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Statistical Models and Analysis in Auditing

Panel on Nonstandard Mixtures of Distributions

Abstract. This report is a study of statistical models and methods for
analyzing nonstandard mixtures of distributions in auditing. It was prepared

by the Committee on Applied and Theoretical Statistics of the Board on

Mathematical Sciences, National Research Council, through its Panel on
Nonstandard Mixtures of Distributions. A comprehensive survey of the

various methodologies that have been provided in the literature is presented,

together with numerical examples. A detailed annotated bibliography of
statistical practice in auditing is included.
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1. INTRODUCTION

One of the first problems of national importance
that was considered by the Committee on Applied and
Theoretical Statistics (CATS) was posed to it by staff
members of the Internal Revenue Service (IRS). They
were concerned with the lack of appropriate statistical
methodologies for certain nonstandard situations that
arise in auditing where the distributions appropri-
ate for modeling the data are markedly different
from those for which most statistical analyses were
designed.

The quality of the procedures used in a statistical
analysis depends heavily on the probability model or
distributions assumed. Because of this, considerable
effort over the years has been expended in the devel-
opment of large classes of standard distributions,
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along with relevant statistical methodologies, designed
to serve as models for a wide range of phenomena.
However, there still remain many important problems
where the data do not follow any of these more “stand-
ard” models. The problem raised by the IRS provides
a strikingly simple example of data from a nonstand-
ard distribution for which statistical method-
ologies have only recently begun to be developed,
and for which much additional research is needed.
The example is of such national importance, both for
government agencies and for business and industry,
that it is the primary focus of this report. The po-
tential monetary losses associated with poor statisti-
cal practice in this auditing context are exceedingly
high.

It is the purpose of this report to give a survey of
the available statistical methods, to provide an anno-
tated bibliography of the literature on which the sur-
vey is based, to summarize important open questions,
to present recommendations designed to improve the
level and direction of research on these matters and
to encourage greater interaction between statisticians
and accountants. This report is primarily directed
toward researchers, both in statistics and accounting,
and students who wish to become familiar with the
important problems and literature associated with
statistical auditing. It is hoped that this report will
stimulate the needed collaborative research in statis-
tical auditing involving both statisticians and account-
ants. It is also hoped that practitioners will benefit
from the collection of methodologies presented here,
and possibly will be able to incorporate some of these
ideas into their own work.

Although this report is centered upon a particular
nonstandard distribution that arises in auditing, the
original proposal for this study recognized that this
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same type of nonstandard model arises in many quite
different applications covering almost all other disci-
plines. Three general areas of application (accounting,
medicine and engineering) were initially chosen for
consideration by the Panel. Later in this Introduction
we list several examples in order to illustrate the
widespread occurrence of similar nonstandard models
throughout most areas of knowledge. These examples
will, however, primarily reflect the original areas of
emphasis of the Panel. Before describing these ex-
amples, however, we briefly discuss the general con-
cept of a mixture of distributions because it appears
in the name of the Panel.

Nonstandard Mixtures

The phrase “mixture of distributions” usually refers
to a situation in which the jth of £ (taken here to be
finite) underlying distributions is chosen with proba-
bility p;, j = 1, - - - , k. The selection probabilities are
usually unknown and the number of underlying dis-
tributions k may be fixed or random. The special case
of two underlying distributions is an important clas-
sical problem that encompasses this report’s particu-
lar problem in which, with probability p, a specified
constant is observed whereas, with probability 1 — p,
one observes a random measurement whose distribu-
tion has a density function. That is, it is a mixture of
a degenerate distribution and an absolutely continu-
ous one.

There are many examples of probability models that
are best described as mixtures of two or more other
models in the above sense. For example, a probability
model for the heights of 16 year olds would probably
best be described as the mixture of two unimodal
distributions, one representing the model for the
heights of girls and one for the boys. Karl Pearson in
1894 was possibly the first to study formally the case
of a mixture of two distributions; in this case they
were two normal distributions thereby providing one
possible mixture model for the above example of
heights. Following this, there were few if any notable
studies until the paper of Robbins and Pitman (1949)
in which general mixtures of x” distributions were
derived as probability models for quadratic forms of
normal random variables. Since then, there have been
many other papers dealing with particular mixture
models. The published research primarily deals with
mixtures of distributions of similar types, such as
mixtures of normal distributions, mixtures of x? dis-
tributions, mixtures of exponential distributions, mix-
tures of binomial distributions and so on. However,
the literature contains very few papers that provide
and deal with special “nonstandard” mixtures that
mix discrete (degenerate, even) and continuous distri-
butions as emphasized in this report.

In general, the word mixture refers to a convex
combination of distributions or random variables. To
illustrate, suppose X and Y are random variables with
distribution functions F and @, respectively. Let
0 <p =1. Then H = pF + (1 — p)G is a distribution
function that may be called a mixture of F and G. The
interpretation of H is that it represents a model in
which the distribution F is used with probability p
while G is used with probability 1 — p. In terms of
random variables, one may say that H models an
observation Z that is obtained as follows: With prob-
ability p observe X having distribution F, and with
probability 1 — p observe Y having distribution G.
Such mixtures may then be viewed as models for data
that may be interpreted as the outcomes of a two-
stage experiment. In the first stage, a population is
randomly chosen and then in the second stage an
observation is made from the chosen population.

It is not necessary to limit oneself to mixtures of
just two or even a finite number of distributions. In
general, one may have an arbitrarily indexed family
of distributions, for which an index is randomly cho-
sen from a given mixing distribution. It should also be
emphasized that there is considerable ambiguity as-
sociated with mixtures; every distribution may be
expressed as a mixture in infinitely many ways. Never-
theless, when mixture models are formulated reason-
ably, they can provide useful tools for statistical
analysis. There is by now a large literature pertaining
to statistical analyses of mixtures of distributions; for
a source of references, see Titterington, Smith and
Makov (1985). Problems and applications of mixtures
also appear in the literature associated with the term
heterogeneity; see Keyfitz (1984).

Applications Involving Nonstandard Mixtures

The interpretation of the nonstandard mixtures
emphasized in this report is quite simple. If F, the
degenerate distribution, is chosen in the first stage,
the observed value of the outcome is zero; otherwise
the observed value is drawn from the other distribu-
tion. In what follows we illustrate several situations
in which this type of nonstandard mixture may arise,
and indicate thereby its wide range of applications.
There are of course fundamental differences among
many of these applications. For example, in some of
these applications, the mixtures are distinguishable in
the sense that one can tell from which population an
observation has come, whereas in others the mixtures
are indistinguishable. In many applications it is nec-
essary to form restrictive parametric models for the
nondegenerate distribution G; in at least one exam-
ple, G is itself seen to arise from a mixture. In some
cases G admits only positive values of X; in other
cases G presents positive, negative or even zero
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values. Of course, if G also permits zero values
with positive probability, then the mixture is clearly
indistinguishable.

The descriptions of the following applications are
brief and somewhat simplified. They should suffice,
however, to indicate the broad diversity of important
situations in which these nonstandard mixtures arise.
We begin with the auditing application that is the
focus of 'tHis report.

- 1. In auditing, some population elements con-
tain nd €rrors, whereas other population elements
contain errors of varying amounts. The distribu-
tion of errors can, therefore, be viewed as a mix-
ture of two distinguishable distributions, one with
a discrete probability mass at zero and the other
a continuous distribution of non-zero positive
and/or negative error amounts. The main statis-
tical objective in this auditing problem is to pro-
vide a statistical bound for the total error amount
in the population. The difficulty inherent in this
problem is the typical presence of only a few or
no errors in a given sample. This application will
be the main focus of this report; it is studied at
length in Section 2.

Independent public accountants often use sam-
ples to estimate the amount of monetary error in
an account balance or class of transactions. Their
interest usually centers on obtaining a statistical
upper bound for the true monetary error, a bound
that is most likely going to be greater than the
error. A major concern is that the estimated upper
bound of monetary error may in fact be less than
the true amount more often than desired. Govern-
mental auditors are also interested in monetary
error—the difference between the costs reported
and what should have been reported, for example.
Because the government may not wish to over-
estimate the adjustment that the auditee owes the
government, interest often centers on the lower
confidence limit of monetary error at a specified
confidence level allowed by the policy.

The mixture problem affects both groups of
auditors as well as internal auditors who may be
concerned with both upper and lower limits. In
all cases there is a serious tendency for the use of
standard statistical techniques, that are based
upon the approximate normality of the estimator
of total monetary error, to provide erroneous re-
sults. Specifically, as will be reviewed in the next
section, both confidence limits tend to be too
small. Upper limits being too small means that
the frequency of upper limits exceeding the true
monetary error is less than the nominal confi-
dence level. Lower limits being too small means
that the frequency of lower limits being smaller

than the true monetary error is greater than
the nominal confidence level. To the auditors
these deficiencies have important practical
consequences.

Most of the research to date has been directed
toward the independent public accountants’ con-
cern with the upper limit. For example, the re-
search outlined in Section 2 that is concerned
with sampling of dollar units represents a major
thrust in this direction. By contrast, very little
research has been done on the problem of the
lower confidence bound. This represents an area
of considerable importance where research is
needed.

2. In a community a particular service, such
as a specific medical care, may not be utilized by
all families in the community. There may be a
substantial portion of nontakers of such a service.
Those families who subscribe to it do so in vary-
ing amounts. Thus the distribution of the con-
sumption of the service may be represented by a
mixture of zeros and positive values.

3. In the mass production of technological
components of hardware, intended to function
over a period of time, some components may fail
on installation and therefore have zero life
lengths. A component that does not fail on in-
stallation will have a life length that is a positive
random variable whose distribution may take dif-
ferent forms. Thus, the overall distribution of
lifetimes which includes the duds is a nonstand-
ard mixture.

4. In measuring precipitation amounts for
specified time periods, one must deal with the
problem that a proportion of these amounts will
be zero (i.e., measured as zero). The remaining
proportion is characterized by some positive ran-
dom variable. The distribution of this positive
random variable usually looks reasonably smooth,
but in fact is itself a complex mixture arising from
many different types of events.

5. In the study of human smoking behavior,
two variables of interest are smoking status—
Ever Smoked and Never Smoked—and score on
a “Pharmacological Scale” of people who have
smoked. This also is a bivariate problem with a
discrete variate—0 (Never Smoked), 1 (Ever
Smoked)—and a continuous variate “Pharmaco-
logical Score.” A nontrivial conditional distribu-
tion of the second variate can be defined only in
association with the 1 outcome of the first variate.
This problem can be further complicated by non-
response on either of the first or second variates.

6. In the study of tumor characteristics, two
variates may be recorded. The first is the absence
(0) or presence (1) of a tumor and the second is
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tumor size measured on a continuous scale. In
this problem, it is sometimes of interest to con-
sider a marginal tumor measurement that is 0
with nonzero probability an example of a mixture
of unrelated distributions. The problem can be
further complicated by recognizing that the ab-
sence of a tumor is an operational definition and
that in fact patients with nondetectable tumors
will be included in this category.

7. In studies of genetic birth defects, children
can be characterized by two variates, a discrete or
categorical variable to indicate if one is not af-
fected, affected and born dead, or affected and
born alive, and a continuous variable measuring
the survival time of affected children born alive.
The conditional distribution of survival time
given this first variable is undefined for children
who are not affected, a mass point at 0 for children
who are affected and born dead, and nontrivial
for children who are born alive. In some cases it
may be necessary to consider the conditional sur-
vival time distribution for affected children as a
mixture of a mass point (at 0) and a nontrivial
continuous distribution.

8. Consider measurements of physical per-
formance scores of patients with a debilitating
disease such as multiple sclerosis. There will be
frequent zero measurements from those giving no
performance and many observations with graded
positive performance.

9. In a study of tooth decay, the number of
surfaces in a mouth which are filled, missing or
decayed are scored to produce a decay index.
Healthy teeth are scored 0 for no evidence of
decay. The distribution is a mixture of a mass
point at 0 and a nontrivial continuous distribution
of decay score. The problem could be further
complicated if the decay score is expressed as a
percentage of damage to measured teeth. The
distribution should then be a mixture of a discrete
random variable (0—healthy teeth, 1—all teeth
missing) with nonzero probability of both out-
comes and a continuous random variable (amount
of decay in the (0, 1) interval).

10. In studies of methods for removing certain
behaviors (e.g., predatory behavior or salt con-
sumption), the amount of the behavior which is
exhibited at a certain point in time may be meas-
ured. In this context, complete absence of the
target behavior may represent a different result
than would a reduction from a baseline level of
the behavior. Thus, one would model the distri-
bution of activity levels as a mixture of a discrete
value of zero and a continuous random level.

11. Time until remission is of interest in stud-
ies of drug effectiveness for treatment of certain

diseases. Some patients respond and some do not.
The distribution is a mixture of a mass point at
0 and a nontrivial continuous distribution of pos-
itive remission times.

12. In a quite different context, important
problems exist in time-series analysis in which
there are mixed spectra containing both discrete
and continuous components.

In some of the above examples, the value zero is a
natural extension of the possible measurements, and
in other examples it is not. For example, in measuring
behavioral activity (Example 9), a zero measurement
can occur because the subject has totally ceased the
behavior, or because the subject has reduced the be-
havior to such a low average level that the time of
observation is insufficient to observe the behavior.
This indecision might also occur in the example con-
cerning tumor measurement or in rainfall measure-
ment. In other examples, however, it is possible to
determine the source of the observation. The very fact
that the service lifetime of a component in Example 3
is zero identifies that component as a dud, and in
Example 7 there is a clear distinction between still-
born and liveborn children. These two kinds of ex-
amples represent applications of indistinguishable and
distinguishable mixtures, respectively.

2. STATISTICAL MODELS AND ANALYSES
IN AUDITING

2.1 The Beginnings

The field of accounting encompasses a number of
subdisciplines. Among these, two important ones are
financial accounting and auditing. Financial account-
ing is concerned with the collection of data about the
economic activities of a given firm and the summariz-
ing and reporting of them in the form of financial
statements. Auditing, on the other hand, refers to the
independent verification of the fairness of these finan-
cial statements. The auditor collects data that is useful
for verification from several sources and by different
means. It is very evident that the acquisition of relia-
ble audit information at low cost is essential to eco-
nomical and efficient auditing.

There are two main types of audit tests for which
the acquisition of information can profitably make use
of statistical sampling. First, an auditor may require
evidence to verify that the accounting treatments of
numerous individual transactions comply with pre-
scribed procedures for internal control. Second, audit
evidence may be required to verify that reported mon-
etary balances of large numbers of individual items
are not materially misstated. The first audit test,
collecting data to determine the rate of procedural
errors of a population of transactions is called a
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compliance test. The second, collecting data for eval-
uating the aggregate monetary error in the stated
balance, is called a substantive test of details. The
auditor considers an error to be material if its magni-
tude “is such that it is probable that the judgement of
a reasonable person relying upon the report would
have been changed or influenced by the inclusion
or corre‘:qt.ion of the item” (Financial Accounting
Standards Board, 1980).

Current auditing standards set by the American
Institute of Certified Public Accounts (AICPA) do not
mandatd the use of statistical sampling when con-
ducting audit tests (AICPA, 1981, 1983). However, the
merits of random sampling as the means to obtain, at
relatively low cost, reliable approximations to the
characteristics of a large group of entries, were known
to accountants as early as 1933 (Carman, 1933). The
early applications were apparently limited to compli-
ance tests (Neter, 1986). The statistical problems that
arise, when analyzing the type of nonstandard mixture
of distributions that is the focus of this report, did not
surface in auditing until the late 1950s. At about that
time, Kenneth Stringer began to investigate the prac-
ticality of incorporating statistical sampling into the
audit practices of his firm, Deloitte, Haskins & Sells.
It was not until 1963 that some results of his studies
were communicated to the statistical profession. The
occasion was a meeting of the American Statistical
Association (Stringer, 1963, 1979).

Before summarizing Stringer’s main conclusions,
we describe the context as follows. An item in an audit
sample produces two pieces of information, namely,
the book (recorded) amount and the audited (correct)
amount. The difference between the two is called the
error amount. The percentage of items in error may
be small in an accounting population. In an audit
sample, it is not uncommon to observe only a few
items with errors. An audit sample may not yield any
nonzero error amounts. For analyses of such data, in
which most observations are zero, the classical inter-
val estimation of the total error amount based on the
asymptotic normality of the sampling distribution is
not reliable. Also, when the sample contains no items
in error, the estimated standard deviation of the esti-
mator of the total error amount becomes zero. Alter-
natively, one could use the sample mean of the audited
amount to estimate the total mean audited amount
for the population. The estimate of the mean is then
multipled by the known number of items in the pop-
ulation to estimate the population total. In the audit
profession, this method is referred to as mean-per-
unit estimation (AICPA, 1983). Because observations
are audited amounts, the standard deviation of this
estimator can be estimated even when all items in the
sample are error-free. However, because of the large
variance of the audited amount that may arise in

simple random sampling, the mean-per-unit estima-
tion is imprecise. More fundamentally, however, when
the sample does not contain any item in error, the
difference between the estimate of the total audited
amount and the book balance must be interpreted as
the sampling error. The auditor thus evaluates that
the book amount does not contain any material error.
This is an important point for the auditor. To quote
from Stringer (1963) concerning statistical estimates
(“evaluations”) of total error:

Assuming a population with no error in it, each
of the possible distinct samples of a given size
that could be selected from it would result in a
different estimate and precision limit under this
approach; however, from the view point of the
auditor, all samples which include no errors should
result in identical evaluations.

Stringer then reported in the same presentation that
he, in collaboration with Frederick F. Stephan of
Princeton University, had developed a new statistical
procedure for his firm’s use in auditing that did not
depend on the normal approximation of the sampling
distribution and that could still provide a reasonable
inference for the population error amount when all
items in the sample are error-free. This sampling plan
is apparently the original implementation of the now
widely practiced dollar (or monetary) unit sampling
and is one of the first workable solutions proposed for
the nonstandard mixtures problem in accounting.
However, as it is studied later in this report, the
method assumes that errors are overstatements with
the maximum size of an error of an item equal to its
book amount. Another solution, using a similar pro-
cedure, was devised by van Heerden (1961). His work,
however, was slow to become known within the Amer-
ican accounting profession.

In the public sector, statistical sampling has also
become an integral part of audit tools in the Internal
Revenue Service since the issuance of the 1972 memo
by their Chief Council (IRS, 1972, 1975). In a tax
examination the audit agent uses statistical sampling
of individual items to estimate the adjustment, if
necessary, for an aggregate expense reported in the
tax return. Statistical auditing may also be utilized by
other governmental agencies. For example, the Office
of the Inspector General of the Department of Health
and Human Services investigates compliance of the
cost report of a state to the Medicaid policy by using
statistical sampling of items. In these cases, a large
proportion of items in an audit sample requires no
adjustment, i.e., most sample items are allowable de-
ductions. Because an individual item adjustment is
seldom negative, the audit data for estimation of the
total adjustment is a mixture of a large percentage of
zeros and a small percentage of positive numbers.



ANALYSIS IN AUDITING 7

Thus, the mixture model and related statistical prob-
lems that are important to accounting firms in audit-
ing also arise in other auditing contexts such as those
associated with IRS tax examinations. Significant dif-
ferences also exist in these applications, however, and
these will be stressed later.

For concise accounts of the problems of statistical
auditing one is referred to Knight (1979), Smith (1979)
and Neter (1986); the last reference also includes
recent developments. Leslie, Teitlebaum and Ander-
son (1980) also provide an annotated bibliography that
portrays the historical development of the subject
through 1979. In the sections which follow, however,
we provide a comprehensive survey of the research
efforts that have contributed to the identification and
better understanding of problems in statistical audit-
ing. We include brief descriptions of many of the
solutions that have been proposed for these problems
along with their limitations. It will be noticed that the
solutions thus far proposed are mainly directed toward
the special need for good upper bounds on errors when
errors are overstatements. This is an important and
common audit problem for accounting firms but in the
case of tax examinations, although the mixture distri-
bution is similar, the interest is in the study of lower
bounds. Thus in statistical auditing, whether in the
private or public sector, the investigator’s interest is
usually concerned with one-sided problems, i.e., of an
upper or a lower bound, rather than two-sided prob-
lems as currently stressed in many texts.

The next section provides the definitions and no-
tations that are used. Then in Sections 2.3 through
2.7, we present various methodologies that have been
provided in the literature. Numerical examples are
given in the last section to illustrate some of the
alternative procedures.

2.2 Definitions and Notation

An account, such as accounts receivable or inven-
tory, is a population of individual accounts. To distin-
guish the use of the word “account” in the former
sense from the latter, we define the constituent indi-
vidual accounts, when used as audit units, as line
items. Let Y; and X, the latter not usually known for
all values of i, denote the book (recorded) amount and
the audited (correct) amount, respectively, for the ith
line item of an account of N line items. The book and
audited balances of the account are, respectively,

N
(2.2.1) Y= 2 Yi,
i=1

called the population book amount, and

N
X=2Xiy

=1

(2.2.2)

called the population audited amount. The error
amount of the ith item is defined to be

(2.2.3) D;=Y: - X.

When D; > 0, we call it an overstatement and, when
D;< 0, an understatement. When Y, # 0, the fractional
error,

(2.2.4) T: = D;}Y,,

is called the tainting or simply the taint of the ith
item. It is the error amount per dollar unit of the
ith item. We may then write

(2.2.5) D,‘ = TiYi.

The error of the book balance of the account is thus
N N
=1 i=1

As emphasized in Section 2.1, a large proportion of
items in an audit population will likely be error-free,
so that D; = 0 for many values of i. Similar populations
are common in many disciplines as discussed in
Section 1.

Aitchison (1955) was the first to consider an infer-
ence problem for such a population. Following his
approach, the error d of an item randomly chosen
from an accounting population may be modeled as

__ ]z with probability p,
227 d= ]’o with probability (1 — p),

where p is the proportion of items with errors in the
population and z # 0 is a random variable representing
the error amount. z may depend on the book amount.
The nonstandard mixture problem that is the focus of
this report is the problem of obtaining confidence
bounds for the population total error D when sampling
from the model (2.2.7).

A useful sampling design for statistical auditing is
to select items without replacement with probability
proportional to book values. This sampling design can
be modeled in terms of use of individual dollars of the
total book amount as sampling units and is commonly
referred to as Dollar Unit Sampling (DUS). or Mone-
tary Unit Sampling (MUS). (Anderson and Teitle-
baum, 1973; Roberts, 1978; Leslie, Teitlebaum and
Anderson, 1980). The book amounts of the N items
are successively cumulated to a total of Y dollars. One
may then choose systematically n dollar units at fixed
intervals of I (= Y/n) dollars. The items with book
amounts exceeding I dollars, and hence items that are
certain to be sampled, are separately examined. Items
with a zero book amount should also be exam-
ined separately as they will not be selected. If a
selected dollar unit falls in the ith item, the tainting
T; (= D;/Y;) of the item is recorded. Namely, every
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dollar unit observation is the tainting of the item that
the unit falls in. The model (2.2.7) may then be applied
for DUS by considering d as an independent obser-
vation of tainting of a dollar unit. p is, then, the
probability that a dollar unit is in error. Thus, (2.2.7)
can be used for sampling individual items or individual
dollars. In the former, d stands for the error amount
of an item, and in the latter for the tainting of a dollar
unity V!

In the next section we present some results from
several empirical studies to illustrate values of p and
the distribution of z, for both line item sampling and
DUS designs.

2.3 Error Distributions of Audit Populations—
Empirical Evidence

Why do errors occur? Hylas and Ashton (1982)
conducted a survey of the audit practices of a large
accounting firm in order to investigate the kinds of
accounts that are likely to show errors, to obtain
alternative audit leads for detection of these errors
and to attempt to identify their apparent causes. Not
surprisingly, their study shows that unintentional hu-
man error is the most likely cause of recording errors.
The remainder of this section reports the results of
several empirical studies about actual values of the
error rate p and actual distributions of the non-zero
error z in the model (2.2.7). The sample audit popu-
lations are from a few large accounting firms and each
contains a relatively large number of errors. Therefore,
the conclusions may not represent typical audit
situations.

A. Line Item Errors. Data sets supplied by a large
accounting firm were studied by Ramage, Krieger and
Spero (1979) and again by Johnson, Leitch and Neter
(1981). The orientations of the two studies differ in
some important respects. The latter provides more
comprehensive information about the error amount
distributions of the given data sets. It should be noted
that the data sets are not chosen randomly. Instead,
they have been selected because each data set contains
a large number of errors, enough to yield a reasonable
smooth picture of the error distribution.

According to the study by Johnson, Leitch and
Neter (1981), the median error rate of 55 accounts
receivables data is 0.024 (the quartiles are: @, = 0.004
and @; = 0.089). On the other hand, the median error
rate of 26 inventory audits is 0.154 (@, = 0.073 and

3 = 0.399). Thus the error amount distribution of a
typical accounts receivable in their study has a mass
0.98 at zero. A random sample of 100 items from such
a distribution will then contain, on the average, only
two non-zero observations. On the other hand, the
error amount distribution of a typical inventory in
their study has a mass 0.85 at the original and sam-

pling of 100 items from such a distribution will con-
tain, on the average, 15 non-zero observations. The
items with larger book amounts are more likely to be
in error than those with smaller book amounts. The
average error amount, however, does not appear to
be related to the book amount. On the other hand, the
standard deviation of the error amount tends to in-
crease with book amount.

Ham, Losell and Smieliauskas (1985) conducted a
similar study using data sets provided by another
accounting firm. Besides accounts receivable and
inventory, this study also included accounts payable,
purchases and sales. Four error rates are defined and
reported for each category of accounts. It should be
noted that their study defines errors broadly, because
they include errors that do not accompany changes in
recorded amounts.

The distribution of non-zero error amounts again
differs substantially between receivables and inven-
tory. The error amounts for receivables are likely to
be overstated and their distribution positively skewed.
On the other hand, errors for inventory include both
overstatements and understatements with about equal
frequency. However, for both account categories, the
distributions contain outliers. Graphs in Figure 1 are
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Fi1G. 1. Examples of distribution of error amounts. A, accounts
receivable audit 69 (106 observations); B, inventory audit 23 (1139
observations). From Johnson, Leitch and Neter (1981).
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taken from Johnson, Leitch and Neter (1981) and
illustrate forms of the error amount distributions of
typical receivables and inventory audit data. The fig-
ures show the nonnormality of error distributions.

Similar conclusions are also reached by Ham, Losell
and Smieliauskas (1985). Their study also reports the
distribution of error amounts for accounts payables
and purchases. The error amounts tend to be under-
statements for these categories. Again, the shape of
distributions are not normal.

B. Dollar Unit Taintings. When items are chosen
with probability proportional to book amounts, the
relevant error amount distribution is the distribution
of taintings weighted by the book amount. Equiva-
lently, it is the distribution of dollar unit taintings.
Table 1 tabulates an example. Neter, Johnson and
Leitch (1985) report the dollar unit tainting distribu-
tions of the same audit data that they analyzed pre-
viously. The median error rate of receivables is 0.040
for dollar units and is higher than that of line items
(0.024). Similarly, the median dollar unit error rate
for inventory is 0.186 (0.154 for line items). The reason
is, they conclude, that the line item error rate tends
to be higher for items with larger book amount for
both categories. Because the average line item error
amount is not related to the book amount, the dollar
unit tainting tends to be smaller for items with larger
book amounts. Consequently, the distribution of
dollar unit tainting tends to be concentrated around
the origin. Some accounts receivable have, however, a

TABLE 1
Tllustration of dollar unit tainting distribution using a hypothetical
accounting population of five items: the difference between the error
amount distribution (A) and the tainting distribution (B)
is tllustrated

A. Composition of audit population

Line item Book values Error Taint
@) (Y) (D)) (T:)
1 300 30 0.10
2 800 40 0.05
3 600 60 0.10
4 200 50 0.25
5 100 100 1.00
Total 2000 280

B. Distribution of tainting

. Proportion Proportion

Tainting line item dollar unit
0.05 0.20 0.40
0.10 0.40 0.45
0.25 0.20 0.10
1.00 0.20 0.05
Total 1.00 1.00

J-shaped dollar unit taint distribution with negative
skewness.

One significant characteristic of the dollar unit
tainting distribution that is common for many ac-
counts receivable is the existence of a mass at 1,
indicating that a significant proportion of these items
has a 100% overstatement error. Such an error could
arise when, for example, an account has been paid in
full but the transaction has not been recorded. A
standard parametric distribution such as normal, ex-
ponential, gamma, beta and so on, alone may not be
satisfactory for modeling such distribution. Figure 2
gives the graphs of the dollar unit tainting distribu-
tions for the same audit data used in Figure 1. Note
that the distribution of taintings can be skewed when
that of error amounts is not. Note also the existence
of an appreciable mass at 1 in the accounts receivable
example. The situation here may be viewed as a non-
standard mixture in which the discrete part has
masses at two points.

2.4 The Performance of Estimators Commonly
Used for Human Populations When Applied to
Accounting Populations

In this section we introduce, within the auditing
context, the estimators commonly used in the survey
sampling of human populations. We then review their
relative performances when used in the sampling of
accounting populations.

Suppose that a sample of n items is taken. We
denote the book amount, audited amount, error
amount and tainting of the kth item in the sample
by analogous lower case letters, namely, y, Xz, dr =
yi — x and t, = d,./yi (if y. # 0), respectively. Denote
their sample means by ¥, %, d and f, respectively.
Many estimators of the population audited amount
have been proposed. First of all, the mean-per-unit
estimator is

(24.1)

X,, = Nx.

We may also consider auxiliary information estimators
to improve precision. For example, one may use the
difference estimator .

(2.4.2) X,=Y - Nd.
Alternatively, one may use the ratio estimator’
(2.4.3) X, = Y(&/9).

Another possibility is a weighted average of X, and
either X, or X,, namely,

(2.4.4a) Koy = wXp + (1 — w)Xy,
or

(2.4.4b) Koo = wXn + (1 — w)X,.
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Fic. 2. Examples of distribution of dollar unit tainting. A, accounts
receivable audit 69; B, inventory audit 23. The histograms are drawn
using the data in Table 2 of Neter, Johnson and Leitch (1985).

One may also construct weighted combinations of X,,,,
Xd and X,. Because the book amount of each item in
the population is available, we may sample items with
probability-proportional-to-size (PPS). As introduced
in Section 2.2, this sampling method is commonly
referred to as dollar unit sampling. We may then
consider using an unbiased mean-per-dollar unit

estimator

, Y\ -
(2.4.5) X, = (—) y (%)
n/ k=1 \Yk
The auditor’s main concern is with the population
total error amount D and the above estimators lead,
respectively, to

(246a) D,=Y-X,=Y - Nz,

(246b) D,=Y - X,=Nd,

(24.6c) D, =Y - X = Y@y,

(24.6d) D,,=Y - X,, = wD, + (1 — w)Dy,

(246e) D,,=Y — X, =wD, + (1 - w)D,

and

(24.6f) D,p=Y-X,, = <-¥) z <ﬂ) = Y&,
n/ k=1 \Yr

Note that the last estimator, D,,,, may be interpreted
as the mean error-per-dollar unit estimator using a
random sample of n dollar units. These estimators
may be used with stratification on book amount in
more sophisticated sampling designs. Plots of the bi-
variate data, either (X;, Y;) or (D;, Y;) may have some
value in selecting appropriate auxiliary information
estimators.

In the remainder of the section we describe the
performance of these estimators when they are used
in sampling from the distributions characterized by
the mixture defined by (2.2.7). For each estimator, its
precision, measured by the square root of the mean
squared error, as well as the confidence levels, based
on normal approximations, of the associated two-sided
confidence interval and upper and lower confidence
bounds are stated.

In auditing practice, the performance of an upper
or a lower confidence bound is often more meaningful
than that of a two-sided confidence interval. For ex-
ample, when estimating the audited amount of an
asset, the auditor would like to know, with a known
confidence level, the lower bound of the true asset
amount because of the potential legal liability that
may follow as a consequence of overstating the meas-
ure. He, therefore, will be concerned if the true level
of confidence of the lower bound is actually lower than
the supposed level because this implies that he is
assuming greater risk than intended. On the other
hand, when a government agency, such as the Internal
Revenue Service, applies statistical auditing proce-
dures when examining a firm’s expense account, it is
more concerned with estimating the upper (lower)
bound of the audited amount (proposed adjust-
ment), because it wants to avoid the failure to recog-
nize allowable expenses because this could lead to
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overassessment of taxes. In this case, what matters
most is whether the actual confidence level of the
upper (lower) bound of the audited amount (adjust-
ment) is close to the supposed level. If the actual
confidence level is substantially higher than the stated
level, the agency is assuming a much lower risk than
allowed by the policy.

With financial support by the American Institute
of Certified Public Accounts and Touche Ross & Co.
(an accounting firm in the United States) and with
computing support by the University of Minnesota,
Neter and Loebbecke (1975, 1977) conducted an ex-
tensive study to examine the performance of alterna-
tive estimators in sampling audit populations. An
important feature of this study is that the populations
used in the experiment were constructed from real
audit data. The study essentially confirms the obser-
vations that Stringer reported in 1963. Namely, the
estimators commonly used when sampling from hu-
man populations perform poorly and are inadequate
for statistical auditing when the populations are con-
taminated by rare errors. First, as discussed in Sec-
tion 2.1, they provide the auditor with no means to
make inferences about the total error amount when
all items in the sample are error-free. Second, they
are either imprecise, as in the case of the mean-per-
unit estimator, because the audited amount has a large
standard deviation, or, as in the case of auxiliary
information estimators, the confidence intervals and
bounds may not provide planned levels of confidence
for the sample sizes commonly used in auditing
practice.

Table 2 gives a summary, based on the Neter-
Loebbecke study, of the performance of the mean-per-
unit estimator X, the difference estimator X, their
combination )A(wJ with w = .1 and the unbiased esti-
mator X,,,. The first three of these are under simple
random sampling of items whereas the last one uses
PPS. The ratio estimator X, performed almost iden-
tically with the difference estimator and so it is not
included. Note that the confidence level of the lower
bound for the audited amount is the confidence level
of the upper bound of the error amount because the
latter is obtained by subtracting the former from
the known book value. Their conclusions can be
summarized as follows:

¢ The mean-per-unit estimator is imprecise com-
pared to the difference estimator. Also when
the population audit amount is highly skewed,
the confidence interval does not provide the
nominal level. The confidence level of the lower
bound, however, is larger than the stated.

o The difference estimator is precise but produces
a confidence interval that does not provide the
nominal level of confidence when the error rate

is low or the errors are overstatements. For
overstatement errors this failure to meet the
stated confidence level for the two-sided confi-
dence interval is caused by that of the lower
(upper) bound for the audited amount (the error
amount). The upper (lower) bound for the
audited amount (the error amount), however, is
overly conservative.

e The combination of the two estimators alle-
viates the problem but does not provide a sat-
isfactory solution to all cases. Also, finding a
proper weight seems to present a problem.

e The performance of the unbiased estimator
using PPS (DUS) is generally poor even for a
high error rate. When errors are overstate-
ments, the performance is almost identical with
that of the difference estimator. Namely, the
lower (upper) bound for the audited value (the
error amount) does not provide the stated con-
fidence level, whereas the upper (lower) bound
is conservative.

As expected, stratification improves the precision of
the mean-per-unit estimator dramatically, but not
of the performance of the confidence interval of the
auxiliary information estimators described above fol-
lowing (2.4.1).

The audit data sets used by Neter and Loebbecke
were then made public, and several studies followed
that extended their results. Burdick and Reneau
(1978) applied PPS without replacement and studied
the performance of other estimators. Baker and Cope-
land (1979) investigated the performance of the strat-
ified regression estimator. Beck (1980) focused on the
effect of heteroscedasticity on the reliability of the
regression estimator. Frost and Tamura (1982) applied
the jackknife to reduce bias in the standard error to
improve the reliability of the ratio interval estimation.
The main conclusion from these studies is that com-
monly used auxiliary information estimators provide
precise point estimates, but their confidence intervals
based on the asymptotic normality of the estimators
do not provide confidence levels as planned, when
used in sampling audit populations contaminated by
rare errors.

Kaplan (1973a, b) was the first to recognize that the
poor performance of auxiliary information interval
estimation may be caused by the mixed nature of the
audit population. He observed that the sampling dis-
tribution of the pivotal statistic (point estimator —
true mean)/(standard deviation of estimator) may not
follow the t-distribution for an auxiliary information
estimator when sampling from nonstandard mixtures
such as these arising in audit populations. Frost and
Tamura (1986, 1987) extended Kaplan’s observation
and showed that the mixture may cause the population
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TABLE 2
Precision and reliability of confidence interval of commonly used estimators for the audited amount (sample size = 100)
Population error rates as percentages Population error rates as percentages
Population Population
0.5 1 5 10 30 0.5 1 5 10 30
A. The mean-per-unit estimator, X B. The difference estimator, X,
1(22) 24.1 24.0 — 24.0 23.9 1(+/-) 0.1 0.2 04 0.6 0.9
- 81.8 81.8 — 81.7 81.7 30.5 37.3 96.8 94.0 96.3
' Lo 100.0 100.0 — 100.0 100.0 38.0 61.5 97.2 99.7 99.5
‘ 81.8 81.8 — 81.7 81.7 92.5 75.8 99.6 94.3 96.8
21(3.5) o 18.2 18.2 18.3 18.2 18.3 2 (+/-) 0.2 0.4 1.0 1.3 3.0
o 93.7 93.7 93.7 93.7 93.0 31.2 41.8 82.3 97.2 95.5
99.5 99.5 99.5 99.5 99.3 41.3 41.8 99.7 99.7 98.8
94.2 94.2 94.2 94.2 93.7 89.9 100.0 82.6 97.5 96.7
3(7.9) 35.7 35.7 35.7 35.8 36.1 3(+) 0.1 0.1 0.1 0.2 04
82.5 82.5 82.5 82.5 82.5 23.3 36.8 73.7 80.3 90.8
99.7 99.7 99.7 99.7 99.7 23.3 36.8 73.7 80.3 91.2
82.8 82.8 82.8 82.8 82.8 100.0 100.0 100.0 100.0 99.6
4 (3.3) 20.2 20.2 20.4 20.7 214 4 (+) 1.1 11 1.6 3.5 9.2
92.7 92.7 92.3 92.8 93.2 21.2 30.0 58.2 62.0 74.8
99.5 99.5 99.3 99.5 99.8 21.2 30.0 58.2 62.0 74.8
93.2 93.2 93.0 93.3 93.4 100.0 100.0 100.0 100.0 100.0
C. The combination, X,.,, of X,, and X, withw=.1 D. Unbiased estimator with PPS, Xp,,s
(mean-per-unit estimator with dollar unit sampling)

1 24 24 — 2.5 2.5 1 0.2 0.2 — 0.6 1.0
82.3 82.0 — 83.3 84.3 17.5 49.7 — 90.3 92.2
100.0 100.0 — 99.8 99.8 20.2 60.7 — 99.7 99.8
82.3 82.0 — 83.5 84.5 97.3 89.0 — 90.6 92.4

2 1.8 1.9 2.1 2.2 3.6 2 — — 1.0 1.5 —

93.8 94.2 94.3 94.5 93.8 — — 80.2 94.5 —

99.5 99.5 99.5 99.2 99.2 — — 99.2 100.0 —

94.3 94.7 94.8 95.3 94.6 — — 81.0 94.5 —
3 3.6 3.6 3.6 3.6 3.6 3 0.1 — 0.3 0.5 0.9
82.7 82.5 83.0 82.8 82.3 5.2 — 31.5 44.8 77.0
99.7 99.7 99.7 99.7 99.5 5.2 — 31.5 44.8 717.0
83.0 82.7 83.3 83.1 82.8 100.0 — 100.0  100.0 100.0
4 2.2 2.3 2.5 3.8 8.5 4 0.5 — 1.0 1.8 3.9
93.7 94.0 94.7 94.8 78.7 30.7 — 69.7 86.5 94.5
99.3 99.3 99.0 95.3 78.7 30.7 — 69.7 87.0 95.5
94.4 94.7 95.7 99.5 100.0 100.0 — 100.0 99.5 99.0

Note: Population numbers correspond to the Neter-Loebbecke
study populations. The error rates are adjusted within each popu-
lation by randomly eliminating errors in the 30% error population.
The number in the parenthesis is the skewness of the audited
amount for (A) and the sign of the error amount for (B). For (A)
through (D), the first entry is the root mean squared error of the
estimator in terms of the percentage of the total audited amount.
The second entry is the estimated true level of confidence of a two-
sided 95.4% confidence interval. The third entry is the estimated

error distribution to be highly skewed, especially when
the error rate is low and errors are overstatements,
and that this population skewness causes in turn the
sampling distribution of the pivotal statistic to be
skewed in the opposite direction. Therefore, the aux-
iliary information interval estimation based on the

true confidence level of a one-sided lower 97.7% bound. The fourth
entry is the estimated true confidence level of a one-sided upper
97.7% bound computed from the second and the third entries. These
estimates are based on 600 independent samplings of size 100 from
the corresponding population. — indicates that the entry is not
available from the study.

Sources: Neter and Loebbecke (1975): Tables 2.3, 2.8, 2.11,
2.14, 3.1, 3.2, 4.2, 4.5, 5.3, 5.5, 10.1 and 10.3. Also tables in the
Appendix.

asymptotic normality of the sampling distribution
may perform poorly for the sample sizes used in sta-
tistical auditing.

Table 3, taken from Frost and Tamura (1987), gives
estimates of the probability that the population error
is outside of the upper and lower bounds, respectively,
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TABLE 3
The reliability of the upper and the lower bounds of 95% two-sided
confidence intervals for the difference estimator of the

population error
Sample Population error rates as percentages

size 1 2 4 8 16
50 0.650 0.483 0.324 0.213 0.140
0.000 0.000 0.000 0.001 0.002
100 0.485 0.329 0.216 0.145 0.097
0.000 0.000 0.001 0.002 0.004
200 0.327 0.215 0.142 0.101 0.072
0.000 0.001 0.002 0.004 0.007
400 0.219 0.144 0.101 0.070 0.055
0.001 0.002 0.004 0.007 0.010
800 0.144 0.099 0.070 0.054 0.045

0.002 0.004 0.007 0.010 0.013

Note: Exponential distribution is used to model overstatement
errors. The first entry is the probability that the population error
exceeds the upper bound of a two-sided 95% interval using normal
approximation. The second entry is the probability that the popu-
lation error is lower than the lower bound of the two-sided 95%
interval. The standard errors of these estimates are within .001.

of the 95% two-sided confidence interval for a differ-
ence estimator that is appropriate under assumptions
of normality. In this example, the errors are assumed
to be overstatements and are sampled from an expo-
nential distribution. If the normal approximation were
good, each entry would be close to 0.025. It is clear
from Table 3 that the unwarranted use of normal
approximations results in two-sided confidence inter-
vals that have unreliable upper bounds and overly
conservative lower bounds. The population of ac-
counts receivable often is contaminated by overstate-
ment errors. As indicated before, the auditor is
concerned with assuming a greater risk than intended
in setting an upper bound of the population error
amount in an asset account. Namely, he wants to
control the risk of overstating the true asset amount
which may lead to legal liability for the auditor. Much
effort has therefore been expended on developing
alternative methods that might provide more satisfac-
tory upper bounds for the error amount of an account-
ing population with overstatement errors. In the next
section, we will review some of these methods. The
parallel problem of tightening the lower bound for the
population error amount is equally important because
of its implications for improving the efficiency of
estimating the proposed adjustment of reported ex-
penses to government agencies. However, this problem
has been relatively overlooked by academic research-
ers, and merits much greater attention.

2.5 Confidence Bounds Using Attribute Sampling
Theory

Beginning with this section, we survey alternative
solutions that have been proposed for the problem of
estimating total error amounts in accounting popula-
tions. There are two main approaches: (1) approaches
that utilize attribute sampling theory and (2) ap-
proaches that utilize Bayesian inference. Combina-
tions of approaches 1 and 2 have also been proposed.
Other approaches include the modeling of the sam-
pling distribution by distributions other than the
normal.

A. Line Item Attribute Sampling. The simplest ap-
plication of attribute sampling theory is to audit sit-
uations in which it is assumed that all errors are
overstatements with the maximum size of the error
amount equal to the book amount, namely, 0 < D, <
Y, (or equivalently, 0 = Ty < 1) fori=1, .--, N. Let
Y:, be the known maximum book amount, i.e., Y; <
Y, fori=1, -.-, N.Because N is large relative to the
sample sizes used in practice, we may propose the
following model for random sampling of n items from
the accounting population with or without replace-
ment. Let p be the proportion of items with errors in
the population. Then, for any item in the sample, the
observed error,

z with probability p,

(251) d= {0 with probability 1 — p.

Because z < Y,

(2.5.1a) E(z)=0<Y.,
and
(2.5.1b) E(d) = up =pbd < pY..

Hence, the total error amount D as defined in (2.2.6)
becomes

(2.5.1c) D = Npb < NpY,.

Suppose that a sample of n items contains m items
with errors and n — m error-free items. Let p,(m;
1 — a) be a (1 — a)-upper confidence bound for p.
That is, Vo

(2.5.1d) prob{p < p.(m;1 —a)}=1- a.

We may use a binomial distribution or, when p is
small, a Poisson distribution as widely practiced. Then
a (1 — a)-upper confidence bound for D is

(25.2) D,(m;1 — @) = Np.(m; 1 — a)Yy.

Because observed values of z are not used, the upper
bound (2.5.2) can be overly conservative, and stratifi-
cation on book amount may be used to tighten the
bound (Fienberg, Neter and Leitch, 1977).
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B. Dollar Unit Attribute Sampling. Let us suppose
that the sample is taken by means of Dollar Unit
Sampling (Section 2.2). As before, all errors are as-
sumed to be overstatements with the maximum size
of the error amount equal to the book amount. Thus
0 < T: < 1. The model (2.5.1) may then be applied for
the analysis of the DUS data by considering d as an
indepeﬁflem \observation of dollar unit tainting with
0 < z = 1. 0 is the mean dollar unit tainting. In this
case, p is then the proportion of dollar units in error
and is equal to Y,/Y, where Y, is the total book
amount of items in error. Thus, in this case,

D= Ypd < Yp.

Given m nonzero tainting observations, a 1 — a upper
bound for the total error amount D is

(2.5.3)
Because Y < NY,,

A

Du,DUS(ma 1- a) = Yﬁu(rnq 1- a)-

D,pus = D.,.

The confidence level of the bound (2.5.3) is at least
1 — a but the bound is still conservative because it
assumes that all taintings are equal to 1.

C. The Stringer Bounds. When m = 1, we have
dollar unit taintings z;, j = 1, ---, m, in the sample
that may be less than 1 and this information can be
used to tighten the bound. There are several ways of
accomplishing this task and these procedures are com-
monly referred to as combined attributes and variables
(CAV) estimation (Goodfellow, Loebbecke and Neter,
1974). The best known and most widely used CAV
estimation is credited to Stringer and is called the
Stringer bound. Let 0 < 2, < -.. < 2z; <1 be ordered
observations from a random sample of size m from z.
Then a (1 — a)-Stringer bound is defined by

Iju,st = Y{ﬁu(oy 1- Ol) + _§ [(ﬁu(]y 1- Ol)
(2.5.4) "
-p(j—-11- a)]zj}-

Here, p.(0; 1 — «), being the (1 — «) upper bound for
the error rate p when the sample contains no error, is
equal to 1 — «'/" using the binomial distribution. The
Poisson approximation 3/n is widely used among
practitioners. When z; = 1 for all j, (2.5.4) reduces
to (2.5.3).

It is as yet unknown whether the Stringer bound
always provides the confidence level at least as large
as the nominal for overstatement errors. Indeed, com-
monly used CAV estimations are heuristic and it is
difficult to determine theoretically their sampling dis-
tributions. Many simulation studies, however, have
been performed using various error distributions rang-
ing from the populations used by Neter and Loebbecke

(1975) to standard parametric models. These studies
have provided strong empirical evidence that the con-
fidence level of the Stringer bound is at least the
nominal level. In fact these studies indicate that it
may be overly conservative (see, for example, Leitch,
Neter, Plante and Sinha, 1982; Roberts, Shedd and
MacGuidwin, 1982; Reneau, 1978). However, the for-
mulation of the Stringer bound has never been satis-
factorily explained. Not even an intuitive explanation
can be found in auditing literature.

For audit populations contaminated by low error
amounts, the bound may grossly overestimate the total
error amount, causing the auditor to conclude that the
total book amount contains a material error when it
does not. The ensuing activities, e.g., taking additional
samples, or requesting the client to adjust the account
balance, etc., may be costly to the client. The devel-
opment of a more efficient CAV estimation procedures
has thus become an important research goal.

D. Multinomial Bounds. One approach toward this
goal, involving an interesting application of attribute
sampling theory for estimation of the total error
amount, has been developed by Fienberg, Neter and
Leitch (Fienberg, Neter and Leitch, 1977; Neter,
Leitch and Fienberg, 1978). Because their model uses
the multinomial distribution, the resulting upper
bound is commonly called a multinomial bound. The
observation of dollar unit taint is categorized, for
example, in 101 classes ranging from 00 to 100 cents.
Let p; be the probability that an observation on d falls
in the ith category (i cents), where 0 < p; < 1 and
¥ p: = 1. Then, instead of (2.5.1), we have

d=—— with probability p;,

(2.5.5) 100
i=0, , 100
Then
100 i

2.5.5 Ed) = = — D;
(2.5.5a) (d) = up 20 Too P?
so that

100 i
(2.5.5b) D=Yup=Y Y —p.

i=0 100

Let w; be the number of observations in a sample of n
dollar units that fall in the ith category; ¥ w; = n.
Clearly w = (wq, wy, - - - , Wie) follows a multinomial
distribution with the parameters (n, p), p = (po, p1,

-, D10o), if the sampling is done with replacement.
(If the sampling is done without replacement, then
this may still be used as an approximate model.) The
sample mean is

(2.5.6)
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and a point estimate of D is given by
D = Yﬁp

The following procedure is then proposed for an upper
bound for up and hence for D. Let S be a set of
outcomes v = (vg, - -+, Uigo) that are “as extreme as
or less extreme than” the observed results w. The
concept of extremeness must be specified. Clearly, S
is not unique and computational simplicity must be
taken into account for its definition. The particular S
proposed by Fienberg, Neter and Leitch, called the
step down S, is the set of outcomes such that (1) the
number of errors does not exceed the observed number
of errors and (2) each error amount does not exceed
any observed error amount. Given this step down S, a
(1 — a)-joint confidence set for p is determined by
those values of p; that satisfy

1 100

257 X — - I pi'za, Tvi=n
s Uy

0. *** V100 i=0

A (1 — «)-upper bound for 6, and hence also for D by
multiplying the former by Y, is obtained by maximiz-
ing (2.5.5a) over those p defined by (2.5.7). However,
the true level of confidence of the multinomial bound
using the step down S is not known.

When the sample does not contain any errors, the
multinomial bound is the same as the bound given in
(2.5.3). When the sample contains errors, the multi-
nomial bound is considerably tighter than the widely
used Stringer bound. However, the computation of the
bound quickly becomes unmanageable as the number
of errors increases. Neter, Leitch and Fienberg (1978)
reported that the array size of the step down S set is
429 X 9 for 6 errors, 1430 X 9 for 7 and 4862 X 10 for
8 errors. When using a computer of the size of a large
IBM 370, they only did the computations for up to
7 errors. Software for personal computers that will
compute the bound for up to 10 errors is now avail-
able from Plante (1987).

Leitch, Neter, Plante and Sinha (1981, 1982) pro-
pose to cluster the observations for improving the
computational efficiency of the multinomial bound for
many errors. The observed errors d; are grouped into
g groups of similar sizes. Then all errors in the same
cluster are given the maximum error amount of the
cluster. In forming an optimum set of clusters, the
algorithm that minimizes

(2.5.8) C =3 (max (d) - dy),
k J

where d,, is the jth tainting in the kth cluster, is

recommended. The loss of efficiency due to this clus-

tering cannot easily be assessed because the bound

has not been computed without the grouping of obser-

vations when the number of errors are many. Leitch,

Neter, Plante and Sinha (1981) reports, however, that
with 20 to 25 errors in the sample, the multinomial
bound with five to six clusters still compares favorably
with the Stringer bound.

Plante, Neter and Leitch (1985) provides a study
that compares the multinomial upper bound with the
two CAV upper bounds, i.e., the Stringer and cell
bounds (Leslie, Teitlebaum and Anderson, 1980). The
multinemial bound is the tightest of the three and the
observed confidence level is not significantly different
from the nominal level 0.95 used for the study.

If the auditor knows the maximum size of the un-
derstatement error, it is possible to apply the multi-
nomial approach to set the upper bound. Also,
although conservative, a lower bound can be set (see
Neter, Leitch and Fienberg, 1978).

2.6 Other Developments for the Analysis of Dollar
Unit Sampie Data

In this section, we give a brief account of some other
approaches to the statistical analysis of dollar unit
sample data. Firstly, there are proposals for approxi-
mating the sampling distribution of the mean tainting
using models other than normal distributions. Sec-
ondly, in order to set a tighter bound, the use of
parametric models for the distribution of tainting has
been suggested. We will discuss these attempts below.

A. Nonnormal Sampling Distributions. Along the
line of improving the reliability of large-sample, clas-
sical interval estimation, Garstka and Ohlson (1979)
suggested a modification of the constant by which the
estimated standard deviation is multiplied to make it
dependent upon the number of errors found in the
sample. Tamura (1985) comments, however, that this
modification does not take into account the skewness
of the sampling distribution and may not always pro-
duce a satisfactory result. Dworin and Grimlund
(1984) propose approximating the sampling distribu-
tion by a three-parameter gamma distribution. The
method of moments is used to estimate the parameter
values of the approximating gamma distribution. A
number of heuristics are invoked including the intro-
duction of a ‘hypothetical tainting observation’ for
computing the sample moments. The method of com-
puting this added data point varies slightly depending
on whether the audit population is accounts receiv-
ables or inventory. The method can handle both
over- and understatement errors, however. Through
extensive simulation tests, they show that the upper
bound computed by their method provides the con-
fidence level close to the stated. Moreover, they show
that the moment upper bound is about as tight as
the multinomial upper bound.

B. Parametric Models. A natural way to improve
the efficiency of a bound is to describe the error
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distribution using a parametric model, following
Aitchison (1955). This point was illustrated by
Garstka (1977a, b). By treating an observation of
dollar unit tainting in terms of smaller units, say
10-cent units, he uses a geometric distribution as a
model. A parametric bound can be sensitive to the
choice of the model. Lillestol (1981), using a logarith-
mic series' ;ﬂi§tribution instead of a geometric distri-
bution, demonstrates the point. Recently, Tamura and
Frost (1986) have proposed a power function density
to model tgintings. Efron’s parametric bootstrap is
used to approximate the sampling distribution of the
estimator for setting the bound. The study shows that
the bootstrap bound is reliable and much tighter than
the nonparametric Stringer bound when the data are
generated from the correct specification. Research to
compare performance of different models of tainting,
including their robustness to parametric assumptions,
may prove to be fruitful for achieving economical and
efficient auditing.

2.7 Bayesian Models for the Analysis of Audit Data

From the discussions presented so far, we may sum-
marize two basic problems associated with statistical
auditing. Firstly, it is difficult to determine the small
sample sampling distribution of the estimator when
the population is characterized by the mixture. Sec-
ondly, because of the low error rate the sample does
not provide sufficient information about the charac-
teristics of the nonzero error distribution of the audit
population to set a good bound.

Earlier in Section 2.3, this report reviewed the re-
sults of empirical studies of the error distribution of
various accounting populations. These results have
provided auditors with considerable evidence about
the audit environment. Using such results, an auditor
may make a more intelligent prediction about the error
distribution of certain audit populations. By incorpo-
rating this prior information into the analysis of the
sample data, the auditor should usually be able to
obtain a more efficient bound for a total population
error. Bayesian inference provides a useful framework
to incorporate the auditor’s informed judgment with
the sample information and we will review in this
section developments among this line of audit data
analysis. Empirical Bayes methods do not seem to
have been used on these problems, a direction that
may be worth investigation.

A. Normal Error Models. Felix and Grimlund
(1977) propose a parametric Bayesian model. They
assume audit item sampling but their model has also
been applied for dollar unit sampling by Menzefricke
and Smieliauskas (1984). In their formulation the
error amount z in the sampling model (2.5.1) is as-
sumed to be normally distributed dependent on the

mean uz and the precision h, the inverse of the vari-
ance o> pz is given a normal prior that depends on h.
h is given a gamma prior. The joint distribution of u;
and h is often referred to as a normal gamma distri-
bution. The prior distribution for the error rate p
is given a beta distribution and is independent of
(uz, h). These prior specifications are conjugate with
the likelihood function of the data as determined by
the sampling model, i.e., the posterior distribution of
(uz, h) is again a normal gamma and that of p is beta.
The two posterior distributions are again independent.

In order to develop the posterior distribution for the
population mean up = pugz, first, h is integrated out
from the posterior distribution of (uz, h), resulting in
a Student distribution for the marginal distribution of
uz. Because up = puz, substituting uz with up/p in the
marginal distribution, and integrating out p, the pos-
terior distribution for up is obtained. The result of
this integration cannot be written explicitly and has
to be numerically obtained. However, the expected
value and the variance can be derived. (Felix and
Grimlund (1977) derive the posterior distribution by
using a different approach than described here. How-
ever, Menzefricke and Smieliauskas (1984) show that
in their approach, a source of variability has been
overlooked, which leads to a smaller variance than
should be the case.)

B. Infinite Population Models. The probability
models that underly the methods discussed so far may
be referred to as finite population models. By this
nomenclature one stresses the fact that the lists of
book values Y;, --., Yy and audited amounts X;,
..., Xn that are associated with the financial state-
ments at the time of audit, are finite in number and
considered fixed. There is no randomness associated
with these values. Randomness, and hence the need
for a probability model, enters only by the act of
sampling n book values from the population’s N val-
ues. The method of sampling determines which prob-
ability model must be considered.

One may consider other probability models in which
the Y;’s and X;’s are themselves viewed as having been
randomly generated. For example, at the start of a
fiscal year the line items in a company’s books are yet
to be determined, and from that point in time it might
be appropriate to view them as random variables
subject to some probability distribution. To contrast
them with the sampling models previously discussed,
these globally random models can be referred to as
infinite population models.

In 1979, Cox and Snell proposed such an infinite
population model. The importance of their proposal
is that it provides a theoretical basis for DUS meth-
odology, something that had not previously been avail-
able. In their method, the account entries, Y;, and
their correct values X;, are viewed as being outcomes
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from N independent repetitions of an experiment
whose probabilistic description is therefore completely
specified by the common joint distribution function of
the pairs (Y;, X;) fori =1, ..., N. Equivalently, one
could specify the joint distribution of (Y;, D;) because
Y,— D, =X.

As stressed before, a large portion of the errors D;
will be zero in auditing situations. Consequently, when
modeling the distribution functions of the D;, one
should use distributions that place a large probability
at zero. One way to think of the generation of such
errors is in two stages as follows: first, determine
whether there is in fact an error, and then, if there is
an error, determine its value. More specifically, intro-
duce §; to be 0 or 1 according as to whether or not
D, = 0. To describe the model for (Y;, 6;, D;), one may
begin by specifying the marginal distribution of Y;, Fy
say; then the conditional distribution of §; = 1 given
Y, p(Y;) say; and then the conditional distribution of
D; given Y; and 6; = 1, Fp y say. The conditional
distribution of D; given Y; and é; = 0 is degenerate at
zero by definition because D; is zero when §; is zero.

If both Fy and Fp,y are assumed to have densities,
fv(y) and fp,y(d, ¥) say, then the triple (Y, é;, D)
has the density function fy; p defined by

(2.7.13)  fvsn(y, 0,0) = fy(¥){1 — p(y)},
and
(2.7.1b)  fysp(y, 1, d) = fy(¥)p(¥)fpiv(d, ¥).

Although this model allows for the probability of an
error to depend on the magnitude of the observed book
value, the most common practice is to assume that
this error probability p(y) is a constant.

In order to complete the description of the proba-
bility model, it remains to specify how the sampling
selection is determined. For this, Cox and Snell (1979)
introduce a “sampling” variable, S; say, which equals
1 if the ith item is to be sampled, and 0 otherwise. In
general, one would then specify the conditional distri-
bution of S;, given the other observations Y;, 6; and
D;. An important special case is that of probability-
proportional-to-size sampling and for this, one would
set

(2.72) pl’Ob(Si =1 | Yi, 6,’, D,) = CY,'.

Under the PPS sampling design, there is a particu-
larly simple relationship between the conditional
means of the taintings, T; = D;/Y;, and the ratio of
conditional means of the errors D; to the book
amounts Y. It can be shown, by straightforward ma-
nipulation of conditional expectations, that as a con-
sequence of (2.7.2)

D; _ _ ) _EDils=1)
(2.73) E(Yl ' Si - 1, 6i - 1> - E(Y; | 6i — 1) *

Equation (2.7.3) is of fundamental importance in
this model. From it, one can derive an expression,
(2.7.7b) below, for the population mean error in terms
of the population error rate and the conditional mean
of the tainting. This is the relationship that is used in
the analysis of DUS data. To do this, begin by
multiplying both numerator and denominator of the
ratio in (2.7.3) by prob(s; = 1). The ratio becomes
E(D;5;)/E(Y;6;), where we have made use of the zero-
one nature of §;. If Z denotes a random variable whose
distribution is the same as the conditional distribution
of the tainting T; = D,/Y,, given that it is nonzero
(6; = 1) and is sampled, (S; = 1), then the lefthand
side of (2.7.3) is the mean of Z, say uz. Thus, (2.7.3)
may be written as

(2-7-4) E(Di5i) = E(Yiai)ﬂz-
Moreover, if up = E(D;) denotes the mean error,
(2.7.5) up = E(D;5;) + E{D;(1 — §;)} = E(D;s;),

because D; = 0 when §; = 0. Now introduce ps to be
the probability of an item being in error given that
the item is sampled; that is, ps = prob(s; =1|S; = 1).
By (2.7.1b) and (2.7.3), direct computation yields

ps = E{cYip(Y))}

(2.7.6) Chy
— E{E(Y,6,| Y,)} - E(Ylal)
HY MY '

Upon substitution of this in (2.7.4) one obtains the
important relationship

(2.7.7a) UD = WyDPsiz.

In many situations it is assumed that p(y), the
conditional probability that an error is present in a
book amount of magnitude y, is a constant, say p. In
this case, Y; and §; are independent so that ps = p and
E(Y;|6;=1) = uy. Then, (2.7.7a) becomes

(2.7.7b) KD = KUYDUZ.

It should be noted, however, that the empirical evi-
dence reported in Section 2.3 indicates that the as-
sumption of constant p(y) may not be justified in all
cases.

Relations involving higher moments of the taintings
may be derived for this model by similar analyses. In

particular, for k =1, 2, - .-, the analog:ie of (2.7.3) is
EMD Y
(2.7.8) E(Zk) = (_./_)
Dspy

from which information about the variance and skew-
ness of Z can be obtained.

The proportionality constant ¢ in (2.7.2) satisfies
prob(S; = 1) = cuy, where uy = E(Y;) for all i. The
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number of line items sampled n in this infinite popu-
lation model is the random quantity S; + ... + Sy.
Thus n is a binomial (N, cuy) randem variable with
expected value N prob(S; = 1) = Ncuy. Thus ¢ plays
the role of determining the sample size. The important
difference is that whereas n is fixed in the finite
population model, the sample size in this infinite
model ﬂs rapdom. If prob(S; = 1) is small while N
prob(S;'= 1) is moderate, a Poisson (Ncuy) approxi-
mation might be used for the exact binomial distri-
bution, as was done by Cox and Snell.

Suppose that a PPS sample of n items contains m
items with errors and n — m items error-free. Let z =
(21, -+, 2n) be taintings of the m items with error.
For estimation purposes, let us set p = m/n and z =
Y 2z;/m. In view of (2.7.5), a natural point estimate
of the population totai error is then

(2.7.9) D = Nuypz.

The known tetal book amount Y is used to estimate
Nuy in practice. This can also be viewed as fitting the
infinite model to the existing finite audit population.
Using Y to stand for the known total book amount as
defined in Section 2.2, we get

(2.7.10) Dcs = Ypa.

C. The Cox-Snell Parametric Models. Cox and Snell
proceed to formulate a parametric Bayesian model in
a fashion similar to the Grimlund and Felix model.
The prior distribution of p is specified by a gamma
distribution with parameters a/p, and a, where p, is
the prior mean of p. Z is assumed to have an exponen-
tial density and its parameter 1/u; has also a gamma
distribution {(b — 1)uo, b}, where u, is the prior mean
of uz. These two prior distributions are assumed in-
dependent. Then it can be shown that the posterior
distribution of up is a scalar transformation of an F
distribution. Specifically (see Cox and Snell, 1982;
Moors, 1983), if =; indicates equality of probability
laws, and if F,, ., denotes a random variable having an
F distribution with the numbers of degrees of freedom
v; and v,

mZ+b-1Dum+a
n+a/pp m+b

(2.7.11) MD =L Fz(m+a),2(m+b)-

Godfrey and Neter (1984) investigate the sensitivity
of the Cox-Snell bound to its parametric assumptions.
For example, because 0 < p < 1, the effects of trun-
cating the gamma prior for p at 1 as well as replacing
it with the beta prior are investigated. Similarly, the
effects of truncating the exponential distribution at 1
for Z are considered. Because the distribution of taint-
ing often has a discrete mass at 1, its effect is also
studied. For these moderate parametric modifications,
the bound appears relatively stable compared to the

effect of the prior parameter settings on the bound.
The practitioners’ interest may, however, lie in the
sensitivity of the performance of the beund to the
prior parameter settings under repetitive sampling.
Their study, using 21 hypothetical audit populations,
shows that the reliability of the Cox-Snelt boeund is,
as expected, semsitive to changes in prior parameter
values but that it is possible to set these values con-
servatively so that the bound has a confidence level
close to the nominal and still tighter than the Stringer
bound for this set of study pepulations. Neter and
Godfrey (1985), extending their earlier study (Godfrey
and Neter, 1984), show that the sensitivity of the Cox-
Snel bound to parameter settings does not disappear
when the sample size is increased to 500, a size seldom
exceeded in current audit practice. (The sample size
of 100 is used in their previous study.) The study goes
on to use another set of 9 study populations to identify
some conservative prior parameter settings for which
the bound is reliable and tighter than the Stringer
bound.

Menzefricke and Smieliauskas (1984) investigated
the gain in tightness resulting from parametric mod-
eling of tainting. The performance of Bayesian para-
metric bounds is compared with that of the Stringer
bound and other CAV bounds. The Bayesian bounds
include the Cox-Snell bound and two versions of the
normal error model introduced earlier. Only one pa-
rameter setting is used for each model. Their study
uses audit populations contaminated by both positive
and negative taintings. Because the Cox-Snell model
assumes taintings to be positive, ad hoc adjustments
are tried. Using simulation, they show that the Baye-
sian bound, using the normal distribution to model
errors, outperforms both CAV bounds.

D. Nonparametric Bayesian Models. The empirical
evidence reported in Section 2.3 shows that standard
distributions may not work for modeling the distri-
bution of dollar unit tainting. A Bayesian nonpara-
metric approach may then provide a necessary flexi-
bility for modeling of available audit information. In
Section 2.5 an example of a nonparametric error dis-
tribution was introduced, where the dollar unit taint-
ing of an item in the sample is treated as a random
observation from a discrete distribution (i, p;) for i =
0, .-+, 100 in cents and p; = 0, ¥ p; = 1. Tsui,
Matsumura and Tsui (1985) propose the Dirichlet
distribution to incorporate the auditor’s prior predic-
tion of the unknown p;. In their model the auditor is
assumed to provide the best prediction p = (po, - - - ,
p100) of P = (po, -+, Pioo) and a weight K for the
prediction. It is then suggested that the prior distri-
bution of p is a Dirichlet (Kp). The distribution of p;
is thus a beta {Kp;, K(1 — p;)} with

(2.7.12a) E(p) = o
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and

pi(l = pi)

(2.7.12b) K+ 1

var(p;) =

Let w = (wo, - -+, W) With ¥ w; = n be the sample
data of n items. w is distributed as a multinomial
distribution (n, p) when sampling is with replacement
(if sampling is without replacement, approximately).
Because the Dirichlet prior distribution is conjugate
with the multinomial sampling model, the posterior
distribution of p is again a Dirichlet distribution with
the parameter (Kp + w). We may define

(2.7.13a) K =K+ n,
(2.7.13b) =2
n
and
(2.7.13¢) p! = (K—”I—:-ﬂ) i=0,--.,100.

Then the posterior distribution of p is Dirichlet
(K’p’), where p’ = (pg, -+, p1o0). By the definition
of up,

100 i

up = Y —— pi,

2.7.14
( ) Z 100

the posterior distribution of up is derived as a linear
combination of p;. It can be shown that

Z—p,,

(2.7.15q) 2700

E(ﬂD)

and

var(up)

(2.7.15b) 1 w0 [ 5 \2 ] 2
=K’+1{E (100) (,%Eé”‘)}'

The exact distribution of up is complicated and there-
fore is approximated by a beta distribution having the
same mean and the variance. Using simulation, Tsui,
Matsumura and Tsui (1985) suggest that K = 5,
po = 0.8, p1oo = 0.101 and remaining 99 p;’s being 0.001
be used as the prior setting for their upper bound to
perform well under repeated sampling for a wide va-
riety of tainting distributions.

McCray (1984) suggests another nonparametric
Bayesian approach using the multinomial distribution
as the data-generating model. In his model, up has
been discretized, involving a number of categories, say
up, j =1, --+, N,. The auditor is to provide his
assessment of the prior distribution by assigning prob-
abilities g; to the values, up . Then the posterior dis-

tribution of up is determined to be

q,L(w | up))
(2.7.16) prob(up = up | W) = ——--—-—~—
ko = k0, 1) = S T o)
where
100
(2.7.17) L(w | pp) = max [] pi*,

=0

in which the maximum is taken over all probabilities
{p:} satisfying

NI‘
(2.7.18) jZl KD,Dj = KD.

It should be noted that the two nonparametric
models introduced above can incorporate negative
taintings; that is, the auditor defines any finite lower
and upper limits for tainting and divides the sample
space into a finite categories.

Simulation studies have been performed to compare
performances of these Bayesian bounds with the pro-
cedures described in earlier sections. Dworin and
Grimlund (1986) compares the performance of their
moment bound with that of McCray’s procedure. Sev-
eral Bayesian and non-Bayesian procedures are also
compared in Smieliauskas (1986). Grimlund and Felix
(1987) provide results of an extensive simulation study
that compares the long run performances of the fol-
lowing bounds: Bayesian bounds with normal error
distribution as discussed in A above, the Cox and
Snell as discussed in C, the bound of T'sui, Matsumura
and Tsui as discussed in D and the moment bound
discussed in Section 2.6.

Recently, Tamura (1988) has proposed a nonpara-
metric Bayesian model using Ferguson’s Dirichlet
process to incorporate the auditor’s prior prediction
of the conditional distribution of the error. It is hy-
pothesized that the auditor cannot predict the exact
form of the error distribution, but is able to describe
the expected form. Let Fy(z) be the expected distri-
bution function of z representing the auditor’s best
prior prediction. The auditor may use any standard
parametric model for F,. Alternatively, F, may be
based directly on past data. The auditor assigns a
finite weight o, to indicate his uncertainty about
the prediction. Then the auditor’s prior prediction
is defined by the Dirichlet process with the
parameter

(2.7.19) a(Z) = a()F()(Z).

This means that prob(z < z’) is distributed according
to the beta distribution beta {a(z’), ap — a(z’)}. The
posterior prediction given m observations on z, say
z = (21, ..., 2n), is then defined by the Dirichlet
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process with the parameter

a(z] z) = {ao + m}

(2.7.20)
° lmeO + (1 - wm)Fm}(z)y
where
(42
(2.7.21)‘ Lo W, = m

I
and F,,(z) is the empirical distribution function of z.
The distrib}‘lti’on function of the mean 6 of z is given
by b

(2.7.22)

where the characteristic function of T is

o) (u)

= exp[-— J: log{l — iu(t — v)} da(t)].

G,(v) = prob(§ < v) = prob(T™ < 0),

(2.7.23)

The distribution of # is obtained by numerical inver-
sion of (2.7.23). The distribution function of the mean
tainting u is, then, given by

H,(d) = prob(x = d)
= prob(pfd < d) = E(@ < d/p|p).

This integration can be done numerically. In this work
a beta distribution is proposed to model p.

(2.7.24)

2.8 Numerical Examples

In Section 2.5 through 2.7 various methods for
setting a confidence bound for the accounting popu-
lation error were described. They differ from the clas-
sical methods of Section 2.4 in the sense that these
methods do not assume that the sampling distribu-
tions of their estimators are normal. Among these new
developments, we illustrate in this section the com-
putation of the following upper bounds for the total
population error: the Stringer bound, the multinomial
bound, parametric bounds using the power function
and the moment bound. In addition, computation of
two Bayesian models developed by Cox and Snell and
Tsui, Matsumura and Tsui will also be illustrated.
Software for computing all but one of these bounds
can be developed easily. The exception is the multi-
nomial bound, which requires extensive programming
unless the number of errors in the sample is either 0
or 1. These methods are designed primarily for setting
an upper bound of an accounting population error
contaminated by overstatements in individual items.
The maximum size of the error amount of an item is
assumed not to exceed its book amount. These meth-
ods also assume DUS. Under this sampling design the
total population error amount is equal to the known

book amount Y times the mean tainting per dollar
unit up = puz. We will, therefore, demonstrate the
computation of a 95% upper bound for up using each
method. The data used for these illustrations are
hypothetical. Qur main objectives are to provide some
comparisons of bounds using the same audit data and
also to provide numerical checks for anyone who
wishes to develop software for some of the bounds
illustrated in this section.

A. No Errors in the Sample. When there are no
errors in a sample of n dollar units, the Stringer,
multinomial and power function bounds are identical
and are given by the 95% upper bound for the popu-
lation error rate p. The bound is therefore directly
computed by

(2.8.1) p.(0; 0.95) = 1 — (0.05)*,

using the binomial distribution. For n = 100,
D,(0; 0.95) = 0.0295. In practice, the Poisson approx-
imation of 3/n is often used. The computation of the
moment bound is more involved but gives a very
similar result.

For Bayesian bounds, the value of a 95% confidence
bound depends on the choice of the prior about the
error distribution. Using extensive simulation, Neter
and Godfrey (1985) discovered that for certain priors
the Cox and Snell bound demonstrates a desirable
relative frequency behavior under repeated sampling.
One such setting is to use the following values for the
mean and the standard deviation for the gamma prior
of p and puz, respectively: po = 0.10, o, = 0.10,
wo = 0.40, and o, = 0.20. These can be related to the
parameters a and b in (2.7.11) as follows:

(2.8.2a) a = (po/a,)?,
(2.8.2b) b = (uo/0,)? + 2.

Thus for no errors in the sample, i.e., m = 0, using the
above prior values, we compute

a = (0.10/0.10)* = 1,
b = (0.40/0.20)* + 2 = 6.

The degrees of freedom for the F distribution are
2(m + a) and 2(m + b), so for m = 0 they are 2 and
12, respectively. Because the 95th percentile of F, ;, is
3.89, and the coefficient, when n = 100, is

mZ+ (b—1)uy m+ a_ (6 —1)0.40 l=0.00303,

n+a/pp m+b 100+1/0.10 6
the 95% Cox and Snell upper bound is 0.00303 X
3.89 = 0.01177.

For another Bayesian bound proposed by Tsui,
Matsumura and Tsui we use the prior given in
Section 2.7, namely, the Dirichlet prior with parame-
ters K = 5, po = 0.8, p1oo = 0.101 and p; = 0.001 for
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i=1,--.,99. Given no error in a sample of 100 dollar
unit observations, the posterior values for these
parameters are K’ = K + n = 105, and p, =
(Kpy + wo)/K’ = (5(0.8) + 100)/105 = 0.99048.
Similarly, p;,, = 5(0.101)/105 = 0.00481, and p; =
5(0.001)/105 = 0.00004762 for i = 1, --., 99. The
expected value for the posterior up is then

E(MD)

1 2 99 100
_<100+ 100+ +100)0.()0004762+1000.00481

= 0.007167.

To obtain var(up), we compute E(u%) = 0.0063731
so that

E(ud) — {E (o)}’

=0. 4.
R +1 0.0000596

var(up) =

The posterior distribution is, then, approximated by
the beta distribution having the expected values and
the variance computed above. The two parameters
a and 8 of the approximating beta distribution B
(e, B) are

e E(MD)[E(,LD)V{;(—D E)(MD)} _ 1] 0848
and
E(up){1 —E
B={1—- E(MD)}[ (#D)v{ar(D) ()} _ 1] =117.46.

The upper bound is then given by the 95th percentile
of the beta distribution with parameters 0.848 and
117.46, which is 0.00227.

B. One Error in the Sample. When the DUS audit
data contain one error, each method produces a dif-
ferent result. First of all, for computation of the
Stringer bound, we determine a 95% upper bound for
P, bu(m, 0.95) for m = 0 and 1. Software is available
for computing these values (e.g., BELBIN (BINES in
the latest version) in International Mathematical and
Statistical Libraries). We compute p, (0, 0.95) = 0.0295
and p.(1, 0.95) = 0.0466. Suppose that the observed
tainting is ¢ = 0.25. Then a 95% Stringer bound is

Pu(0,0.95) + ¢(pu(1, 0.95) — p.(0, 0.95))
= 0.0295 + 0.25(0.0466 — 0.0295) = 0.0338.

Second, the multinomial bound has an explicit so-
lution for one error. It is convenient to express the
observed tainting in cents so set t’ = 100¢. Denote
also a 95% lower bound for p as p,(m, 0.95) when a
sample of n observations contain m errors. Then
a 95% multinomial bound for m = 1 is given by
(t’pe + 100P100)/100, where p, and P,y are deter-

mined as follows. Let

. 0.05 vn
Po=maX \ T /1100 — e )Y (n— 1|

(2.8.3)
pi(n—1, 0.95)].
Then
. 1005 .
(2.8.4) Dy == {m - po}
n \Po
and
(2.8.5) Dioo=1—Po—DPe.

To illustrate the above computation, using ¢’ = 25 and
n = 100, we compute that p;(99, 0.95) = 0.9534 and

0.05 1/100
{1 +25(100)/[(100 — 25)(100 — 1)]} = 0.96767,

so that p, = 0.96767. Then by (2.8.4),

X 1 ( 0.05

== ——2_ — 0.96767 | = 0.00326.
Pe =100 \oerere 067 7)

Hence, p1oo = 1 — 0.96767 — 0.00326 = 0.0291. A 95%
multinomial upper bound, when m = 1, is then
0.25(0.00326) + 0.0291 = 0.02988.

Third, we discuss computation of the parametric
bound using the power function for modeling the
distribution of tainting. The density of z is
(2.8.6) f(z) =X for0<z=<1.

The mean tainting uz = A/(A + 1), and hence

__DPA
A+1°

(2.8.7) KD

Given a sample of n = 100 dollar units and the same
single error of ¢t = 0.25, we compute the maximum
likelihood estimates of parameters p and A,

m

8. p=—=20.0

(2.8.8a) D ~ 1

and

(2.8.8b) A=— o =0.7214,
1 log t;

respectively. Using these estimates, we construct the
following parametric bootstrap estimate of the distri-
bution of the error d of the population:

0, with probability 0.99,

(2.8.9) d= {z, with probability 0.01,
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where z has the density

(2.8.10) f(z) =0.721427°%6 0<z<1.

A random sample of size n from the distribution (2.8.9)
and (2.8.10) is called the bootstrap sample. Denote
% as the value of ip = pA/(A + 1) computed from a
single bootstrap sample. The distribution of i}, under
samplir}g from (2.8.9) and (2.8.10) is the bootstrap
distribution of u}. The 95 percentile of the bootstrap
distribution is used to set a bound for up. To approx-
imate the bdotstrap sampling distribution, we may use
simulation. Let B be the number of independent boot-
strap samples. Then an estimate of a 95% upper bound
is Up such that

(# of i < Up)

= 0.95.
B

(2.8.11)

B should be sufficiently large. For our example, using
B = 1000, we get Uz = 0.01481.

The computation of the two Bayesian bounds can
follow the steps given above for the case when m = 0.
Thus, for the Cox-Snell bound, we compute, using the
same prior settings, Foq+1)20+6)(-95) = 3.112. Hence
the desired 0.95 upper bound of up is

0.25 4+ 5(0.40) 1 +1

3.112 = 0.0182.
100 + 1/0.10 1+ 6

The bound of Tsui, Matsumura and Tsui can also be
computed in the same way as before. For this sample,
K’ = 105 as before. But p, = (5(0.8) + 99)/105 =
0.98095, p,; = (5(0.001) + 1)/105 = 0.009571, piy =
5(0.101)/105 = 0.00481 and p; = 5(0.001)/105
0.00005 for the rest. The mean and the variance of
this posterior distribution are 0.0095 and the distri-
bution has « = 1.382 and 8 = 143.37. A 95% upper
bound is 0.0255.

C. More than One Error in the Sample. When the
number of errors m exceeds 1, the multinomial bound
computation is more involved and requires substantial
programming. At the time of this report, a standard
package does not appear to be available. (Note: A
copyrighted PC software, that uses clustering dis-
cussed in Section 2.5, is available from R. Plante of
Purdue University.) For the bounds for which the
computation has been illustrated, one can follow the
steps shown for the m = 1 case in a straightforward
manner. We will, however, describe the computation
of the moment bound for m = 2. Suppose that observed
taintings are 0.25 and 0.40. In this method, the
sampling distribution of the estimator 1, is approxi-
mated by a three parameter gamma distribution,
T'(x; A, B, G), where A > 0, B > 0 and x > G.
The method of moments is used to estimate these
parameters. Let m;, i = 1, 2 and 3, be the sample
central, second and third moments. Then the moment

estimators are

(2.8.12) A =4m}/m3,
(2.8.13) B =1 my/m,
and

(2.8.14) G=m,—2m3/ms.

For computation of m; of the sample mean tainting, a
number of heuristic arguments are introduced. First
of all, we compute the average tainting ¢ = 0.325 of
the two observations. Suppose that the population
audited is a population of accounts receivables. Then,
we compute, without any statistical explanation being
given, the third data point, ¢t*,

t* = 0.81[1 — 0.667 tanh(10¢)]
- [1 + 0.667 tanh(n/10)] = 0.3071.

The term in the second pair of brackets will not be
used when the population is inventory. t* is so con-
structed that when there is no error in a sample, the
upper bound is very close to the Stringer bound. Using,
thus, three data points (two observed and one con-
structed) the first three noncentral moments are
computed for z, i.e., the tainting of items in error.
They are

;1 = (0.25 + 0.40 + 0.3071)/3 = 0.31903,

v, 2 = (0.25% + 0.40% + 0.3071%)/3 = 0.1056
and

v.3 = (0.25° + 0.40° + 0.3071%)/3 = 0.03619.

The noncentral moments of d are simply p times the
noncentral moments of z. Using well known properties
of moments, the population central, second and third
moments can then be derived from noncentral mo-
ments. These population central moments are used to
determine the three noncentral moments of the sam-
ple mean. Throughout these steps the error rate p is
treated as a nuisance parameter but at this stage is
integrated out using the normalized likelihood func-
tion of p. Then, the noncentral moments of the sample
mean are shown to be

m+1
(2.8.15) Ud,1 =12 Uz1,
K4
(2.8.16) Vg2 =",
n
where
m+1 m+1m+2
v = 2 + - Z
nrg 2t (DI n+3
and
ZB
(2.8.17) Va3 ="%,
n
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where

P m+1 +3( 1)m+1m+2
—_— ee— 2 n— ——
n+2v’3 n+2n+3

vz,l vz,2

m+1m+2m+3v3
n+2n+3n+4 wl
Using (2.8.15) through (2.8.17), we compute v;;, =

0.93831 X 1072, vy, = 0.14615 X 107° and vy5 =
0.29792 x 107°. Then

+(n—-1)(n-2)

(2.8.18) m; =041 = 0.93831 X 10_2,

(2.819) my = Ug2 — vg,l = (.58104 X 10_4,
M3 =Ug43— 3U41Vaz + 203

(2.8.20) 3 = Ud,3 d,1Vd,2 41

=0.51748 X 107°.

Using these values, we compute A = 2.93, B = 0.00445
and G = —0.00366. These parameter estimates are
used to determine the 95th percentile of the gamma
distribution to set a 95% moment bound. The bound
is 0.0238. For comparison, for the same audit data, the
Stringer bound = 0.0401, the parametric bound =
0.0238, and using the prior settings previously se-
lected, the Cox and Snell bound = 0.0248 and the
Tsui, Matsumura and Tsui bound = 0.0304. Table 4
tabulates the results. Note that when there is no error
in the sample (m = 0), the two Bayesian bounds, under
the headings C&S and Tsui, are considerably smaller
than the four other bounds. The reason is that the
four other bounds assume that all taints are 100%
when there is no error in the sample. When the sample
does contain some errors, the bounds are closer, as
shown for m =1 and 2.

3. SUMMARY AND RECOMMENDATIONS

The purpose of this report has been to review and
evaluate the state of statistical practice in accounting
and auditing. In it, we have emphasized, (1) the im-
portance of the problem as one of national interest,
(2) the nonstandard nature of the statistical problem

relative to the main body of existing statistical meth-
odology, (3) the lack of adequately reliable procedures
and (4) the generally scattered and ad hoc nature of
the existing methodology. It is clear that much addi-
tional research is needed. For this reason, the report
has been directed primarily toward researchers and
graduate students, both in statistics and accounting.
However, the following summary and recommenda-
tions should be of interest to a much wider audience
within our respective disciplines.

o Auditing is an essential activity in a society
with advanced capital markets. In such a soci-
ety, investors and government officials base
many important decisions on accounting infor-
mation. Those decisions affect the welfare of
all citizens. Auditing is a costly activity and
statistical procedures can play an important
role in reducing those costs.

o Basic statistical problems in auditing arise
when one wishes to estimate the total popula-
tion error in an account. Relative to the main
body of statistical methodology, these problems
are nonstandard due to a unique feature of the
data; audit data usually contains mostly zeros!
Existing statistical methods do not offer satis-
factory solutions for inferences based on such
information.

e This report’s survey of the existing literature
and practices points up several important ob-
servations. First of all, statistical methods have
only recently begun to be developed for analyz-
ing this nonstandard type of data; in the an-
notated bibliography, all but five of the
references are dated after 1972. The first sig-
nificant contribution was that of Aitchison
(1955) and the key idea of Dollar Unit Sampling
(DUS) was reported by Stringer in 1963.

e One of the main factors that serves to retard
progress in the development of new methodol-
ogy for auditing problems is the high degree

TABLE 4
Comparison of six 95% upper confidence bounds for up: the Stringer bound, the multinomial bound,
the moment bound, the parametric bound, the Cox and Snell bound and the Tsui, Matsumura and
Tsui bound (sample size is n = 100)

No. of errors Stringer Multinomial Moment Parametric C&S Tsui
m=0 0.0295 0.0295 0.0295 0.0295 0.0118 0.0023
m=1 0.0338 0.0299 0.0156 0.0152 0.0182 0.0255
t=0.25
m=2 0.0401 0.0315¢ 0.0239 0.0238 0.0248 0.0304
t, = 0.40
t, = 0.25

@ This value was computed by the software made available by Plante (1987).
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of confidentiality placed upon accounting in-
formation. The resultant lack of good data
prevents the characteristics of accounting
populations from being adequately known in all
but a limited number of cases. In order to
improve the quality and applicability of statis-
tical auditing procedures, it is essential that
myuch ymore data be made available by both
public and private sectors. In particular, one’s
confidence in the outcomes of statistical anal-
yses depends heavily upon the suitability of the
models that have been postulated for the situ-
ations in question. However, the selection of
appropriate models relies critically upon the
availability of adequate data from such situa-
tions. Until there is adequate data available to
give guidance and justification for model selec-
tions, there will be less than the desired confi-
dence in the analyses based upon them.

A survey of existing approaches to the statisti-
cal problems of auditing reveals that one of the
most important ideas is that of DUS. This
sampling design selects items from an account
with probability proportional to their book
amounts. Items with large book amounts, there-
fore, are more likely to be selected than items
with smaller amounts. Because the items with
larger book values are considered relatively
more important than those with smaller book
values, DUS is an appealing sampling design
when the auditor places primary emphasis on
overstatements. The DUS design does have
some limitations, however. For example, items
with a zero book amount will not be selected
under this sampling.

The dollar unit sampling design also permits
the auditor to incorporate into the analysis
prior knowledge that the errors are overstate-
ments and that the maximum size of an error
of an item is equal to its book amount. This
assumption, when applicable, sets an upper
limit of 1 and a lower limit of 0 for a DUS error.
This error, referred to by accountants as taint-
ing, is the ratio of the error amount to the
recorded book amount. Under this assumption,
an auditor can set a conservative upper bound
for the population error with a confidence level
at least as large as the stated one. The upper
bound for the population error amount is equal
to the 1 — a upper bound for the error rate,
multiplied by the known total book amount of
the population. Cox and Snell (1979) provides
a theoretical framework for this method. In this
report, it is concluded that this bound based on
attribute sampling theory is the only procedure
available that has a theoretically known sam-

pling distribution. This means that the long run
performance of all other currently available
procedures must be investigated by means of
simulation. Consequently, it is not easy to ob-
tain information about the performance of
these procedures in a wider audit situation.

A significant weakness of the upper bound de-
fined in this way is that it is far too conservative
in that the author’s confidence coefficients are
much larger than intended. A heuristic method,
credited to Stringer, has been widely used and
it produces a tighter bound. It is now about 25
years since the Stringer bound was proposed.
In spite of the fact that extensive simulation
demonstrates that it is far too conservative, no
theoretical justification has as yet been ob-
tained! This remains an important and inter-
esting open question.

Several alternative methods, mostly heuristic
and sometimes totally ad hoc, have been pro-
posed in recent years and these are reviewed in
this report. Based on limited investigations, the
upper bounds set by some of these procedures
are shown to be considerably tighter than the
Stringer bound. Much more research along
these lines is needed. It is also recommended
that extensive testing be carried out using real
data in order to evaluate adequately these and
other procedures.

Sequential methods would seem to be appropri-
ate for some of these problems, and yet there is
a noticeable lack of such methods in the rele-
vant literature. This is in spite of the fact that
general sequential methodology is available in
statistical monographs directed toward ac-
counting, for example, Cyert and Davidson
(1962). In particular, simple two-stage sampling
schemes could be considered as a possible way
to improve the performance of some of the
statistical procedures.

Empirical studies indicate that negative errors
caused by understatements are also quite com-
mon in auditing populations. Very little re-
search, however, has been done on the problem
of determining bounds for these cases, and this
needs to be corrected. Note that DUS may not
be an effective sampling design when under-
statements are present because items with
larger audited amounts may have smaller
chances of selection than desired.

Except for the procedures that utilize Bayesian
methods, existing procedures are not effective
for setting a good lower bound for accounting
population errors. This failure is extremely
serious; one particularly important situation
involves the estimation of the adjustment
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of a firm’s expense accounts by the Internal
Revenue Service. The current IRS procedure
is to apply standard sampling methods such as
those used in surveys of human populations.
Investigation of the performance of these esti-
mators for certain audit populations indicates
that such IRS practice is too conservative in
the sense that the IRS is assuming much lower
risk than allowed in the policy. That is, the
actual level of confidence is substantially higher
than the nominal level. Such practice tends to
underestimate the potential tax revenue due the
government. Similar problems also arise in
other governmental agencies, e.g., the Office of
Inspector General of the Department of Health
and Human Services, in their investigation of
compliance with government guidelines of re-
ported expenses by local governments. It is
important that intensive research be carried out
for the purpose of developing more reliable
procedures for determining lower confidence
bounds. The financial benefits to the govern-
ment from such research should be significant.
The development of valid statistical methods
for setting confidence bounds for accounting
populations is of national interest and impor-
tance, in major part because of the considerable
economic benefits that would accrue to both the
public and private sectors.

In developing methodologies, primary emphasis
should be placed upon the derivation and per-
formance of one-sided confidence intervals and
not the two-sided confidence intervals com-
monly discussed in standard statistical texts.
Texts should be revised to reflect this.

In this age of widely available high speed com-
puting equipment, it is reasonable to expect
significantly greater use of computer-intensive
statistical methodologies. There is also a need
for greater use of computers in the simulation
of performance characteristics of existing meth-
odologies, particularly as increased data sets
become available to suggest more realistic sim-
ulation models.

The survey of the existing literature that is
given in the annotated bibliography below re-
veals that the statistics profession as a whole
has not been heavily involved with the impor-
tant statistical problems that arise in auditing.
This may be due in part to the fact that there
has not been adequate nor regular interaction
between researchers from the accounting and
the statistics professions.

It is recommended that a series of workshops,
conferences and courses be set up at which
theoretical and applied statisticians can meet

and exchange expertise and problems with ac-
countants and auditors from each of the sectors
of government, business and academia. It would
be expected that proceedings of some of these
activities would be published with the purpose
of improving the communication between the
two disciplines. There would also be important
benefits from holding a conference that would
bring researchers together from the many di-
verse areas of applications that exist through-
out all of the sciences in which problems of
nonstandard mixtures arise. Several such areas
are briefly described in Section 1. Primarily,
the exchange of problems and the transfer of
relevant methodologies and references could
expedite progress in all areas.

e The initial emphasis of coordinated research
activities between the auditing and statistics
professions should focus upon seeking ways to
encourage statisticians to become directly in-
volved in the auditing environment. In this way,
statisticians would become more familiar with
the statistical problems in auditing and espe-
cially with the characteristics of the data bases
in this setting. It is also recommended that
accounting firms make audit data available for
a wider research community than its own
profession.

e Large private accounting firms have both eco-
nomic incentives and resources to carry on re-
search for the purpose of developing better
statistical procedures for their audit problems.
However, concerted efforts must be made to
improve the statistical methodologies used in
the public sector.
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ANNOTATED BIBLIOGRAPHY

AITCHISON, J. (1955). On the distribution of a positive random
variable having a discrete probability mass at the origin. J.
Amer. Statist. Assoc. 50 901-908.

This paper is the first to address the problem of the estimation
of parameters from data containing many zeros. The best
unbiased estimators of the population mean and the variance
are derived. However, the paper does not consider the sampling
distribution of these estimators and thus results are not of
immediate use to auditors.

AMERICAN INSTITUTE OF CERTIFIED PUBLIC ACCOUNTANTS
(AICPA) (1981). Statement on Auditing Standards (SAS No.
39). AICPA, New York.

AMERICAN INSTITUTE OF CERTIFIED PUBLIC ACCOUNTANTS (1983).
Audit Sampling. AICPA, New York.

Auditing practices are regulated by a number of national orga-
nizations. Among them, the most influential organization is the
American Institute of Certified Public Accountants, a national
organization of practicing certified public accountants. The
current auditing standards are stated in Statement on Auditing
Standards (SAS No. 39). Audit Sampling is a detailed interpre-
tation of SAS No. 39 and describes procedures and practicing
guides that auditors should adhere to when the auditing is
performed based on examination of less than 100% of the items
of an accounting balance.

ANDERSON, R. J. and LESLIE, D. A. (1975). Discussion of consid-
erations in choosing statistical sampling procedures in auditing.
J. Accounting Res. 13 (suppl.) 53-64.

The discussion focuses partly on the paper by Loebbecke and
Neter and partly on the then-forthcoming AICPA Monograph
No. 2, Behavior of Major Statistical Estimators in Sampling
Accounting Populations. With respect to the former, Anderson
and Leslie question the distinction between whether an audit
should have “attributes” or “variables” objectives, arguing that
all audit objectives should be expressed in monetary terms.
With respect to the latter study, Anderson and Leslie argue
that the AICPA study should have included dollar-unit sam-
pling with the Stringer bound, rather than the combined
attributes-variables bound because the Stringer bound is less
conservative and more widely used. The discussants believe
that dollar-unit sampling with the Stringer bound is appropri-
ate in almost all circumstances so that the auditor need not
consider alternative sampling approaches and fall back proce-
dures if the anticipated environmental conditions are not met,
as proposed by Loebbecke and Neter.

ANDERSON, R. J. and TEITLEBAUM, A. D. (1973). Dollar-unit sam-
pling. Canad. Chartered Accountant (after 1973, this publication
became CA Magazine) April 30-39.

This expository article introduces dollar-unit sampling in a
way understandable to a broader group of researchers and
practitioners.

BAKER, R. L. and CoPELAND, R. M. (1979). Evaluation of the
stratified regression estimator for auditing accounting popula-
tions. J. Accounting Res. 17 606-617.

This study supplements the Neter and Loebbecke AICPA Mon-
ograph No. 2 by studying the behavior of the stratified regres-
sion estimation for the same four accounting populations used
in the AICPA study. The precision of the regression estimator
in general tends to be almost the same as the precision of the
stratified difference, ratio and regression estimators. As for
these other estimators, the reliability of the nominal confidence
coefficient for the stratified regression estimator is poor at low
error rates, with the regression estimator performing even more
poorly than the other estimators.

BARKMAN, A. (1977). Within-item variation: A stochastic approach
to audit uncertainty. Accounting Rev. 52 450-464.

The author proposes that the audit amount to be established
by the auditor for a line item be treated as a random variable,
such as when the line item is the amount of bad debt for an
account receivable. The author assumes that the distribution
reflecting the uncertainty of the line item audit amount is given
by the beta distribution and that the distribution of the total
amount is normal. A simulation study was carried out to study
the behavior of sample estimates under different population
conditions for mean-per-unit and difference estimators.

BECK, P. J. (1980). A critical analysis of the regression estimator
in audit sampling. J. Accounting Res. 18 16-317.

This study supplements the Neter and Loebbecke study in
AICPA Research Monograph No. 2 by examining the behavior
of the stratified and unstratified regression estimators for the
accounting populations considered in the AICPA monograph.
In addition, one of these populations was further manipulated
in order to vary the extent of heteroscedasticity in the popula-
tion. The results obtained were similar to those previously
reported for the difference and ratio estimators in the Neter
and Loebbecke study. The author concludes that heteroscedas-
ticity appears to be a significant factor in the behavior of the
regression estimator in two of the four accounting populations
and that stratification cannot always be relied upon to provide
a confidence level close to the nominal one. The authors also
made a limited study of the power of statistical tests based on
the regression estimator.

BURDICK, R. K. and RENEAU, J. H. (1978). The impact of different
error distributions on the performance of selected sampling
estimators in accounting populations. Proc. Bus. Econ. Statist.
Sec. 779-781. Amer. Statist. Assoc., Washington.

This paper reports on a simulation study based on one of the
accounting populations employed in the Neter and Loebbecke
(1975) study. Errors were injected into the population at differ-
ent error rates, with equal probability for each line item, with
probability proportional to book amount and with probability
inversely proportional to book amount. A number of estimators
were studied as to their precision and the closeness of the actual
confidence level to the nominal one based on large-sample
theory. The authors conclude that an estimator developed by
Hartley is to be preferred over the other estimators studied.
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CARMAN, L. A. (1933). The efficacy of tests. Amer. Accountant

December 360-366.

This paper proposes application of a simple probability model
for computing the sampling risk in auditing and is the first
publication of such an attempt in accounting.

Cox, D. R. and SNELL, E. J. (1979). On sampling and the estimation

of rare errors. Biometrika 66 124-132.

After describing a theoretical model of monetary unit sampling,
the paper presents a Bayesian analysis of the problem. Specif-
ically, the authors consider the case where the number of errors
has a Poisson distribution and the proportional error density
is exponential. Using a simple conjugate prior, they derive the
posterior distribution and discuss some possibilities for the
parameters of the prior distribution.

Cox, D. R. and SNELL, E. J. (1982). Correction to “On sampling

and the estimation of rare errors.” Biometrika 69 491.

Corrections to their 1979 paper are announced in this note.

CYERT, R. M. and DAvIDSON, H. J. (1962). Statistical Sampling for

Accounting Information. Prentice-Hall, Englewood Cliffs, N.J.

This basic text in statistical sampling for auditing introduces
among other standard topics the application of sequential sam-
pling for compliance test.

DEAKIN, E. B. (1977). Discussant’s response to “Computing upper

error limits in dollar-unit sampling,” by S. J. Garstka. In
Frontiers of Auditing Research (B. E. Cushing and J. L.
Krogstad, eds.) 195-201. Bureau of Business Research,
Univ. Texas at Austin, Austin, Tex.

This critique of Garstka (1977b) mentions that the conserva-
tism of upper error bounds should be reduced by research on
the handling of unobserved errors, that the models proposed
by Garstka lack empirical support, that the proposed use of
alternative models provides no rationale for selecting an appro-
priate model in a given situation and that the research does
not provide sufficient evidence to support the assumption that
generalized or compound Poisson models would be any more
useful in auditing than the present dollar-unit sampling models.

DUKE, G. L., NETER, J. and LEITCH, R. A. (1982). Power charac-

teristics of test statistics in the auditing environment: An
empirical study. J. Accounting Res. 20 42-67.

The power characteristics of eight test statistics, used with both
the positive and negative testing approaches, are studied for
four different accounting populations. Two-error characteristic
linkage models were developed for systematically creating dif-
ferent total error amounts in an accounting population. It was
found that no one test statistic and either of the two testing
approaches is uniformly superior, and that audit decisions
based on a sample of 100 observations tend to involve high
sampling risks for the auditor.

DWORIN, L. and GRIMLUND, R. A. (1984). Dollar unit sampling

for accounts receivable and inventory. Accounting Rev. 59
218-241.

The development of the moment bound is discussed in detail
in this article. The authors state that their methods are based
on the assumption that the dollar unit tainting follows a
mixture of two x? distributions. A helpful chart is provided in
their Table 1 for computing the bound. Its performance is
compared with that of the multinomial bound.

DWORIN, L. and GRIMLUND, R. A. (1986). Dollar unit sampling:

A Comparison of the quasi-Bayesian and moments bounds.
Accounting Rev. 61 36-57.

This article reports the results of comparing the performance
of the moments bound with that of McCray’s quasi-Bayesian
bound using the uniform prior. A slight modification is pro-
posed in the original moment bound to make the bound more
efficient without any noticeable loss of the reliability of the
bound. For the populations considered, the true level of confi-
dence tends to be higher than the nominal level of 95% used in
the study for both bounds. Still, both bounds are considerably
tighter than the Stringer bound. However, between the two,
the performance is relatively comparable.

FELIX, W. L., JR. and GRIMLUND, R. A. (1977). Sampling model

for audit tests of composite accounts. J. Accounting Res. 15
23-42.

This article discusses an alternative statistical sampling model
which avoids some of the assumptions of conventional methods.
It is a Bayesian approach where the book value and audit value
are analytically combined with the auditor’s prior judgments.
A single combined “beta-normal” probability distribution for
the total error in an account balance is derived. Several prop-
erties of this distribution are presented, followed by a discussion
of how the auditor may use it to make probabilistic statements
about the total error amount in a population. The computa-
tional procedure for using the beta-normal distribution is cum-
bersome, thus several alternative computational procedures are
suggested, followed by a brief discussion of how the analysis
may be used to preselect a sample size.

FELIX, W. L., JR., LESLIE, D. A. and NETER, J. (1982). University

of Georgia Center for Audit Research monetary unit sampling
conference, March 24, 1981. Auditing: J. Practice Theory 1
92-103.

This paper reports the results of the conference on dollar unit
sampling held at the University of Georgia in March 1981. A
short summary of existing methods for computing bounds is
given. Also, the advantages and disadvantages of DUS com-
pared to line item sampling are discussed. Several DUS meth-
ods are presented and compared. Research issues are also
summarized.

FESTGE, M. O. (1979). Discussion of an empirical study of error

characteristics in audit populations. J. Accounting Res. 17
(suppl.) 103-107.

This is a discussion of the study by Ramage, Krieger and Spero
(1979) by a practicing auditor. One of his comments is that the
study may be biased because the audit data base used in the
study is supplied by one of the major accounting firms and thus
may reflect their audit objectives which may also vary from one
case to another.

FIENBERG, S. E., NETER, J. and LEITCH, R. A. (1977). Estimating

the total overstatement error in accounting  populations.
J. Amer. Statist. Assoc. 72 295-302.

This paper presents a statistical sampling approach based on
the multinomial distribution for obtaining a bound for either
the total population overstatement or understatement or both.
The bound is derived by using an optimizat:on routine that
finds the maximum monetary error subject to constraints rep-
resenting the joint confidence region for the multinomial pa-
rameters. The key element is the definition of the S set which
denotes the set of all outcomes as extreme or less extreme than
the observed outcomes. The multinomial bound is numerically
compared to the Stringer bound and the results indicate that
the multinomial bound is less conservative than the Stringer
bound.
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FINANCIAL ACCOUNTING STANDARDS BOARD (FASB) (1980).

Statement of Financial Accounting Concepts No. 2 (SFAC2:
Qualitative Characteristics of Accounting Information). FASB,
Stamford, Conn.

The Securities Exchange Act of 1934 gave the SEC the author-
ity to promulgate financial reporting standards (generally ac-
cepted acccunting principles or GAAP) for those companies
subject to the jurisdiction of the SEC. The SEC, in turn, has
delegate(} jthis authority to the FASB. The definition of a
mapérial‘er&or is from paragraph 132 of SFAC2 issued in May,
1980.

Frosr, P. A.‘ and TAMURA, H. (1982). Jackknifed ratio estimation

in statistical auditing. J. Accounting Res. 20 103-120.

One recent development in statistics is the use of computer-
intensive methods for data analysis. In this article, the perform-
ance of the ratio estimation is studied when the standard
error is computed using the conventional method and using
the jackknife. The accounting data used in the Neter and
Loebbecke study are employed as the populations for simula-
tion. Their conclusion is that when error rates are not too
small, so that the problem of the mixture as discussed in the
main text is not severe, the jackknife clearly gives a better
performance and should be used.

FrosT, P. A. and TAMURA, H. (1986). Accuracy of auxiliary infor-

mation interval estimation in statistical auditing. J. Accounting
Res. 24 57-175.

This work extends Kaplan’s 1973 investigation of the perform-
ance of the auxiliary information interval estimators and traces
the cause of the poor performance of these estimators to the
skewness of the accounting population induced by the mass of
probability at the origin. Analysis is done based on the differ-
ence estimator but indicates that the result can be applied to
the ratio estimator.

FROsST, P. A. and TAMURA, H. (1987). Accuracy of auxiliary infor-

mation interval estimation in statistical auditing. Working
Paper Series 2-87, Dept. Management Science, School
and Graduate Schools of Business Administration, Univ.
Washington.

This working paper contains additional results to those that
are reported in Frost and Tamura (1986).

GARSTKA, S. J. (1977a). Models for computing upper error limits in

dollar-unit sampling. J. Accounting Res. 15 179-192.

This paper investigates alternative methods of computing up-
per error limits for the monetary error in an accounting popu-
lation. The compound Poisson process is used to model the
error rate and the distribution of error sizes in the population.
Simulations are used to demonstrate that tighter upper error
limits can be achieved using Bayesian procedures compared to
the Stringer bound.

GARSTKA, S. J. (1977b). Computing upper error limits in dollar-

unit sampling. In Frontiers of Auditing Research (B. E. Cushing
and J. L. Krogstad, eds.) 163-182. Bureau of Business Research,
Univ. Texas at Austin, Austin, Tex.

This paper poses a number of models to be used in conjunction
with dollar-unit sampling. In particular, six compound Poisson
models and three generalized Poisson models are considered
and upper error bounds developed for each. A simulation study
is then used to examine the properties of the various bounds.
Use of prior information in selecting the appropriate Poisson
model can lead to tighter upper error limits.

GARSTKA, S. J. (1979). Discussion of an empirical study of error

characteristics in audit populations. . Accounting Res. 17
(suppl.) 108-113.

Based on the argument that the characteristics of an accounting
population should assist the auditor in selecting a proper esti-
mator, the author comments that the measures reported in the
study by Ramage, Krieger and Spero (1979) may not be useful
for the auditors. For example, he points out that the fractional
errors are computed in terms of the audited amount as the
base. However, the audited amount is not available for most of
the items.

GARSTKA, S. J. and OHLSON, P. A. (1979). Ratio estimation in

accounting populations with probabilities of sample selection
proportional to size of book values. J. Accounting Res. 17
23-59.

The authors propose a modification of the standard PPS esti-
mator of the population total monetary error. The modification
involves deriving a factor to use as a multiple of the standard
error in constructing an upper confidence limit for the total
monetary error. The basis for the factor is largely heuristic.
Limited simulation is used to test the performance of the
procedure.

GODFREY, J. T. and NETER, J. (1984). Bayesian bounds for mone-

tary unit sampling in accounting and auditing. J. Accounting
Res. 22 497-525.

In 1979, Cox and Snell published a Bayesian model for analysis
of dollar unit sample data. This work investigates the sensitiv-
ity of the Cox and Snell bound if the auditor’s knowledge is
incorporated by using different prior distributions, e.g., by using
a beta distribution instead of the gamma distribution as pro-
posed by Cox and Snell for the error rate. The authors observe
that the effects are moderate. The authors, however, report
that the Cox and Snell bound is sensitive to the choice of the
prior parameter values. Using simulation, they conclude, it is
possible to find the prior parameter values for which the bound
demonstrates a desirable relative frequency property.

GOODFELLOW, J. L., LOEBBECKE, J. K. and NETER, J. (1974). Some

perspectives on CAV sampling plans. Part I. CA Magazine
October 23-30; Part II. CA Magazine November 46-53.

Combined attributes-variables (CAV) sampling plans were de-
veloped to overcome inadequacies in both attributes and vari-
ables sampling plans. CAV plans seek to combine the two
approaches to obtain effective and efficient estimates of dollar
errors in audit populations with low error rates. Part I of the
article discusses the basic concepts of CAV sampling. It ex-
plains how an attributes sampling plan of unstratified audit
units can lead to upper dollar precision limits for the population
total overstatement and how stratification of the units im-
proves the efficiency of the estimate. Finally, it considers units
selected with probabilities proportional to the book amounts
and the essentially equivalent procedures of unstratified ran-
dom selection of dollar units. Part II explains how the combined
attributes variables approach provides tighter precision limits.
The strengths of CAV sampling plans are that they provide
dollar precision estimates even when the sample contains no
error, incorporate the efficiency advantages of stratification
without requiring stratified selection and rely on simple con-
ceptual foundations. The weaknesses of the CAV approach
include the unbalanced treatment of overstatement and under-
statement errors, inapplicability to sampling nondollar audit
units, ineffective design for disclosing errors, inadequacy of
one-sided precision limits for determining the amount of ad-
justment required, assumption of a zero error rate for planning
sample size and emphasis on conservation of precision. limits.
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GRIMLUND, R. A. and FELIX, W. L. (1987). Simulation evidence

and analysis of alternative methods of evaluating dollar-unit
samples. Accounting Rev. 62 455-479.

The long run performances of three Bayesian bounds and the
moment bound by Dworin and Grimlund are compared. Three
Bayesian models are: the normal error model as developed by
Grimlund and Felix, the Cox and Snell bound and the multi-
nomial bound with the Dirichlet prior by Tsui, Matsumura and
Tsui. The populations used for simulation utilize the model
described in Dworin and Grimlund (1984). The non-zero taint-
ings are specified by a mixture of x? distributions and include
negative values. The performance of a Bayesian bound depends
on the prior parameter values. However, for the prior settings
used in this study the Bayesian normal error model and the
multinomial bound indicate more consistent performance than
the Cox and Snell bound. The multinomial bound with the
Dirichlet prior is reported to be too conservative.

HaM, J., LOSELL, D. and SMIELIAUSKAS, W. (1985). An empirical

study of error characteristics in accounting populations.
Accounting Rev. 60 387-406.

The empirical study of audit populations is scarce and this
work is one of four such studies published. Although the pre-
vious three studies used the data base supplied by one major
accounting firm, this work is based on the data from another
major accounting firm. Three factors are considered as possibly
affecting the error distribution: (1) account category, (2) com-
pany size and (3) industry.

HyLAs, R. E. and AsHTON, R. H. (1982). Audit detection of financial

statement errors. Accounting Rev. 57 751-765.

Based on 152 audit cases of one major public accounting firm
the causes of errors are traced. In these 152 audits, 281 errors
requiring financial statement adjustments were found. The
error causes are classified into seven categories and their fre-
quencies are reported.

INTERNAL REVENUE SERVICE (1972). Audit assessments based on

statistical samples (Memorandum to Assistant Commissioner
from Chief Counsel). IRS, Washington.

INTERNAL REVENUE SERVICE (1975). Audit assessments based on

statistical samples. Supplemental Memorandum (March 6
Memorandum to Chief Counsel from Director, Refund Litiga-
tion Division and Acting Director, Tax Court Litigation Divi-
sion). IRS, Washington.

The legal ramifications of statistical sampling for tax audit are
studied in these documents and the opinion of the Chief Coun-
sel is stated. It is concluded that “although the propriety of the
use of such techniques is not free from doubt, there is sufficient
merit in the proposal to warrant judicial testing.”

JOHNSON, J. R., LEITCH, R. A. and NETER, J. (1981). Characteris-

tics of errors in accounts receivable and inventory audits.
Accounting Rev. 56 270-293.

Auditors and accountants require empirical information about
the characteristics of audit populations and error distributions
to plan the audit strategy. There is a need for information
about the relative frequency, magnitude, distribution and pos-
sible causes of errors. In this article, the error characteristics
and the relationship between errors and book values in 55
accounts receivable and 26 inventory audits are examined. The
distributions of the error amounts and error taintings were
studied, as well as the relation between error amounts and book
amounts. A summary of the findings is (i) there is great varia-
bility in error rates, with those of inventory audits tending to
be much higher; (ii) evidence suggests that the error rates may
be higher for larger accounts and for accounts with larger line

items; (iil) most errors in receivable audits are overstatements,
whereas in inventory audits, overstatements and understate-
ments are more balanced in number; (iv) the distribution of
error amounts are far from normal, with peak near the mean
and farther tails in the upper direction, with receivable errors
tending to be larger and less variable than inventory errors;
(v) the distributions of error taintings are characterized by
pronounced discontinuities at 100%, especially for receiv-
ables audits where 100% overstatement errors are frequent;
(vi) the mean taintings for receivables are surprisingly large,
whereas those for inventories are smaller, but inventories show
large negative taintings which occur frequently; (vii) the distri-
butions of taintings are variable and depart substantially from
a normal distribution, with some negatively skewed tainting
distributions for inventories; and (viii) a study of 20 audits
failed to disclose any strong linear relation between error
amount and book value, but errors for larger book amounts
tend to be more variable. Because the study was based on data
from only one CPA firm, the authors emphasize the need for
replication studies of the issues raised in the article.

KAPLAN, R. S. (1973a). Stochastic model for auditing. J. Accounting

Res. 11 38-46.

A stochastic model is proposed for variable estimation in au-
diting. The model is based on the use of ratio and regression
estimators. These estimators are valuable in audit applications
because they utilize the recorded or book value of sample items
in the estimation procedure. A disadvantage of ratio or regres-
sion estimates is that they are biased, but the bias becomes
small as the sample size increases. The model can be used in
conjunction with classical techniques to estimate sample size
and obtain standard errors of estimates. The sample size would
be a function of the auditor’s estimates of the error rate and
the first two moments of the error distribution, as well as the
distribution of book values which is known at the time of audit.
The model focuses on the need to estimate two different param-
eters in an audited population—the error rate and the distri-
bution of errors. Kaplan contends that techniques (such as
mean-per-unit estimation using sample values only), which fail
to recognize this underlying structure, will probably be of little
value to auditors.

KAPLAN, R. S. (1973b). Statistical sampling in auditing with aux-

iliary information estimators. J. Accounting Res. 11 238-258.

Much of the literature applying statistical sampling to auditing
is usually based on techniques developed for sample surveys,
such as the simple mean-per-unit estimator. But the auditor
typically has more information about the population than is
available to those conducting sample surveys. The article in-
dicates how the auditor should use statistical estimators which
explicitly use all the available auxiliary information. A class of
auxiliary information estimators (difference, ratio, unbiased
ratio-type, mean ratio, regression and audit models) and their
variance estimates are investigated. Kaplan concludes that to
use relatively small sample sizes, while working with stringent
materiality factors, auditors must use auxiliary information
estimators. Classical techniques are designed for homogeneous
populations, whereas audit populations consist of two parts:
one of all correct items and the other of items in error. There-
fore, techniques which do not explicitly recognize this seem
inadequate for auditing applications, and thus, there is a chal-
lenge to develop statistically valid techniques which utilize this
information.

KAPLAN, R. S. (1975). Sample size computations for dollar-unit

sampling. J. Accounting Res. 13 (suppl.) 126-133.

This paper discusses a procedure which computes dollar-unit
sample size as a function of materiality and the risks of making
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alpha and beta errors. In order to control for alpha risk and
also allow for some errors in the sample, a low rather than zero
error rate is specified. This low error rate is chosen such that
one would not expect to reject a population with an error rate
this low more than alpha per cent of the time. Given a mate-
riality percentage, a specified low error rate and the alpha and
beta risks levels, the procedure derives the sample size required
and the critical number of total errors before rejecting the
population. The sample sizes generated by this procedure are
m:llf:,h larger than those which are based on an assumption of a
zero error rate.

KEYFITZ, N. (1984). Heterogeneity and selection in population

anélysiél Statistics Canada Research Paper No. 10, September
1984.

The concept and effect of heterogeneity in populations are
discussed with examples. Heterogeneity and mixtures are
closely related. Here the emphasis is upon its effect on error
structure and bias in data as well as upon the analysis of data
that arises from statistically following groups over time.

KNIGHT, P. (1979). Statistical sampling in auditing: An auditor’s

view point. Statistician 28 253-266.

Statistical sampling for auditing is reviewed in the auditor’s
context. Various terms commonly used among practicing au-
ditors are explained.

LEITCH, R. A., NETER, J., PLANTE, R. and SINHA, P. (1981).

Implementation of upper multinomial bound using clustering.
J. Amer. Statist. Assoc. 76 530-533.

The multinomial bound proposed by Fienberg, Neter and
Leitch (1977) is difficult to compute when the number of errors
in the sample increases. The authors suggest grouping error
observations to reduce the number of errors to be used for
computation of the bound. This, of course, leads to losing some
efficiency. However, the loss is shown to be not too large for
the number of errors between five and eight. Beyond eight
errors, the comparison with unclustered bound is not available
because of the difficulty in computing the latter.

LEITCH, R. A., NETER, J., PLANTE, R. and SINHA, P. (1982) Mod-

ified multinomial bounds for larger numbers of errors in audits.
Accounting Rev. 57 384-400.

A modification of the multinomial bound is presented that
enables the auditor to obtain bounds for substantially larger
numbers of errors in audit samples than was possible with the
basic methodology for the multinomial bound. The modifica-
tion consists of clustering taintings found in the sample and
obtaining a conservative bound by assuming all taintings in a
cluster are as large as the largest tainting in the cluster. It is
found that the modified multinomial bound is usually consid-
erably tighter than the Stringer bound. A simulation study
indicated that the confidence level for the modified multinomial
bound exceeds or is close to the nominal level for all populations
studied.

LESLIE, D. A. (1977). Discussant’s response to “Computing upper

error limits in dollar-unit sampling,” by S. J. Garstka. In
Frontiers of Auditing Research (B. E. Cushing and J. L.
Krogstad, eds.) 183-191. Bureau of Business Research,
Univ. Texas at Austin, Austin, Tex.

Some criticisms of the Garstka paper include the fact that
many of the populations used in the simulation study did not
contain material total error amounts and that the Poisson
models are unrealistic in not taking into account bunchings of
100% taintings found in actual accounting populations.

LESLIE, D. A, TEITLEBAUM, A. D. and ANDERSON, R. J. (1980).

Dollar-Unit Sampling—A Practical Guide for Auditors. Pitman,
London.

This is the first book on dollar-unit sampling, a procedure in
which the sampling unit is defined as an individual dollar.
Aside from the appendices, which account for more than one-
third of the publication, it is divided into four parts: auditing
foundations for sampling, dollar-unit sampling, planning and
evaluation, and applications and practical guidance. Much of
the book is devoted to extolling the superiority of dollar-unit
sampling over audit unit sampling procedures. The primary
advantages of dollar-unit sampling are that it requires no
assumption regarding the distribution of errors, and it provides
an upper monetary error limit when there are no non-zero
differences between the reported value and the audited value.

LILLESTOL, J. (1981). A note on computing upper error limits in

dollar unit sampling. J. Accounting Res. 19 263-267.

This paper comments on the work of Garstka (1977a) and
demonstrates that if the logarithmic series distribution is used
to model the tainting, instead of the geometric series, as pro-
posed by Garstka, the upper bound could change noticeably.
Yet, it is difficult to determine which model to use when the
auditor expects only several error observations in the sample.

LOEBBECKE, J. K. and NETER, J. (1975). Considerations in choosing

statistical sampling procedures in auditing. J. Accounting Res.
13 (suppl.) 38-52.

It is suggested that the sampling procedure to be used in a
particular auditing application be determined after considera-
tion of audit objectives and environmental factors expected to
be encountered in the application. Some of the characteristics
of the audit procedure to be considered in choosing an appro-
priate one include the ability to enlarge the sample, the nature
of the sampling frame and the bias of the audit procedure. The
authors suggest that the auditor’s plan include a provision for
a fall back procedure in case the anticipated environmental
factors differ from the actual ones.

McCRrAY, J. H. (1984). A quasi-Bayesian audit risk model for dollar

unit sampling. Accounting Rev. 59 35-51.

Multinomial modeling of the audit data by Fienberg, Neter and
Leitch (1977) appears to provide various extensions. In this
work the author treats the mean tainting as a discrete variable
and develops a heuristic Bayesian approach to the problem.
The work is reviewed in Section 2.7.

MCcRAE, T. W. (1974). Statistical Sampling for Audit and Control.

Wiley, New York.

This text covers the major topics in statistical sampling for
auditing, including the basics of statistical sampling, methods
of sample selection, estimating population means and propor-
tions, acceptance and discovery sampling and monetary-unit
sampling. In addition, the text considers more specialized topics
such as cluster, multistage and replicated sampling and the
Bayesian approach to making inferences. The text contains a
bibliography and a number of tables, including tables for dis-
covery sampling, estimation of population proportion and ac-
ceptance sampling. The text is written at a nontechnical level
and does not contain significant elements of theory.

MEIKLE, G. R. (1972). Statistical Sampling in an Audit Context.

Canadian Institute of Chartered Accountants, Toronto.

This monograph discusses an early version of monetary unit
sampling where a stratified design is employed.
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MENZEFRICKE, U. (1983). On sampling plan selection with dollar-
unit sampling. J. Accounting Res. 21 96-105.

An approach for determining the sample size in dollar unit
sampling is developed. All errors are assumed to be 100%
overstatements.

MENZEFRICKE, U. (1984). Using decision theory for planning audit
sample size with dollar unit sampling. J. Accounting Res. 22
570-587.

Using Bayesian models for the error distribution, an approach
for sample size determination in dollar unit sampling is
developed.

MENZEFRICKE, U. and SMIELIAUSKAS, W. (1984). A simulation
study of the performance of parametric dollar unit sampling
statistical procedures. J. Accounting Res. 22 588-603.

The performances of certain Bayesian parametric models are
investigated in the presence of both over- and understatements.
Their performances are compared with those of the Stringer
bound and the load and spread bound, which is another non-
parametric bound used by practitioners. One Bayesian bound
is an application of the Felix and Grimlund’s normal error
model; the second bound also uses the same structure but
develops the bound using a different approach than Felix and
Grimlund. (The two bounds show different results.) Another
Bayesian model is Cox and Snell’s exponential error model.
Only one parameter value configuration was used for each
Bayesian model. The study concludes that in the presence of
understatement error, the normal model, using their own deri-
vation of the bound, appears to show the best performance.

MOORs, J. J. A. (1983). Bayes’ estimation in sampling for auditing.
Statistican 32 281-288.

This paper reports an error in the Cox and Snell model and
presents an alternative derivation of the parametric bound.

NETER, J. (1986). Boundaries of statistics—Sharp or fuzzy? oJ.
Amer. Statist. Assoc. 81 1-8.

In this 1985 American Statistical Association Presidential Ad-
dress the author reviews the problems of statistical auditing.
He comments that the existing solutions often contain heuristic
elements, and calls for more active participation of professional
statisticians to solve the problem.

NETER, J. and GODFREY, J. (1985). Robust Bayesian bounds for
monetary unit sampling in auditing. Appl. Statist. 34 157-168.

The main problem in using a Bayesian bound is to identify
proper prior parameter values. Using extensive simulation stud-
ies, the authors find certain alternative prior configurations for
the Cox and Snell bound that produce desirable relative fre-
quency performance from the bound.

NETER, J., JOHNSON, J. R. and LEITCH, R. A. (1985). Characteris-
tics of dollar unit taints and error rates in accounts receivables
and inventory. Accounting Rev. 60 488-499.

The distribution of dollar unit taints is studied using the same
data used in the authors’ previous study (Johnson, Leitch and
Neter, 1981).

NETER, J., LEITCH, R. A. and FIENBERG, S. E. (1978). Dollar unit
sampling: Multinomial bounds for total overstatement and
understatement errors. Accounting Rev. 53 77-93.

The results cited in Fienberg, Neter and Leitch (1977) are
presented here in language more suited to auditors. Addition-
ally, the paper contains a good survey of previous research in
the area of upper bounds on monetary unit sampling.

NETER, J. and LOEBBECKE, J. (1975). Behavior of Major Statistical

Estimators in Sampling Accounting Populations—An Empirical
Study. American Institute of Certified Public Accountants,
New York.

This monograph is an empirical study of the behavior of statis-
tical estimators commonly used in auditing, based on simulated
audit populations with varying error rate patterns constructed
by extrapolating error characteristics found in audits of four
actual populations. These four populations represent a variety
of skewness, error rates and mixture of overstatement and
understatements for two types of accounts. The authors report
on both the shapes of the book value distributions and error
characteristics including rate, magnitude and their relation to
book value. The major conclusion of the study is that many
widely used statistical procedures may not be reliable when
applied to audit populations, especially when the error rate is
low. Some other conclusions from the study are that the stand-
ard errors for many estimators tend to increase with increases
in the error rates, contradicting the assumption that the stand-
ard error of the estimator is constant; no one statistical proce-
dure is optimal under all audit circumstances; and further
research is needed involving larger samples, different numbers
of strata, other estimators, 100% examined stratum truncation,
effective hypothesis testing procedures and new statistical pro-
cedures especially useful for auditing.

NETER, J. and LOEBBECKE, J. K. (1977). On the behavior of statis-

tical estimators when sampling accounting populations.
J. Amer. Statist. Assoc. 72 501-507.

This article is a condensed version (with emphasis on the
statistical aspects) of the Neter and Loebbecke (1975) AICPA
empirical study on the precision and reliability of several sta-
tistical estimators in sampling four accounting populations with
various error rates. Problems in using difference and ratio
estimators, as well as other estimators, for constructing large-
sample normal confidence intervals when the population error
rate is low are explored empirically. The findings indicate the
need for great care in using large-sample normal confidence
intervals for sample sizes of 100 or 200, which are frequently
used in auditing practice. The authors conclude that the con-
ditions governing the appropriateness of large-sample normal
theory results for ratio and difference estimators need more
research, including investigations of the sources of unreliability
of the standard large-sample procedures.

PLANTE, R. (1987). Personal communication.

Plante developed a personal computer software to compute the
multinomial bound for up to 25 errors. For the number of errors
exceeding 10, the program uses clustering of errors. The pro-
gram is available from Plante, Krannert School of Manage-
ment, Purdue University, West Lafayette, Ind. 47909.

PLANTE, R., NETER, J. and LEITCH, R. A. (1985). Comparative

performance of multinomial, cell and Stringer bounds. Audit-
ing: J. Practice Theory 5 40-56.

In this simulation study, superiority of the multinomial bound
is demonstrated as compared to popularly used ﬁonphrametric
bounds. The effect of alternative dollar unit sampling is also
investigated when the population line items :ire randomly or-
dered. For comparison, stratified difference estimator using
line item sampling is also included.

RAMAGE, J. G., KRIEGER, A. M. and SPERO, L. L. (1979). An

empirical study of error characteristics in audit populations.
J. Accounting Res. 17 (suppl.) 72-102.

The authors contend that audit population error characteris-
tics, aside from distributional shape, can be described by three
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rates and a ratio. The rates are overall error rate, F, the fraction
of errors which are overstatements, FOV, and contamination—
the fraction of errors with relative magnitudes greater than
one, CON. The ratio is the error magnitude relative to audit
value, denoted by RM. The results of an empirical study of
these characteristics indicate that estimates of the three rates
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