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Inference from Grouped Continuous Data:

A Review

Daniel F. Heitjan"

Abstract. “Grouped” data are defined to be the result of observing contin-
uous variables only up to the nearest interval, rectangle or triangle. This
paper traces the development of statistical methods for grouped data,
focusing on the major results and their interpretations. It emphasizes the
impact of likelihood and Bayesian ideas on the analysis of grouped data,
particularly as they influence current work.
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1. INTRODUCTION

Statisticians find it expedient to distinguish be-
tween “continuous” and “discrete” variables. In the
real world, however, continuous variables are observed
and recorded in finite precision. In a fundamental
sense, all continuous variables are eventually rounded
or coarsened, i.e., grouped.

Grouped data arise in a number of ways. Ideally,
the level of grouping coarseness in a data set is the
result of a deliberate compromise between the desire
to know a continuous variable and the cost of knowing
it. In certain situations, for example when confiden-
tiality must be preserved, data are collected at a fine
level of precision and then coarsened. Most often,
however, grouping results from the unconscious selec-
tion of a level of accuracy by the investigator gathering
the data. Whatever its source, grouping is ubiquitous,
and so throughout this century statistical science has
studied its ramifications for data analysis. My purpose
is to review this research area.

By grouped data I mean data whose true values are
known only up to subsets of the sample space, usually
rectangles, triangles or unions of such shapes. This
definition includes the important special case of
rounding, i.e., the substitution of interval midpoints
for true data values. It also includes interval censoring;
an example of this is disease relapse time that is only
known to lie between a pair of consecutive follow-ups,
the times of which may themselves be subject to
randomness. A third special case is the actual “group-
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ing” or coarsening of effectively continuous variables
into categories during collection or publication. An
example of this is the collection of interval income
data in sample surveys.

The literature on grouped data spans the modern
era of statistics. Thanks to its enduring interest, this
body of work has already been reviewed in two ency-
clopedia articles: Gjeddebaek (1968) discussed some
major research areas, primarily from a likelihood per-
spective, and later Haitovsky (1982) provided a com-
prehensive summary of results. With this article I
intend a more integrated treatment of the methods of
grouped data inference, with special emphasis on the
central problems, techniques and results of the major
research areas and on current research trends.

2. GENERAL STATEMENT AND NOTATION

The common feature of the problems I discuss is
that the data values themselves are not known exactly,
but can at best be identified with a set of possible
values. So for example when Fisher (1936) reports

- that a flower’s petal is 1.4 cm long, we interpret this
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to mean that the length was actually between 1.35 and
1.45 cm. If the same petal’s width is given as 0.2 c¢m,
we surmise that the length and width of that petal
actually lie somewhere in the rectangle (1.35, 1.45) X
(0.15, 0.25). If another flower’s petal has the same
nominal length and width, it does not mean that the
two flowers are exactly identical, but that their dimen-
sions were found to lie in the same length/width
rectangle. Considerations of this kind lead to the
following general statement of the grouped data
problem.

Suppose that the random variable X is distributed
according to a density f in a sample space x, which is
partitioned into a collection of disjoint measurable
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sets {S;}, x = U S;. Suppose that instead of observing
X exactly, one receives the datum Y = Y (X), where
Y is a function that conveys the identity of the subset
S; of x into which X has fallen. In the modern language
of missing data, x, the unobserved value of X, is the
complete data, although y, the observed value of Y, is
the incomplete data. I use the name X(y) to refer to
the set in which y has been observed to fall; in symbols

(1) X(y) = {x: Y(x) = y}.

The above definition covers a wide variety of miss-
ing data situations. I have in mind in particular the
situation where the S/’s represent intervals, rectangles,
strips, triangles or unions of these kinds of objects,
and will refer to y in such situations as grouped data.
The question of interest is how to draw inferences
from y to an unknown parameter 6 € Q that governs
the distribution of X.

For samples of size n, the sample space y is typically
the n-fold product of the sample space for a single
observation. The component spaces, however, need
not always be partitioned in the same way. For
example, some data may be rounded to the nearest
0.1 cm and others to the nearest 0.01 cm, the compo-
nent spaces for the latter points having a finer parti-
tion. In the case of interval censoring, each component
may have its own partition, and the choice of partition
itself may be random. If this source of randomness is
of interest, for example if interval pattern is thought
to be related stochastically to the value of x, it may
be necessary to incorporate random variables for par-
tition choice into the model as well. (For an example
of this kind of modeling see Section 7.)

In many grouped data situations, and especially in
rounding, the data are presented as the centers of
their grouping sets. I refer to the random variable
constructed from the grouped data in this way as
Y* = Y*(Y(X)), and to realizations of it as y*; note
that y* usually lies in x. It is common practice to
construct a statistic from rounded data by applying
the usual complete data statistic U(-) to y*. I therefore
distinguish between the complete data statistic U =
U(X) and the corresponding rounded data statistic

U* = U(Y*). The random variable. U* is known in the
literature as the simple statistic; thus, one refers to
the simple mean 7* and simple variance s*2.

3. PRACTICAL RESULTS FOR ROUNDED DATA

It is natural to ask how well standard continuous
data methods perform when applied to rounded data,
i.e., how well can U* act as a substitute for U? In
particular, one might inquire about the frequency
properties of U*, or how well it summarizes posterior
uncertainty about 8. Not surprisingly, there has been
much research into these questions, and answers in

some elementary cases are quite well understood. I
present the main results useful in practice now, leav-
ing detailed justifications for later sections.

Univariate Data: Mean and Variance

The literature, as cited below, on the simple esti-
mates points to two main conclusions. First, the sim-
ple mean y* is a good estimate of u = EX, and
s*/s/; is a good summary of the uncertainty about
w in y*. Second, s*2 is not a good estimate of 0% =
Var X, but can be improved by subtracting h2/12,
where h is the width of the rounding interval for X. A
standard error for this estimate can also be con-
structed from simple moment estimates by elementary
corrections. These statements are intended to be in-
terpreted loosely in either a Bayesian or frequentist
sense. For the Bayesian, I consider an estimate to be
good if it is a reasonable approximation to the poste-
rior mean of the parameter it estimates, using some
data-dominated prior. Similarly, I consider a good
Bayesian summary of uncertainty to be one that ap-
proximates well the posterior standard deviation of
the parameter in question. For the frequentist, I con-
sider an estimator to be good if it is at least approxi-
mately unbiased, and a summary of uncertainty to be
good if it approximates well the sampling standard
deviation of the estimate.

There are a number of qualifications on the asser-
tions that the mean and corrected variance are good
estimates, and the Bayesian qualifications are rather
different from the frequentist ones. There are two
common threads in the analysis. First, both the Baye-
sian and frequentist approximations improve as the
rounding interval width h decreases to zero. Second,
both kinds of approximation are poor for both large
and small samples, although they can be satisfactory
for a wide range of moderate values of n.

From the sampling theory perspective (Kendall,
1938), the results stated above hold if

i) the density of X and several of its deriva-
tives go smoothly down to zero at both terminals
of its range, or, if X has infinite range, at some
finite points spanning almost all of its probability,

ii) n is not too small or too large (say, 5 <n <
100), and

iii) h is not too large (say, h < 1.60).

If these conditions are met, then y* — u and s*2 —
h?/12 — ¢? have sampling means that are small com-
pared to h®. Although these biases vanish as h — 0,
arbitrarily precise estimation for any value of A is not
possible, because as n — o« the bias comes to dominate
the sampling noise. So for example the normal mean
u may be well estimated by y* in moderate samples
even with h = ¢ (Kendall, 1938), but by n = 100 bias
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comes to dominate sampling error (Gjeddebaek, 1957).
The simple mean can be a good estimate of u even if
the conditions above are violated, but the variance is
more sensitive to assumptions about the tails. For
example, the expectation of y* from rounded uniform
data is u, but the simple variance in this case under-
estimates o2 by h%/12. It is also worth noting that the
bias in * depends upon the location of the center of
the distribution of X relative to the rounding grid. For
discussion of related problems see Holland (1975) and
Preece (1981).

Eisenhart (1947) has shown that the Student ¢ with
n — 1 degrees of freedom is a_good approximate
sampling distribution for t* = Vn(3* — u)/s*. This
approximation holds if, say, h < o and n = 5 (but
again, not too large), the chief problem in small sam-
ples being discreteness in the distribution of t*. Sim-
ilarly, tests and confidence intervals about ¢ can be
based on the approximate x?* distribution (with n — 1
degrees of freedom) of (n — 1)s**/(¢* + h?/12). There
are notable problems with these reference distribu-
tions, however. For example, for any sample size there
is a positive probability that s* = 0; if h = o,
p = 0 and n = 3, this probability is about 8.5%. Thus,
the sampling distribution of ¢* has positive mass at e,
although the probability of this event decreases rap-
idly with n. (The discreteness problem, incidentally,
was noticed by Gossett in his pioneering paper on ¢
[Student, 1908]). Confidence intervals based on the
x2 distribution cited above give roughly the correct
coverage properties but can include negative values.
This can be seen by noting that formulas for these
intervals based on the method of pivots simply replace
the usual complete data sample variance s* with s*?,
and reduce the upper and lower bounds by h%/12.

For Bayesian inference, the main assertions above
hold if A is small and n is not too large, and if

1) X is normal, or
ii) X is regular (see Section 5) and n is also not
too small.

The basis of the assertions is that, when these condi-
tions are satisfied, y* and s*? — h?/12 approximately
. maximize the correct, incomplete data likelihood of
w.and ¢2 (Lindley, 1950; Tallis, 1967; Don, 1981;
Dempster and Rubin, 1983). Standard errors for the
mean and variance can be derived by inverting the
normal information matrix for x and ¢? (Fisher, 1922;
Tallis, 1967). Therefore, y* and s** — h?/12 may be
thought of either as approximate maximum likelihood
estimates (MLEs) or approximate posterior modes of
pand o2, and their standard errors may be interpreted
as either large n sampling standard deviations of the
MLE or as standard deviations of a data-dominated
posterior distribution. An explicitly Bayesian ap-
proach has not been applied to the case of small

grouped samples; thus, it is not known to what extent
Student t and x 2 posteriors are appropriate for u
and o2

Multivariate Rounded Data and Regression

As in the univariate case, a single set of formulas
for multivariate rounded data are justified on both
frequentist and Bayesian grounds. Specifically, the
mean vector p = EX may be estimated by the sim-
ple mean vector y* with associated dispersion
matrix S*?*/n, where S*? is the uncorrected variance-
covariance matrix. The variance-covariance matrix 2
can be estimated by subtracting from each diagonal
element of S*? the quantity h2/12 for the h corre-
sponding to the widths of the rounding intervals in
that direction. Off-diagonal elements require no cor-
rection. Standard errors for the elements of = and
cross-covariances of = and pu terms are more complex;
I refer the interested reader to the paper by Tallis
(1967).

The theory of estimation from grouped multivariate
data has not been studied as intensively as that for
univariate data, although in what is known there are
many similarities. Conditions for small bias in the
mean and corrected variance are, as before, small
rounding intervals and high order contact (Wold,
1934). The corrections also give approximate MLEs
for the mean and variance if, as before, the grouping
widths are small, n is not too large, and either X
is normal or X is regular and n is not too small
(Dempster and Rubin, 1983).

The results of the preceding paragraphs lay the
foundation for the treatment of rounding errors in
regression. If the model satisfies either set of condi-
tions stated above one can account for rounding by
simply using a corrected sums of squares and cross-
products matrix as input to a regression routine.
Regression coefficients computed in this way lie close
to a mode of the likelihood and are roughly unbiased.
If grouping prevails even in the “independent” vari-
ables, it is essential to specify, at least vaguely, their
marginal distribution, because if the grouped predic-
tors are not regular, simple corrections may not be
appropriate. For example, the variance adjustment for
the grouped uniform (which is not regular) involves
adding h%/12 rather than subtracting it. For more
discussion of these ideas see Dempster and Rubin
(1983) and Beaton, Rubin and Barone (1976).

Other aspects of the sampling theory of multivariate
rounded data have been discussed by Baten (1931)
and Haitovsky (1973, Chapter 6). In addition to the
references cited above, likelihood theory leading to
simple corrections in normal models has been treated
by Fryer and Pethybridge (1972), Pethybridge (1973,
1975) and Indrayan and Rustagi (1979). Some other
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papers of interest are by Berkson (1950), Durbin
(1954) and Cochran (1968), who considered grouping
in the context of errors in variables.

Two Kinds of Asymptdtics

The mean and corrected variance estimators dis-
cussed in this section have sampling properties that
most would label quite poor. They are biased under
most models, have annoying singularities in small
samples and are inconsistent. Because bias decreases
with interval width, however, small h asymptotics are
favorable. To the extent that simple moment correc-
tions lead to approximate MLEs, one can be reason-
ably sure that their frequency properties are good, but
even so approximation error (due not only to grouping
but to model misspecification) will come to dominate
sampling error for sufficiently large n. For the Baye-
sian, adjustments provide information on the approx-
imate maximum of the likelihood and the curvature
there that can be valuable in summarizing beliefs
about parameters, although such summaries are also
potentially misleading if n or h is large.

The limitations of the simple approximation meth-
ods are troubling. This has led investigators to study
theoretical and numerical aspects of an approach
based on maximizing the incomplete data likelihood
rather than a substitute complete data likelihood. The
fruits of this research are reviewed in Section 6. Before
embarking on a detailed analysis of the results of this
section, I will bring them into clearer focus by consid-
ering an example.

An Example: Fisher’s Iris Data

The Fisher (1936) iris data has not been viewed as
grouped data, but as I suggested in Section 2, it might
well be. Figure 1 is a display of petal length and width
of the 50 specimens of Iris setosa. The rectangles are
sets in the partition of the bivariate sample space, and
the numbers are the counts in those sets. So for
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Iris setosa (Fisher, 1936). The number of flowers in each rectangle is
shown at the center of the rectangle.

example eight flowers fell in the cell (1.35, 1.45] X
(0.15, 0.25], and were therefore reported as (1.4, 0.2).

A standard analysis of these data might assume that
length and width follow a bivariate normal distribu-
tion, whose parameters one could estimate by maxi-
mum likelihood. From the standpoint of grouping, at
least three levels of precision are possible in such an
analysis. The first is the usual analysis: ignore the
grouping and estimate the parameters by simple,
uncorrected sample moments. A second, more precise
analysis consists of correcting the sample moments by
subtracting h2/12 = (0.1)?/12 from each variance. The
correlation estimate is the uncorrected covariance
divided by the product of the square roots of the
corrected variances. A third, most precise analysis
consists of maximizing the correct, grouped data like-
lihood, i.e., the product over units of the integrals of
a bivariate normal density over the rounding rectan-
gles. The first two analyses are trivial to apply; I have
implemented the third in FORTRAN using a Newton-
Raphson algorithm.

Results of the three analyses appear in Table 1.
Standard errors for the simple estimates follow from
the usual sampling variance formulas, whereas stand-
ard errors for the corrected estimates are based on the
corrected moment formulas of Tallis (1967), and
standard errors for the MLE are the square roots of
the diagonal of the inverse negative Hessian of the
grouped data log-likelihood. The salient feature in this
table is the relative insensitivity of estimates and
standard errors to the level of approximation used in
the analysis. Means change not at all, and variances
and the correlation only slightly, across the rows of
the table. In these data, where the groups are of
uniform size and A is no larger than ¢ in each direction,
corrections give a fine approximation to the grouped
data MLE.

In recent years it has become popular to transform
these data before analysis; Gnanadesikan (1977), for
instance, took logarithms. Figure 2 presents the data
again, this time with rectangles stretched to their size

- on the log scale; the counts are centered at the trans-

formed values of the raw scale rectangle centers.
Although this nonaffine transformation presumably
leads to greater homogeneity and a closer approxi-

TABLE 1
Iris setosa data on petal dimensions, raw scale parameter estimates

Simple Corrected MLE
Estimate (SE) Estimate (SE) Estimate (SE)

Mean (length) 1.462 (0.024) 1.462 (0.024) 1.462 (0.024)
Mean (width) 0.246 (0.015) 0.246 (0.015) 0.246 (0.015)

Parameter

Var (length)  0.0296 (0.0059) 0.0287 (0.0059) 0.0287 (0.0059)
Var (width)  0.0109 (0.0022) 0.0100 (0.0022) 0.0101 (0.0022)
Correlation  0.332 (0.126) 0.350 (0.133) 0.350 (0.132)




168 D. F. HEITJAN

mation to normality, it does so by forfeiting the con-
venient structure of rounded data and therefore the
opportunity for corrections.

Results of the simple and ML analyses of the log
scale data are presented in Table 2. For petal length
the differences between the simple and MLE are sim-
ilar to what was‘found in the raw scale analysis: no
change in the mean and a small decrease in the vari-
ance. Petal width is grouped more coarsely and un-
evenly, however. Consequently both the mean and
variance estimates are more dramatically different in
the ML analysis: the mean changes by ' of a standard
error and the variance by % of a standard error. The
difference between the simple variance of log petal
width and the ML variance is h’?/12 for h’ = 0.51
(ie., b’ = v12[0.164 — 0.142]), which is approxi-
mately equal to the log-scale length of the modal petal
width interval. This is a common finding; even when
the correction formulas are not strictly appropriate,
they can give rough guidance on the size and direction
of the needed adjustments.

The sensitivity analyses presented here may seem
unconvincing in that the observed effects are fairly
small. In larger samples, however, the magnitude of
the corrections stays the same although the standard
error decreases, so that eventually some account must
be taken of grouping. As the example shows, the
effects of grouping in this normal model are first felt
in the variances. Although the variance itself is rarely
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number of flowers in each rectangle is shown at the transformed value
of the raw scale rectangle center.

TABLE 2
Iris setosa data on petal dimensions, log scale parameter estimates

Parameter Simple MLE
Estimate (SE) Estimate (SE)
Mean (log length) 0.373 (0.017) 0.373 (0.017)
Mean (log width) —1.485 (0.057) —1.477 (0.057)
Var (log length) 0.0143 (0.0029) 0.0138 (0.0029)
Var (log width) 0.164 (0.033) 0.142 (0.032)
Correlation 0.309 (0.128) 0.346 (0.136)

of interest, errors in its estimation can distort infer-
ences on more useful quantities such as correlations
and regression coefficients.

4. SAMPLING BASIS OF SHEPPARD’S
CORRECTIONS

Asymptotic Expansions

The formulas described in Section 3 are usually
attributed to Sheppard (1898) (who, incidentally,
advocated a Bayesian interpretation). In those
early days, statistical thinking was dominated by the
method of moments, wherein it was held that the best
way to learn about a distribution was to discover its
moments. Because, whatever else may be said about
them, the U* moment statistics are unbiased estimates
of their expectations, it was natural to seek formulas
relating the moments of Y* to those of X. For arbitrary
grouping schemes, no general results exist, but for
rounded data, the observation that EU* — EU as
h — 0 suggested that expansions asymptotic in h
might provide some guidance. Such reasoning has led
to a number of arguments for Sheppard’s corrections.

The key mathematical tool in this area is the Euler-
Maclaurin theorem (e.g., Stoer and Bulirsch, 1980).
Suppose that the finite interval [a, b] is partitioned
into N subintervals each of length h, h = (b — a)/N.
The integral of a function g on this range may be
approximated by the trapezoidal sum

Ty (h) = [h/2][g(a) + 28(a + h)
+ 2g(a+ 2h) + --- + 2g(b— h) + g(b)].
If g has four continuous derivatives on [a, b], Euler-

Maclaurin asserts the following representation for the
dependence of the error in this approximation on h:

b
(2) J; g(t)dt="Tyx(h)
+c;h*(g’(a) — g’ (b)) + csh'g®(8),

for some ¢ € (a, b), where ¢; = B)/l!, and B, is the /th
Bernoulli number.

Suppose now that the continuous variable X is
distributed according to density f on the finite interval
[a, b], but is observed as the rounded variable Y*;
specifically, Y* takes values a + h(2i — 1)/2, i = 1,
-++, N. The kth moment of Y* is

. k a+ih
v = E[Y*] = § [a + (ﬂlzl)ﬁ] f

i=1 +(@—1h

f(¢) dt,
and the kth moment of X is

b
e = E[X*] =f t*f (t) dt.

Sheppard’s corrections are intended to relate u: to v,.
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It is enlightening to explore the Sheppard correc-
tions for the first two moments. If f has four contin-
uous derivatives on [a, b], applying (2) to u, yields

P = f tf(t) di

= Tyw(h) + [F*/12]

- [af"(a) + f(a) — bf"(b) — f(b)] + Ri(h)h?,

where R;(h) is bounded in h. Similarly, by applying
(2) with N = 1 on each of the subintervals and sum-
ming (assuming also a fifth continuous derivative),
one obtains

n = Tyw(h) + (h*/12)(2[f (@) — f(B)] + of '(a)
—bf’(b)) + Ry(h)h?,

where R, (h) is another bounded function. The differ-
ence is then

wm — v = [R?*/12][f(b) — f(a)] + o(h®)
ash — 0,

(3

whose h? term drops out when f(b) = f(a). Similar
arguments for second moments lead to

pe = v2 = —[h*/4]T;e (R) = [R*/6]Tsp o ()
— [h?/3]laf (a) — bf (b)] + o(h?)
= —h?/12 + [h?/6][bf (b) — af (a)] + h*Q(h),

where Q(h) is bounded, which under equality of bf (b)
and af (a) reduces to

(4) M2 — V2 = _h2/12 + o(h?),

the classic Sheppard’s correction for the variance.
A more general statement of the Sheppard formulas
is

[k/2] k
®) m= 3 B2y Jwon [ @m+1) + R,

where [-] is the greatest integer function and R is a
remainder term. Kendall (1938) has stated conditions
sufficient for R to be negligible. Specifically, if there
exists an integer j such that

1) 2[k/2]1 <,

ii) f and its first j derivatives vanish at a and
b, and

iii) FUD(x) = d/*'/dx/* (k" ’jf'/zf(x + u) du)
is not large in [q, b],

then R = o(h’™!). As the examples of equations (3)
and (4) suggest, Kendall’s conditions, although they
are sufficient for all moments, are not also necessary
for all moments; more careful analyses for any given
k can lead to more precise conditions at a and b. In
addition, moments of variables with infinite range (the

normal, for instance) can be approximated by trun-
cating at points that include most of the mass. If the
truncated distribution satisfies the conditions, at least
approximately, then corrections may be safely applied.
Wold (1934) derived the multivariate corrections dis-
cussed in Section 3 by similar arguments.

The deriving of Sheppard’s corrections was a
popular topic in the first half of this century, and
there was considerable controversy over which set of
sufficient conditions was most realistic and correct.
Sheppard’s (1898) derivations used both Bayesian
arguments and asymptotic series. Pearson (1902) clar-
ified the asymptotic series argument, and in later
papers (Pairman and Pearson, 1919; Sandon, 1924;
Pearse, 1928; Martin, 1934), he and others discussed
ways of applying the series when the remainder terms
are not negligible and can be estimated from the data.
Fisher (1922) noted that the moments of Y* are
periodic functions in the location of the distribution
with respect to the rounding grid, and so derived
Sheppard’s corrections as the aperiodic terms in a
trigonometric series. Langdon and Ore (1930) and
Kullback (1935) discussed Sheppard’s corrections for
the cumulants. Elderton (1933) proposed basing mo-
ment corrections for J-shaped distributions on correc-
tions appropriate for the exponential. Less research
on moment corrections per se has appeared since the
definitive work of Kendall (1938), although Hartley
(1950) discussed computational issues, and Chao
(1975) derived Sheppard’s corrections using only ele-
mentary calculus.

Average Moments

Assuming that the rounding lattice itself is random
also leads to Sheppard’s corrections. Suppose that
each sample is drawn using a different rounding grid,
where the center of the rounding grid is uniform on
(—h/2, h/2). Then the average over samples of the kth
moment of Y* is

h/2 & h/2
Elw] =h™ f > yi f f(y: + u) du dy;
—h/2 —o —h/2

o /2
=h! J: y* J:m f(y + u) du dy.

The latter equation reduces to (5) with R = 0, and
so shows that the average of the kth moment of Y*
may be related to the moments of X via Sheppard’s
corrections.

This result, although interesting, does little to sup-
plement the asymptotic series approach. A commonly
encountered situation in which the assumptions for
the asymptotic series are not applicable is the case of
skewed densities defined on (0, «). Data from such
distributions are typically rounded to the nearest
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multiple of an integer, so that the random rounding
grid assumption also is not valid. Furthermore, the
random grid argument applies only to moments about
zero. Moments about the sample mean (including s*?)
require further conditions before Sheppard’s adjust-
ments can be used.

Abernethy (1933) pioneered the average moments
argument, and Kendall (1938) contributed a more
elegant proof. Related work may be found in Carver
(1936), Craig (1936, 1941), Cornish and Fisher (1937)
and Pierce (1940, 1943).

5. LIKELIHOOD BASIS OF SHEPPARD’S
CORRECTIONS

Approximating the Likelihood

For likelihood and Bayesian data analysis, the data
contribute to the inference through the likelihood
function. In incomplete data problems such as grouped
data, the log-likelihood is of the form

6) L) = ln{ f f(x]6) dx / f dx}.
X(y) X(v)

In the grouped data case, X(y) refers to the set of
possible x values that would appear, when grouped,
as y. (Note that the denominator on the right of (6)
does not depend on 6, and so is irrelevant and can be
ignored in applications.) For example, in the case
of grouped normal data, the (unscaled) contribution
to the log-likelihood from a data point known only
to fall in the interval X(y) = (a, b) is L(u, o) =
In[®((b — u)/oc) — ®((a — w)/o)], where & is the
standard normal integral. For rounded data, compare
this with the log-likelihood more commonly used, i.e.,
the complete data log-likelihood arising from y*,

(7) L*(6) = In f(y*|0).

In the example just alluded to, if y* = (a + b)/2 is the
midpoint of the interval in which the point is known
to lie, this substitute log-likelihood is L*(u, o) =
—0.51n 27 —In o — 0.5((y* — u)/o)2

Fixing x and letting the group width approach zero,
for every § € Q, | L(6) — L*@0)| — 0. It therefore
makes sense to consider the distorting effect of group-
ing as a function of h, and to explore the small group
asymptotic behavior of the likelihood and its function-
als. This approach, pioneered by Fisher (1922), has
been the thrust of much grouped data research in the
latter part of this century.

Suppose that X is of dimension &, rounded into
rectangles of length A; in direction j, and set h = {h,}.
Consider the likelihood arising from a single grouped
observation y*. If the density f of X has enough

continuous derivatives, the (unscaled) likelihood

1(6) = L( ) f(x]0) dx

may be approximated by the integral over X(y*) of a
Taylor expansion of f in x about y*. Setting

f*=fy*|0),
5 = 0%/0x;f(x0) [x=y

yields the approximation

® 10 ="+ 3 hif / 24+ o(IIBI?)

as | h || — 0. Similarly, for the log-likelihood L

k
(9 L) =Inf*+ ;l hf(f}?/f*)/24 +o(Ih[?).

Formula (9) serves as a simple numerical approxima-
tion to the log-likelihood and as an analytic platform
for computing further derivatives.

Correction Formulas

Tocher (1949) and Lindley (1950) independently
proposed using (9) as the basis for a Newton-Raphson
iteration to improve the simple version of the MLE.
Starting from 6*, a maximum of the substitute
likelihood L*(0), the result of one Newton step, correct
to terms of order | h |2 is § = 6* — I*~'B, where

B = {a/am(ﬁ hi(F3/%) / 24)},,:,;*’

and I* is the substitute observed information matrix
computed at 6*. When there are n data points, B and
I* represent sums of these terms over the units. If n
is large and h small, both I* and B may be replaced
by their complete data expectations at 6*. In the case
of rounded multivariate normal data, this formula
reduces to the Sheppard corrections discussed in
Section 3.

Another approach, this one due to Dempster and
Rubin (1983), leads to Sheppard’s corrections some-
what more generally. If estimation of a multivariate
mean and variance or a set of regression coefficients
is desired, and the intervals are small, a single step of
an EM algorithm (Dempster, Laird and Rubin, 1977)
can be used in lieu of a Newton-Raphson step. The
E step here reduces to computing the expected sums
of squares and cross-products matrix for the data,
conditional on the fact that the observations are
constrained to lie in the rectangles about the y* data
points.



GROUPED CONTINUOUS DATA 171

Letting x; be the jth component of the complefe-
data random vector, f* = f(y*| 8*), and

fj* = 6/6xjf(x I é*) |x=y*1
one arrives at the approximations
E[X;|y* 61 =y} + hi (f}/f*)/12,
E[X}|y* 61 =y} + B} (1 + 2(£}/f5y])/12,
E[X;X,|y*, 6*]

=¥yl + b (FHfNyE/12 + Ri(f /)12,

These formulas reduce to Sheppard’s corrections
under two conditions. First, if X is multinormal, they
reduce exactly regardless of n. Second, if f is regular,
in the sense that

(10)

9/dv; ff(x —v)dx = f d/dv;f(x — v) dx

and

d/dv; f xf(x —v)dx = f d/dv;x; f(x — v) dx,

for j =1, --., k, the equations (10) reduce to the
Sheppard corrections in large samples.

“Regularity” is a curious property, and its implica-
tions have not yet been fully studied. For example,
gamma densities (i.e., densities proportional to
x*7! exp[—ax]) are regular iff A > 1. Thus, although
many highly skewed distributions are regular, the
exponential, with A = 1, is not. Another nonregular
distribution is the uniform, where the moment-based
correction is to add h2/12. This can be seen using the
EM arguments or more directly, as in Beaton, Rubin
and Barone (1976).

The likelihood expansion (9) is due to Fisher (1922).
Lindley (1950) rederived it and is credited with devel-
oping the correction formulas, although the idea
appeared earlier in a paper by Tocher (1949), who
attributed it to Bliss. Tallis (1967) established that
Lindley’s formula implied the Sheppard corrections
for multinormal data; he also derived asymptotic
standard errors. A more elegant derivation is due to
Don (1981). The idea of using EM instead of Newton-
Raphson, and the consequent discovery of the broader
applicability of Sheppard’s corrections, are due to
Dempster and Rubin (1983).

6. BEYOND MOMENT CORRECTIONS

Theoretical Developments

Compared with many other kinds of data, the fre-
quency theory of grouped data analysis is poorly
developed. The main problem is that the sampling

distributions of many potential estimators are
complex and unattractive, so that the usual sort of
decision-theoretic analysis has not been undertaken.
Thus for a long time the bulwark of the sampling
theory of grouped data was the Sheppard moment
corrections, whose sampling properties are, as I have
indicated, poor.

On the other hand, maximum likelihood estimates
have been shown in the normal and exponential
cases to be consistent and asymptotically efficient
(Kulldorff, 1961). Except for these distributions, the
asymptotic theory has not been carefully examined.
This has not deterred practice, however, where it has
become more common to see examples of grouped data
ML estimation.

The problems with discreteness mentioned in the
context of moment corrections affect the sampling
distribution of the MLE as well. For instance, suppose
a variable X is distributed normally with mean x and
unit variance, and that instead of observing X, one
observes only its sign. If in n independent trials one
records n, negatives and n, positives, the MLE of u is
the solution of ny/n = ®(—u). Thus, if n, = 0, as
frequently happens for small n or large u, the MLE is
at positive infinity, even though the log-likelihood is
concave. This problem has typically been handled by
considering the sampling properties of the MLE con-
ditional on its existence.

The example just cited is an extreme case, and in
fairness it should be noted that likelihood-based tests
and confidence intervals might still give sensible an-
swers when the MLE does not exist. In real applica-
tions such radical behavior is rare. More commonly
one observes that, if the grouping is coarse, the MLE
exists but is difficult to locate because of near ridges
in the likelihood. Heitjan (1987) has recorded this
phenomenon for the grouped bivariate normal.

Unimodality

Although the mode of a grouped data log-likelihood
can be hard to find, in some common grouped data
models any mode that exists is known to be unique.
Burridge (1981a, 1982) has shown that log-concave
densities (including the normal and the logistic) lead
to likelihoods that are also log-concave in appro-
priately chosen parameterizations. Thus, if such
a parameterization exists, and one can demon-
strate a mode (in any parameterization), the mode
must be unique. Well chosen parameters can have
other tangible benefits, including more rapid
convergence of iterative algorithms and better normal
approximations.

The most powerful results in this area are based
upon theorems from convex analysis that have only
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recently come to the attention of statisticians (Pre-
kopa, 1973; Brascamp and Lieb, 1975; Pratt, 1981).
Yet there are tantalizing gaps in the theory. For ex-
ample, grouped data from a univariate normal with
unknown u and ¢ lead to a log-concave likelihood in
an appropriate parameterization; 1/¢ and u/o will do.
The methods of prodf used for this result, however,
do not readily generalize to all higher dimensional
problems. For instance, it is not known whether
there exists a concavity parameterization for the log-
likelihood arising from rectangularly grouped bivar-
iate normal data with unspecified mean and variance-
covariance matrix. For the special case of bivariate
normal data where each item is either fully observed
or completely missing, multimodal likelihoods exist
(see Murray, 1977), and so there can be no concavity
parameterization. However, this still leaves open the
possibility that with some restrictions on the grouping
a concavity parameterization might be available.

Parametric Maximum Likelihood from Arbitrarily
Grouped Data

Approximation methods based on small & asymp-
totics are useful and interesting, but fine rounding is
just one special case of grouped data. As in the iris
data example, it is often expedient to fit a model to
nonlinear transformations of the same set of data;
however, rounding, and so the relevance of adjust-
ments, are preserved only under affine transforma-
tion. It is also possible to have finely rounded data,
but so much of it as to arouse concern that the error
in the adjustments is larger than the standard error
of the parameter. For these situations the approach of
calculating the likelihood as precisely as is feasible
and iterating to an MLE may be the only practical
alternative. In this section, I summarize studies that
have been conducted along these lines. The interested
reader is referred to these works.

For grouped univariate normal data, the work of
Gjeddebaek (1949, 1956, 1957, 1959a, 1959b, 1961) is
foremost. Other early contributors were Stevens
(1948) and Yoneda and Uchiyama (1956). Tallis and
Young (1962) and Heitjan (1987) considered arbitrar-
ily grouped bivariate normal data; at this time this is
the highest dimensional normal model that can be
routinely fit. Deken (1983) discussed higher dimen-
sional multivariate data, but his algorithm is appro-
priate only for very small grouping rectangles, in
which case corrections can be a viable alternative.
Kulldorff (1961) has fit grouped data exponential
models. Aigner and Goldberger (1970) covered the
Pareto, and Flygare, Austin and Buckwalter (1985)
have treated the Weibull. Boardman (1973) considered
the compound exponential, a special case of bivariate
grouping in which the grouping sets are unions of

rectangles and triangles. Most recently, Pettitt (1985)
and Beckman and Johnson (1987) have fit the ¢ dis-
tribution, including a degrees of freedom parameter,
the latter by Newton’s method, the former by EM.

Choice of Algorithms

Because the usual definition of grouped data sub-
sumes standard kinds of censoring as well, good algo-
rithms for grouped data likelihood calculations can be
quite generally useful. Available methods are variants
of either EM, Newton-Raphson or Fisher scoring.
Newton-Raphson appears to be the swiftest, followed
by scoring and EM (Schader and Schmid, 1984). Bur-
ridge (1981a) has suggested using concavity parame-
terizations to speed up Newton-Raphson algorithms.
EM algorithms, although they have at best a linear
rate of convergence, are guaranteed never to decrease
the likelihood and so are quite robust, a virtue not to
be taken lightly in the face of the vagaries of real data.
They are also easier to program and less costly per
iteration than the other methods.

Computer programs in the literature are by Swan
(normal by Newton-Raphson, 1969), Benn and Side-
bottom (scale and location families by scoring, 1976)
and Wolynetz (normal linear model by quasi-EM,
1979a, b). Stirling (1984) has recommended the use of
iteratively reweighted least squares for the linear part
(i.e., means and regression coefficients) in grouped
data models. This would permit fitting these models
in GLIM, but difficulties in estimation of the nuisance
parameters may render this approach impractical.

7. RECENT TRENDS IN GROUPED DATA
MODELING

Models in Survival Analysis

Survival times are inherently continuous, and for
the most part statisticians model them that way. Yet
times cannot often be observed very exactly. For
example, in cancer clinical trials, patients may be

" reexamined only at, say, 3-month intervals, and often

the follow-up times themselves are random. If the end
point of interest is time until detectable tumor recur-
rence, this quantity is known only up to the approxi-
mate 3-month gap between the last negative and the
first positive follow-up. Data of this kind have come
to be known as “interval censored,” a name that
emphasizes the connection with the common problem
of right censoring. Interval and right censoring are
not special cases of grouping in a narrow sense of the
word, because the partition of the sample space (see
Section 2) in censoring need not be fixed. However, if
the censoring time distribution or the distribution of
censoring interval limits is not related to survival time,
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the relevant part of the likelihood is effectively a
grouped data likelihood, and so these problems can be
treated within the scope of this review

Historically, the robust frequency properties of
rank-based methods of inference have made them
popular in survival analysis. When data are grouped
these methods lead to problems, however, because the
sampling distributions of rank-based statistics can be
severely distorted by ties (Lehmann, 1975); the coarser
is the grouping the more abundant will ties be. Thus
it is not surprising that discussions of grouping in
survival analysis most often appear in the context of
concern about ties.

An englightening example is the effect of grouping
on fitting the proportional hazards model with non-
time varying covariates. This model relates survivor-
ship X to covariates Z through the hazard function
(x| z). Specifically, the hazard for an individual with
covariate z is assumed to be proportional to a base-
line hazard A\, as

(11) A(x |z, 6) = Xo(x)exp(z0).

Cox (1972) proposed basing inferences about 8 on a
distribution that, in the case of continuous data, is
equivalent to the distribution of the ranks of X
(Kalbfleisch and Prentice, 1973). This distribution, as
it turns out, has no dependence on the nuisance func-
tion Ao. When continuous data are observed, the like-
lihood based on this distribution (the so-called
marginal likelihood) is a product of n factors, one for
each of the order statistics of x. If z(;) is the row vector
covariate for the ith failure, and R(i) is the set of
indices of failures that occur at or after the ith failure
(the risk set of i) then the corresponding factor in the
likelihood is

(12) 1;(0) = exp(z;)0) Y exp(zy)0).

kER(3)

This likelihood can also be justified as a partial like-
lihood (Kalbfleisch and Prentice, 1980).
Generalization of the marginal likelihood to the case
of grouped continuous data is in principle straightfor-
ward but in practice quite difficult. The correct
grouped data likelihood is the sum of the complete
data likelihoods for each of the possible complete data
rank vectors consistent with the observed, tied pattern
of ranks. If there are k distinct failure times, where
r; failed at the jth time, j = 1, ---, k, there are
r! . ry! - --. - rg! such rank vectors. The likelihood
simplifies to a product of k factors, the jth factor
consisting of a sum of r;! terins. Even without right
censoring, which introduces complicated terms involv-
ing Ao, the grouped data marginal likelihood is an
unwieldy expression. Approximations to the grouped

data marginal likelihood are available, however, in-
cluding those proposed by Peto (1972), Breslow (1974)
and Efron (1977).

Another approach to constructing grouped data
likelihoods is the method of partial likelihood (Cox,
1972). A problem with this method is that, in order to
get a decent likelihood, one must assume a non-
proportional hazards model. Although the grouped
data model comes to agree with the proportional
hazards model (11) as group size approaches zero
(see Thompson, 1977), for any positive group size
the partial likelihood estimates are inconsistent
for @ in (11) (Kalbfleisch and Prentice, 1973). The
partial likelihood model is also computationally
difficult, although Howard (1972) and Gail, Lubin and
Rubinstein (1981) have shown how to simplify the
calculations.

Prentice and Gloeckler (1978) proposed a third ap-
proach to this problem; their idea was to handle the
nuisance function A, by reducing it to a finite number
of dimensions and then estimating it. They supposed
that the time line is divided into intervals S; =
(@j-1,9),j=1, ---, k, and defined

aj = exp{— J; No(u) du}.

Then the probability that an individual with covariate
z survives until set S; and then fails in it is

i—1
(1 — afxp[zll]) H a;xp[zol.
Jj=1

Thus, the distribution of failures can be expressed in
terms of the finite-dimensional vector of a terms and
0, which can be estimated simultaneously and to which
standard asymptotics apply. This method is effective
if the data set is large, the number of groups is small
and the same grouping sets apply to all subjects.
Another method appropriate in this situation is due
to Breslow (1974), who assumed the hazard rate to be
constant between observed failures. He estimated the

“hazard function and @ simultaneously.

An alternative analysis that may prove valuable for
grouped and interval censored data was proposed by
Lindley (1972). He argued that any hazard function
may be changed, by suitable transformation of the
time metameter, into a constant hazard, i.e., an ex-
ponential model. Lindley’s proposal is to fit this model
using transformations of the time variable suggested
by a range of potential hazard functions, thereby
assessing the sensitivity of the inference on 6 to
assumptions about the hazard. The idea holds great
promise for grouped data analysis because the expo-
nential is one of the easiest to use and best understood
of grouped data models (Kulldorff, 1961).



174 D. F. HEITJAN

In addition to the work discussed above, there has
been progress on other problems in the analysis of
grouped survival data, to the point that this area would
benefit from a review of its own. Moreau, LeMinor,
Myquel and Lellouch (1985) and O’Neill (1985) have
discussed testing in the two-sample problem, extend-
ing censored data methods to grouped data. Self and
Grossman (1986) considered tests based on the mar-
ginal distribution of ranks in grouped samples. Turn-
bull (1974, 1976) has extended the product limit
method of estimating a survival function to the case
of data that can be censored on the right or left,
grouped and truncated. Finkelstein and Wolfe (1985)
have incorporated Turnbull’s algorithm into a method
for relating grouped survival data to covariates.

Models Explicitly for Grouping

Although it has been known since Fisher’s time how
one should fit models to coarsely grouped data (i.e.,
what likelihood one ought to compute), until recently
this was thought to be an ideal unattainable in all but
the simplest cases. Improvements in computing tech-
nology, however, have brought many grouped data
models within the grasp of the applied statistician.
These developments have made possible the assump-
tion of more complex models for grouping behavior,
which in turn have led to greater insights into how
grouping arises in real data, its importance in infer-
ence and how best to handle it. I will illustrate these
points with two examples.

Hasselblad, Stead and Galke (1980) presented data
on blood lead levels, year, race and age from a large
sample of New York children. Lead level is known to
be approximately lognormally distributed in homoge-
neous populations, and so the authors wished to fit
linear models relating the logarithm of lead level to
the other variables. Analysis was complicated, how-
ever, by the fact that the lead data had been recorded
in coarse groups; it was not uncommon for half of the
children in a given age/race/year bin to fall in the
lowest lead level category. Furthermore, the grouping
interval pattern had been changed midway through
the study, and estimated means and SD’s based on
" interval midpoints were sharply different under the
two classification systems. Correction methods were
not helpful because the groupings were coarse and
uneven on both the raw and log scales.

The authors’ solution was to fit the lognormal linear
model by maximizing the grouped data log-likelihood
as in (6). They found the results of this analysis,
unlike the analysis based on interval midpoints, to be
insensitive to the grouping scheme used. Estimates of
the log-scale SD were reduced when the grouping was
taken into account and were more consistent between
groups. In light of the large sample size (over 100,000)

and the observed sensitivity of their results, they
concluded that it was essential to take the grouping
seriously.

Heitjan and Reboussin (1987) considered a model
for grouped data in which the grouping intervals them-
selves are unobserved random quantities. They stud-
ied a sample of lengths (in months) of post-partum
amenorrhea from Guatemalan mothers. A problem
with this data set is the appearance of heaps at quarter
and full years in the histogram of amenorrhea lengths.
A possible explanation for these heaps is that at least
some of the mothers rounded their amenorrhea
lengths to the nearest quarter or full year, rather than
the nearest month. Furthermore, there were hints that
the rounding was coarser at the greater amenorrhea
lengths, suggesting that the longer the amenorrhea
time the more likely it was to be rounded coarsely.
There has been some research on rounding of this
kind, which is known as heaping (see Ewbank [1981]
and references therein), principally in the context of
age measurement. However, much of it is concerned
with simple smoothing techniques and is not designed
to yield insight into patterns of heaping.

The approach adopted by Heitjan and Reboussin
was to assume that heaping type behavior (nearest
year, nearest quarter year, nearest month) has an
ordered categories probit regression on the true length
of amenorrhea. In particular, they let heaping type X,
be a normally distributed random variable with mean
ue and SD ¢,, where X, = 1 corresponded to nearest
year rounding, 0 < X, < 1 to nearest quarter year
rounding, and X, < 0 to nearest month rounding. To
relate heaping to amenorrhea length X, they assumed
that p, = 6, + 6, X,. The set of possible true values for
amenorrhea length and grouping type consistent with
a reported length of, say, 12 months is the following
region in the (X,, X,) plane:

(6, 18) X [1, ) U (10.5, 13.5) x [0, 1)
U (11.5, 12.5) X (=, 0).

This region reflects the fact that a woman reporting
an amenorrhea length of 12 months may be a full year
reporter or a quarter year reporter or a nearest month
reporter. An analogous region was built up for each
mother’s reported time. The model specification was
completed by assuming a marginal distribution for
amenorrhea times; the authors tried various transfor-
mations to normality.

The authors fit the model using a Newton-Raphson
algorithm for the grouped bivariate normal. Grouping
coarseness was positively related to amenorrhea
length, as expected, and the slope coefficient was
significant. The SD of the back-transformed amen-
orrhea time was affected by taking the grouping into
account, and, depending on the nonlinearity of the
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transformation, so was the mean. The authors vali-
dated their model by comparing it with an analysis
of data in which both grouped (retrospective) and
ungrouped (prospective) amenorrhea lengths were
available.

Besides these, relatively few examples of the serious
modeling of grouped data have appeared. Wachter and
Trussell’s (1982) study of historical data on British
Navy recruits fit models to the height variable that
assumed grouping to the nearest inch. The model in
Heitjan and Reboussin (1987) is equivalent to a model
used in the analysis of heaped age data in Heitjan
(1985) and Heitjan and Rubin (1986).

Discrete Data Modeling Tools

The grouped continuous model (McCullagh, 1980)
is popular in the analysis of ordered categorical data.
Because this model assumes that the observed discrete
data have arisen by grouping an underlying continuous
variate (often the normal or logistic), there are many
connections with grouped data methods. The main
difference in current practice is that for ordered cat-
egories models one usually assumes an ad hoc shape
for the underlying distribution, e.g., a unit normal or
logistic, then estimates the cutpoints. In grouped data
analysis, on the other hand, the cutpoints are known;
inference concerns instead the parameters of the
underlying distribution.

As an example of the equivalence between grouped
data modeling per se and the grouped continuous
model for discrete ordinal data, consider a classifica-
tion into three ordered categories. If F is the standard
distribution function of the underlying variate, as-
sumed to belong to a location-scale family, and 6, and
0, represent the unknown cutpoints, the probabilities
of the three categories can be written

F(6,), F(0;) — F(6:), 1 — F(6,).

A grouped data model using known cutpoints ¢, and ¢,
and assuming location u and scale ¢ would result in
probabilities

F((t: — w)/o), F((ta — pu)/o) — F((t — w)/0),
’ 1 - F((t; — u)/o).

The pﬁrameters of the two models are interchange-
able, because

o= (t; — t2)/(6; — 65)
and
p = (01t2 — t102)/(0: — 05).

Equivalence between a grouped data model and an
ordered categories model is possible if the number of
parameters required to index the underlying distribu-

tion is one less than the number of groups. Equations
relating the two sets of parameters are not in general
easily solved.

8. RESEARCH FRONTIERS

Bayesian Ideas

There has not yet appeared an explicitly Bayesian
analysis of an elementary grouped data problem. Yet,
as in other areas of statistics, Bayesian ideas are being
used to make progress on important problems in
grouped data.

One such idea is the notion of multiple imputation,
proposed by Rubin (1978, 1987). Recalling the nota-
tion of Section 2 and suppressing subscripts where
possible, the posterior distribution of parameter 6
based on grouped data y can be written

f(0|y)=f fO1x, yf(x|y) dx
(13) X(y)

= f fO]x)f(x]y) dx.
X(y)

This means that one way to construct summary infer-
ences for @ is to average complete data inferences
f(6 | x) with respect to the predictive distribution of
the complete data given the grouped data, i.e., f (X | ¥).

Equation (13) also suggests some practical measures
one might take when faced with severe grouping or
rounding. For example, for a given set of grouped data
there may be a natural set of extreme complete data
sets, i.e., those located at corners of X(y). By compar-
ing complete data inferences computed at the extreme
data sets, it is possible to determine a range of poten-
tial sensitivity for final inferences. In the univariate
case, extreme data sets for estimating the mean would
be those obtained by fixing all the data to be at the
left or right edges of their grouping intervals. Extreme
data sets for a variance parameter would be those
obtained by moving half of the data to the right edges
of their intervals and simultaneously moving the other
half to the left edges of their intervals. In complex
problems this can be a useful exploratory device
(Heitjan, 1985).

As another practical application of (13), suppose, as
is often the case, that f(x|y), the predictive distri-
bution of the complete data, is not readily available.
Equation (13) suggests substituting some density that
is easily simulated for the true predictive distribution.
By drawing complete data sets from this distribution
and averaging the resulting complete data inferences,
one can get an approximate posterior that may convey
valuable information on the effect of the grouping.
For example, Beaton, Rubin and Barone (1976)
studied sensitivity of the regression estimates in
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the Longley (1967) data by drawing complete
data independently and uniformly from their seven-
dimensional rounding sets. Although subsequent evi-
dence (Dempster and Rubin, 1983) suggested that the
independent, uniform predictive distribution is a poor
substitute for f(x | y) for regular X, the investigation
did show that errors as the result of numerical inac-
curacy in regression routines were a less important
source of bias than errors as the result of rounding.

Another means of computing grouped data poste-
riors is due to Tanner and Wong (1987a, b), who call
their method “data augmentation.” They rewrote (13)
as

(14)  f@ly) =J;K(0, 0')f (6" |y) do’,

where

(15) K@, ¢6') = L( )f(0lx, yf(xly, ') dx.

Thus, the posterior distribution f(0|y) is a solution
of the integral equation (14). Typically, f(8| x, y) is
easy to construct, and f(x |y, 0) is easily simulated.
Therefore a way of solving (14) is to select a starting
guess f)(#|y) and compute, by Monte Carlo tech-
niques,

ﬂ1>(0|Y)=f f@lx,y)
X(y)

) [J;f(x |y, 0')f0)(0" | ¥) do'] dx,

iterating this process until the sequence of working
posteriors f;) converges. Tanner and Wong (1987b)
have stated precise conditions under which conver-
gence to the true posterior is guaranteed.

As an example of a way in which data augmentation
might be applied, consider Bayesian estimation of a
normal mean p from coarsely grouped data when the

variance is known to be one. A starting guess for

f (x| ¥) might be the normal distribution with mean
, y*and variance n"'. One data augmentation procedure
for this problem would consist of the following five
steps:

i) Draw m values of u, yj, j =1, --- , m, from
fo(ely).
ii) Forj =1, ---, m, draw a data set x,; by

drawing values independently from the normal
distribution (with mean y; and variance one) con-
ditional on the intervals observed.

iii) Compute %, to be the mean of the jth
imputed data set x,;; then f(u|=Xo, y) is the

normal with mean %,; and variance n™".

iv) Compute the overall augmented data mean
%o = m™ Y X, and a variance estimate v, =
n~'+ (m - 1)_12 (-’EOj — %)>

v) Set fi(u|y) to be the average of the
complete-data posteriors computed in step (iii),
i.e., a normal with mean %, and variance v,.

Iteration of these steps will result in convergence to a
normal approximation to the posterior of x. A more
realistic approach might use ¢ distributions for the
series of posteriors f;), whose parameters could be
found by matching the posterior mean, variance and
higher moments. 3

In many problems, computation of the grouped data
log-likelihood and its derivatives either analytically,
numerically or by some mixture of the two is feasible,
and this information can be combined with a prior
distribution to produce the posterior of 8. Sometimes
several approximations based on matching derivatives
to the parameters of familiar distributions are avail-
able. Laird and Louis (1982) have formalized these
ideas in the context of missing data problems, al-
though not specifically for grouped data.

Research Opportunities

In this paper I have indicated some of the major
unsolved questions in grouped data theory and prac-
tice, including i) regularity conditions and the likeli-
hood basis for Sheppard’s corrections (Dempster and
Rubin, 1983); ii) frequentist asymptotics in grouped
data likelihood analysis (Kulldorff, 1961); iii) concav-
ity of grouped data log-likelihoods (Burridge, 1981a,
1982); and iv) Bayesian analysis of grouped survivor-
ship data (Lindley, 1972). Two other promising areas
are v) the recovery of model diagnostic information
from grouped samples (Pettitt, 1985); and vi) analysis
of heaping and other nonignorable grouping phenom-
ena (Heitjan, 1985; Heitjan and Rubin, 1986; Heitjan
and Reboussin, 1987). Thanks to the incompleteness
of the general theory, almost any other area that I
have mentioned would benefit from further research.

9. CONCLUSIONS

Statisticians have long known that their models do
not perfectly mirror reality. In the past most attention
has been fixed on such problems as what to do with
data that are more long tailed or prone to outliers
than standard models imply. The motivation for this
sort of analysis was to develop procedures that would
give reliable inferences in the absence of strong knowl-
edge of the process generating the data. By contrast,
the study of grouping is aimed at ensuring compara-
bility of results from different data sets. The goal is
to liberate model-based inferences from the distorting
effects of grouping.
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When intervals are small enough, grouping makes
little difference, and simple estimates are essentially
valid. This is the case, for example, in the grouped
data studied by Beckman and Johnson (1987). How-
ever, in the studies of Beaton, Rubin and Barone
(1976), Hasselblad, Stead and Galke (1980), Heitjan
and Rubin (1986) and Heitjan and Reboussin (1987),
it was essential to account for grouping. Large, un-
evenly spaced intervals, uncertain group widths,
highly multicollinear data and large samples are in-
dicators of a need for careful attention to grouping.

Classical frequency statistics has made relatively
little progress on grouping, probably because it has
been considered either too difficult or insufficiently
important to merit much serious attention. The major
results are that moment-based statistics are incon-
sistent, but that maximum likelihood, at least in the
normal and exponential cases, is consistent and effi-
cient. Recently the Cox model and the various likeli-
hoods used to fit it have been examined. Although
progress in this area too has been hindered by analyt-
ical and computational difficulties, several satisfac-
tory alternatives have been proposed and are finding
their way into practice.

By contrast, Bayesian solutions to grouping prob-
lems do not require the development of special theory,
although the specific models one uses are usually
dependent on the available computing software and
hardware. A Bayesian’s approach might simply be to
fit candidates from a range of potential models by
computing and summarizing the correct likelihoods,
combining the answers so obtained with prior infor-
mation. For grouped data, this approach has only
recently become practical and has not yet been
attempted on a significant scale. Extrapolating from
the recent past, however, it appears that applied Baye-
sian analysis for these problems will become easier at
a rate that will soon be considered astounding. Statis-
tically motivated numerical tools like imputation, data
augmentation and importance sampling should con-
tribute to progress on this objective.
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Comment

James Burridge

Heitjan’s paper is a useful and interesting survey
of the current state of the art regarding “grouped
" data.” Grouping is, as Heitjan says, “ubiquitous.” Yet
all of us have been brought up on statistical theory
and methods intended to deal with ‘“continuous”
data—data that none of us will ever see! Justifications
for such a perverse situation are of course that it is
usually convenient to treat the data as if they were
continuous and, often, that the grouping is fine enough
for any necessary corrections to be ignorable. There
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remains of course the grey area where it is not clear
whether or not adjustments ought to be used. It is
irritating in practice to have, on occasion, to worry
about such things. Perhaps, in the near future hope-
fully, authors of statistical packages will enable us to
analyze grouped data as a matter of routine. Certainly
the continuing advances in computer processor power
are making it increasingly feasible, if not desirable, to
analyze the data that are actually observed. However,
much of the conventional elegant theory of mathe-
matical statistics may seem less compelling if we rou-
tinely adopt such a view: I wonder, for example,
whether many results associated with sufficiency may
ultimately be seen as mathematical curiosities or, at
best, as approximations.



