

At present it is sometimes too difficult to produce a
satisfactory Bayesian model, and then one is tempted
to fall back on p-values and all that. There is also the
problem of dealing promptly with brain-washed
clients. Perhaps one day there will be satisfactory
Bayesian procedures and software for nearly all occa-
sions.

If p-values go down the drain can confidence inter-
vals long remain?

5. RESPONSE TO DAVID BANKS

I very much like Banks’s suggestion for experimen-
tal work at the border of psychology, philosophy and
statistics. .

In reference to his reference to insanity, compare
my one-sentence publication Good (1976b) which
asked “What upper bound does the possibility of hal-
lucination put on the evidence for any hypothesis?”

Among the many other interesting ideas in Banks’s
contribution I'm responding just to the question of
when to stop thinking about a problem (without ob-
taining new empirical data). The question impinges
on the closely related topics of Type II rationality and
dynamic probability. It seems to me that you have to
judge from time to time whether the expected utility
of further thought is still positive. This is a problem
that everybody has to face repeatedly; for example,
Banks must have faced it when he decided to stop
writing his contribution to the discussion. In a game
of chess, played with a chess clock, the problem arises
in an especially clear manner and quite a bit can be
said in that context (Good, 1968c). In more general
contexts it is difficult to give specific advice other than
the need to take into account whatever springs to your

mind or to your client’s mind, and is judged to be
sufficiently relevant. One criterion is whether your
thoughts have begun to go round in circles. Then, if
you are sensible you will say to yourself “For heaven’s
sake, make your mind up!” but you would probably be
more polite to your client. Sleeping on a problem is
often of value, presumably because the unconscious
mind is much more powerful than is sometimes rec-
ognized. It might be more powerful in achieving ra-
tionality of Type II than of Type I, and it might use a
mechanism like hypnotism for this purpose.

When the famous mathematician J. E. Littlewood
had no new ideas, for a couple of days, concerning a
problem he was attacking, he would postpone further
work for a few months during which time he hoped to
acquire some relevant new knowledge. (Oral commu-
nication from Besicovitch, about 1939.) For theoreti-
cal work this approach is probably useful in statistics,
but less so for statistical consulting!

It might be possible to develop new useful sugges-
tions to help one to decide when to stop thinking
about a statistical problem. One strategy is to choose
a Bayesian model and to check whether it leads to
conclusions that are robust or sensitive to moderate
modifications. For a recent example of this strategy
see Good and Crook (1987) and the additional refer-
ence in Jim Berger’s contribution to the present
discussion.

I believe that the procedure of stopping thinking
and calculating, in accordance with Type II rational-
ity, is what statisticians have usually done implicitly,
to some approximation, for the last 200 years. I have
thought it worthwhile to make the matter more ex-
plicit. As in a theory of dynamic probability, any
attempt to formalize T'ype II rationality requires some
notations like P,, u, and W, (for probabilities, utilities
and weights of evidence) to convey the time t at which
the judgments are made. One should think of ¢ as
representing a time interval rather than a single mo-
ment of time. Note too that coherence is usually more
important in a single document than in your thoughts
at a given time.

When modifying your estimates of probabilities,
utilities, weights of evidence, etc., you would some-
times rely on the usual axioms of probability, but re-
expressed to bring in the time element. For example,
the product law would be expressed in a manner
resembling

P...(E&F|H) = P.(E|H)P.(F| E&H),
P...(F| E&H) = P.(E&F | H)/P.(E | H),
or

P..(E|H) = P(E&F | H)/P.(F| E&H),
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where only one of these three equations can be used
at any specific time in serial processing. (By ¢ + 1
I mean a time interval following the one labeled t.
Bringing the time into the notation is like bringing in
a symbol for your “state of mind”: compare, Good,
1950, pages 2 and 3.) If the subscripts are dropped
then the equality symbols should be replaced by an
updating symbol such as the Algol “: =.” If no thought
concerning P(E | F), nor any closely relevant proba-
bility, has occurred to you between times ¢ and ¢ + 1,
then one has the default

P (E|F) = P(E|F).

With such notations I don’t think inconsistencies have
to arise, but they probably would do so in a highly
parallel machine such as the human brain. Then either
the inconsistencies are ignored, being judged to be
unimportant, or some further algorithms would be
needed to resolve the contradictions, such as those
proposed for the combination of judgments by Lindley,
Tversky and Brown (1979) and Good (1979). In pure
logic, any contradiction is devastating, but, in natural
human probabilistic thinking contradictions can be
more or less relevant to the questions of interest to
you at any time. We have amazing ability to notice
the relevant and to ignore the irrelevant. It might be
even more difficult to formalize this process than to
mechanize it with the help of an artificial neural
network.

Further work on Type II rationality, dynamic prob-
ability and on the allied topic of temporal coherence
can be found in Goldstein (1985), Diaconis (1987) and
Michie (1987), which introduces a concept of Type III
rationality in relation to pseudognostics (artificial in-
telligence). These papers contain further citations.
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