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squared modulus of the psi function. The theory
amounts to a doctrine that there exist “systems”
whose “state” can be described by a psi function
satisfying certain rules of combination and of evolu-
tion in time. These “systems” relate to objectively
describable repeatable experimental set-ups; and the
theory is related to such set-ups mainly by interpreting
the squared modulus of the psi function as a “long run
frequency probability” over repetitions of such set-
ups. No subjective element enters into this, although
in relation to a single such set-up an observer may
associate the quantum-theoretical probability with a
subjective probability of the same magnitude. There
are many fascinating puzzles here, well described by

Comment

James O. Berger

I recall being surprised upon first encountering the
considerable interest of many philosophers in proba-
bility and statistics, interest at an often detailed tech-
nical level. Perhaps even more unusual is a serious
professional interest in philosophy from a statistician
or probabilist. Jack Good has had such a professional
interest, virtually from the beginning of his career,
and it is indeed a pleasure to view the world of “prob-
abilistic philosophy” through his eyes.

One of the cornerstones of probabilistic philosophy
was the development of the Bayesian and expected
utility paradigms for processing information and
making decisions. The paradigms were, however, an
incomplete representation of reality, until Good in-
corporated the concept of partially ordered probabili-
ties into their structures. I have written, in some
depth, about this aspect of Good’s work in Berger
(1987), and so will refrain from further comments
here.

I found Good’s comment, that “... the future of
statistics . . . will be a compromise between hierarchi-
cal Bayesian methods and methods that seem super-
ficially to be non-Bayesian,” quite interesting. It is
true that hierarchical Bayesian methods (including
their empirical Bayes approximations) often have no
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David Mermin in the April 1985 issue of Physics
Today.

Like Good I see the future of the foundations of
statistical inference in Bayes/non-Bayes compromises
involving hierarchical models, objective data summa-
rizations and in other directions. It is a pleasure to
have been invited to discuss.
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workable classical analogues, and hence will be indis-
pensable to the future of statistics; was more than this
intended by the comment?

Isn’t the left hand side of (2) often called a “weighted
likelihood ratio”? I have several times been cynically
amused that some statisticians will have no qualms
about basing a decision on a weighted likelihood ratio
with rather arbitrarily chosen weight functions, but
will cry out in horror at the thought of using a Bayes
factor with a prior that is actually thought about!

Another way of trying to understand the type of
correction to a p-value given in (4), is to observe that,
as long as N is at least moderately large,

p-value 208 (6,) )
Bayes factor N[z + (.75)z7"]

here ¢ is the standard deviation of an observation,
g(6) is the value of the prior density as it approaches
the null model 6, and z is the standardized (normal)
test statistic z = VN(x — 6,)/s. Thus a p-value will
behave roughly like a Bayes factor if it is multiplied
by vN. (The above formula further suggests that
multiplying p by [z + (.75)z™"] might be a beneficial
standardization, but this is a comparatively minor
additional correction.)

The idea of choosing a (perhaps crude) Bayes factor
to be the significance test criterion certainly should
be beneficial to classical testing. What, however, is
the value of this to a Bayesian, who feels that all tail
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areas can be highly misleading if viewed as quantita-
tive evidence against a hypothesis?

I find, overall, that there is little I can add to the
paper and little I can question. As I read the paper,
I time and time again found myself saying—“That’s
a very good point; I couldn’t agree more!”

Comment

David L. Banks

Jack Good’s overview of the statistics/philosophy
interface is delightful, informative and provocative.
As usual, he combines substance with a great deal of
engaging style and many scattered pearls. It is regret-
table that his topic is so broad, for this sometimes
forces him to treat major ideas with telegrammatic
brevity; I hope that readers will be sufficiently in-
trigued to seek epexegesis in the references.

Over the years Good has started many hares at the
border between statistical inference and the philoso-
phy of science, and the article provides a partial syn-
opsis of this facet of his research career. Although it
is difficult for me to generate much disagreement with
his principle views, I shall attempt to delineate aspects
that make me either uneasy or eager for more devel-
opment. Because the paper is rather a scattershot
of topics, my comments are divided into thematic
categories.

THE TYPE Il WELTANSCHAUUNG

A major contribution is Good’s development of
dynamic probabilities. His overview emphasizes the
relation between dynamic probabilities and partially
ordered subjective probabilities, but I do not think his
discussion carries the implications far enough. Good’s
point is that subjective probabilities change as one
thinks, without new experimental information. In ap-
plications, one can only think so much, and thus one’s
subjective probabilities are necessarily approximate.

As an example, when someone states the Bieberbach
conjecture, it sounds implausible and a good subjectiv-
ist might assign it a low probability. Further thought
discovers numerous analytical functions that corrob-
orate conjecture, inclining one to revise the probability
upward. With a great deal of additional thought, a
supremely clever person might rediscover de Branges’
proof of the conjecture. Thus one’s stated subjective
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probability depends on the amount of introspection
spent upon the problem.

If a person is immortal, infinitely intelligent, per-
fectly sane (coherent) and reluctant to lose imaginary
money, then she can construct an infinite sequence of
hypothetical wagers that enables her to define her
subjective probabilities with arbitrary precision. In
practice, such perfect priors cannot be specified, and
it behooves robust Bayesians to investigate the influ-
ence of errors induced by finite time, limited intelli-
gence and insanity.

If error is caused only by Type II rationality (i.e.,
finite time), then it may be feasible to attempt a
reasonably precise sensitivity analysis. For illustra-
tion, let’s posit perfect intelligence and sanity, and
assume that if one had infinite time, the prior chosen
would be F. Let || - | be some reasonable metric on
the space of measures (say LP[—», ©], 1 < p < ), and
take 6 > 0. Then one method of prior elicitation is
to consider a sequence of distribution functions G,
G, ... such that for any 6 > 0 and any cdf H, there
exists some n such that |G, — H|| < 6 (on the line,
one such sequence consists of step functions that place
rational mass on the rational numbers; these are then
ordered in analogy with Cantor’s proof of the count-
ability of the rationals). First one decides whether G,
or (3, is closer to one’s prior with respect to the metric;
then one considers each element of the sequence in
turn, deciding whether the new element is closer to
one’s prior than the best cdf previously considered.
After a fixed amount of time, one stops; let G, denote
the best cdf discovered, and G,, the last considered.
Then F must lie in the region consisting of all cdfs
closer to G, than to Gy, . . ., G,.. If one can search this
region (and computer-intensive techniques are begin-
ning to make this practical), then in principle one can
either

e discover the prior that yields the most pessi-
mistic analysis, or

e sample priors from the region and examine the
distribution of inferences made from these.



