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Comment

James Burridge

Heitjan’s paper is a useful and interesting survey
of the current state of the art regarding “grouped
" data.” Grouping is, as Heitjan says, “ubiquitous.” Yet
all of us have been brought up on statistical theory
and methods intended to deal with ‘“continuous”
data—data that none of us will ever see! Justifications
for such a perverse situation are of course that it is
usually convenient to treat the data as if they were
continuous and, often, that the grouping is fine enough
for any necessary corrections to be ignorable. There
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remains of course the grey area where it is not clear
whether or not adjustments ought to be used. It is
irritating in practice to have, on occasion, to worry
about such things. Perhaps, in the near future hope-
fully, authors of statistical packages will enable us to
analyze grouped data as a matter of routine. Certainly
the continuing advances in computer processor power
are making it increasingly feasible, if not desirable, to
analyze the data that are actually observed. However,
much of the conventional elegant theory of mathe-
matical statistics may seem less compelling if we rou-
tinely adopt such a view: I wonder, for example,
whether many results associated with sufficiency may
ultimately be seen as mathematical curiosities or, at
best, as approximations.
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One consequence of the emphasis on continuous
data is that grouped data are generally regarded as
tiresome, steeped in ambiguities or just computation-
ally inconvenient. The elegance of the classical results
for continuous data can lead us to forget that models,
i.e., Gamma, normal, etc. are almost invariably ten-
tative and, at best, approximations to the “real” world.
So we should not be unduly worried about grouped,
i.e., uncertain data. For example, many statisticians
will cheerfully employ a Weibull distribution to de-
scribe a lifetime distribution yet will feel strangely ill
at ease when told that the lifetime of interest started
in January 1973 and ended in July 1987. For some
reason the grouping represented by the uncertain start
date seems to cause even more distress than the un-
certain end date, despite the obvious symmetry in
many applications. I would like to comment briefly on
this “doubly grouped” case because it frequently arises
in medical and socioeconomic applications.

If the lifetime is known to start at time u and to
finish between times a and b, and if F(y) is the
distribution function of lifetime, then few of us will
hesitate to write the likelihood as a product of terms
such as

(1) Fb—-u)—F(a—u)

(assuming independence of course). If u is also un-
known an extra layer of uncertainty creeps in. How-
ever, we can usually proceed as follows. We may be
prepared to assume that start times and lifetimes are
all mutually independent. Thus, if the lifetime starts
between 0 and 7, then the likelihood will be a product
of terms such as

Pa<T<b)

(2) i
=J_. {F(b—u) — F(a — w}g(u) du

where g is a density on [0, 7] and T = U + Y. Usually
g will be uniform although other choices, possibly
involving unknown parameters, may sometimes be
desirable. Personally I would prefer to use (2) rather
than an approximation based on a Sheppard’s type
correction. If routines are to be developed to evaluate
(1) for use with grouped data then it seems not much
harder to provide routines for evaluating (2). (Actually
a purist might object that a, b and 7 are also subject
to error. However, I suppose we have to stop some-
where. Grouping is indeed ubiquitous, if not perni-
cious!) An intriguing technical point raised by (2) is
the effect it has on unimodality properties with respect
to the unknown parameters of the resulting likeli-
hoods. Likelihoods based on (1) often have unimodal-
ity properties similar to those of the corresponding
continuous data likelihoods (see Burridge, 1981a,
1982; Silvapulle and Burridge, 1986).

The situation for the doubly grouped case (2) is less
clear. Suppose we consider a linear model for lifetime
Y of the form

3) Y=u+oFE

where E represents an “error” with log-concave den-
sity fg. If U also has a log-concave density, as in the
uniform case, then standard unimodality properties
apply (e.g., see Prekopa, 1973; Pratt, 1981; Burridge,
1982). Let « = u/a, ¢ = 1/0. Then fr(t) is log-concave
in t, fr is log-concave in (o, ¢), and P(a < T < b) is
log-concave in « (or u) when ¢ is given. I give an
outline of the proof of the latter result. Recall that
T = U+ Y. Then, for the case r < a,

Pa<T=<b)
=Pla-U=sY=<b-0U
=Ppla-U)—asE=¢b-U) - a)
= P(A(e, ¢)) =ple, ¢), say.

The event A is a convex set in (U, E) space. Let
A; = A(ay, ¢;) and write, for given 0 < A < 1,

Ay = Aay, ¢2)
=AMa; + (1 — Noag, Ay + (1 — N) @)
and
Al ={(u,e): u= Au; + (1 — Nu,,
e=Xxe; + (1 — Ne.
for some (u;, ¢;) € A;, 1 =1, 2}.

Prekopa’s result tells us that

AogP(A;) + (1 — Mlog P(A,) <log P(A}).

It is an easy matter to show that A C A, for the
special case ¢; = ¢, and hence that p is a log-concave
function of « (or u). Although interesting, the above
result is not too useful because it is more usual to use
a linear model for log Y and the effect of the convolu-
tion T = Y + U is less clear. It is easy to show that fr
is again log-concave in (a, ¢) but unfortunately the
quantity p(«, ¢) involves an integration over a non-
convex region so an immediate application of Preko-
pa’s theorem does not appear possible. I look forward
to seeing a clarification of this issue.

Further questions and uncertainties arise in regres-
sion contexts. We all know what to do if the response
(or dependent) variable is grouped or censored, but we
are somewhat at a loss when the explanatory (or
regressor) variables are also grouped. Heitjan has
given us a useful summary of relevant methods in this
latter case—most methods appear to involve some
variant of Sheppard’s corrections, justifiably I think
given the current state of integration routines. The
appropriate elaboration comparable to (2) would be,
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well, elaborate! Also, unimodality properties of the
resulting likelihoods are far from clear at present. The
lack of symmetry in our view of grouping is perhaps
understandable in the regression context, but less so
in the lifetime example cited earlier. The difficulty, I
am sure, is primarily psychological, or a result of our
training perhaps, rather than an intrinsic feature of
the real problem. Bayesians, perhaps, are less troubled
by such uncertainties—if you can’t observe it, specify
a (prior) distribution and then integrate to get rid of
it. What could be simpler! Unfortunately computers
seem to take a dim view of integration.

The main obstacle to the “correct” routine analysis
of grouped continuous data has of course been ‘com-
putational and it is tempting to think that grouped
data are always computationally more awkward to
analyze than ungrouped data. That this is not always
the case is illustrated by two rather different types of
problem. The first arises in the context of the so-
called three parameter Weibull, lognormal or gamma
distributions, i.e., models involving an unknown shift
or cutoff value as, for example, in the Weibull case

1, x=<y,

PX>2= {exp[—«x ~ /e, x>y

This type of problem has been studied extensively by
Cheng and Amin (1983), Smith (1985) and Cheng and
Iles (1987). If a, B8 and v are all unknown then the
conventional continuous data likelihood can result in
an inconsistent global MLE. If, however, the data are
analyzed as grouped data, the problem apparently
disappears, in large samples at least (e.g., see Titter-
ington, 1985). Cheng and Amin (1983) suggested the
maximum product of spacings (MPS) as an alternative
and it is interesting to note that their “likelihood” has
the functional form of a grouped data likelihood. Pre-
sumably the difficulties encountered by conventional
MLE discussed by Cheng and Amin can arise in
certain multivariate situations. However, their MPS
method does not seem to extend easily to the multi-

variate case. A thorough-going grouped data approach -

seems, by comparison, straightforward—conceptually
at least. .

Another situation where a grouped data analysis
appears to help is in the empirical Bayes (or “type 2
likelihood”) analysis of survival data using Dirichlet,
gamma or related processes (e.g., see Kalbfleisch,
1978; Burridge, 1981b). In such an analysis one aim is

to specify a prior distribution on the space of all
possible distribution functions. Difficulties arise when
we attempt to calculate a marginal likelihood by in-
tegrating out the Dirichlet or gamma process. The
corresponding joint marginal distribution of survival
times is not absolutely continuous everywhere and so
a joint marginal density is not satisfactorily defined
for certain values of the lifetime variables—in partic-
ular there is a positive probability of ties occurring.
Typically, different results are obtained if we assume
that two tied observations are merely “close” rather
than “exactly equal.” An arbitrary breaking of the
ties, while tempting, can cause difficulties as indicated
in Burridge (1981b). A grouped data formulation of
the problem appears to circumvent, or at least reduce,
the problem—essentially because we no longer have
to make an arbitrary decision about whether points
coincide or are just near to each other. The main
obstacle to the grouped data analysis is the usual
computational one of integration.

Finally, I would like to endorse Heitjan’s comment
that Bayesian methods do not encounter special dif-
ficulties when dealing with grouped data—the main
practical difficulty with both is the apparent frequent
need to evaluate high dimensional integrals. When we
have efficient and reliable routines for the latter I am
sure we will see a rapid development of packages
offering “exact” Bayesian and grouped data analyses.
In the meantime we will often have to resort to
Sheppard’s type corrections of the sort reviewed
in Heitjan’s paper.
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