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be possible to take account of this in the search
algorithm, to both speed the search and evade numer-
ical problems on the way. Nevertheless, large n must
always present problems.

The only comment in the paper which jars with my
own experience is the reference to designing for very
large 6, in the Currin, Mitchell, Morris and Ylvisaker
(1988) paper. When 6 is large, you cannot estimate
Z(-) except very locally to each design point. The
second part of (7), which smooths the residuals, con-
sists of zero almost everywhere except for blips at each
design point to make y(x) pass through the observa-
tion. Designs for this case will be exclusively con-
cerned with estimating the regression function and,
like classical optimal design for regression, will place
clusters of points at the boundaries of the design
region. Such designs must be very poor when 6 is in
reality not large.

I was very intrigued to see the decomposition of
Y (.) into main effects, interactions, etc. In my context

Comment

Michael L. Stein

I wholeheartedly agree with the authors that stat-
isticians can and should contribute to the design and
analysis of computer experiments. Too often statisti-
cians shy away from problems that do not fit into the
standard statistical frameworks; the authors are to be
congratulated for their trailblazing efforts. Further-
more, I agree that a sensible way to approach these
problems is to view the output from the computer
model as a realization of a stochastic process. Where
I think further work is needed is in the development
of appropriate stochastic models.

The model given by (9) in this article by Sacks,
Welch, Mitchell and Wynn has some undesirable

. properties. For 0 < p < 2, a stochastic process with
this covariance function will not be mean square dif-
ferentiable. As noted by the authors, for p = 2, the
process is infinitely mean square differentiable. Not
allowing processes that are differentiable but not in-
finitely differentiable strikes me as unnecessarily re-
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where Y(-) is a multivariate density function, the
main effects are just marginal densities. The interac-
tions as defined, however, have no particular value.
Instead I would define

Mij (x;, xj) = f y(x)Hh¢i,jdxh - Mi(xi)ﬂj (xj),

representing non-independence between x; and x;.

It should be clear from my remarks how much I
have enjoyed reading this paper. The wealth of detail
and the authors’ breadth of knowledge make it one
that I am sure to turn to repeatedly.
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strictive. A more flexible class of correlation functions
is (Yaglom, 1987, page 139)

1
I pigr (@l w = 57Kyl wy = 51,

where K, is a modified Bessel function of order »
(Abramowitz and Stegun, 1965, page 374). A stochas-
tic process with this covariance function will be m
times mean square differentiable if and only if » > m.
The a;s measure the range of the correlation: a large
a; indicates that correlations die out quickly in the x;
direction.

A problem with all of the correlation functions used
by Sacks, Welch, Mitchell and Wynn is that they do
not allow for the inclusion of prior knowledge such as
that most of the variation in the output y(-) can
probably be explained by main effects plus perhaps
some low order interactions, which in fact occurred in
the circuit simulator example they discuss. If we ex-
pected most of the variation in y(-) could be explained
by main effects, we might want to model Y (x) as

(1) Y(x) =Y Y;(x) + Z(x),

£
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where the Y;’s and Z are independent Gaussian
processes with covariance functions o;(x; — w;) and
a.(x — w) respectively, so that

cov(Y(x), Y(w)) = ¥ 0;(xj — w;) + o.(x — w).

One specific parametric form of this model that might
be worth exploring is

cov(Y(x), Y(w))
= 3 Ciloylwy — 5 VKo (o5 | wy — %))
+ D [1(6i|w; — % 1)K, (B; | w; — x;]).

A large C; would correspond to an important main
effect. The model for Z(-) is somewhat problematic
as it allows Z(-) to have an additive component.
Following the decomposition into main effects and
interactions from Section 6 of the article by Sacks,
Welch, Mitchell and Wynn, it might be more satisfy-
ing to define Z(-) to be a stochastic process with no

Rejoinder

additive component:

Z(x) =Z*(x) - X f Z*(x) 11 dxn

h#j

+(d-1) f Z*(x)dx,

where d is the number of dimensions of x and Z*(x)
is a Gaussian process with some simple covariance
function. I think it would be very interesting to find
optimal designs under some models of the general
form given by (1). If the optimal designs are very
different from those obtained by Sacks, Welch, Mitch-
ell and Wynn for their models, that would call into
question the effectiveness of their designs for proc-
esses where most of the variation can be explained by
main effects.
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We thank the discussants for their incisive com-
ments, suggestions and questions. Nearly all the dis-
cussants have been key participants at the workshops
mentioned by Johnson and Ylvisaker; all have been
instrumental in the development of new methodol-
ogies for the design and analysis of computer experi-
ments. Most of the comments and our responses are
concerned with the choice of the experimental design
and the choice of the correlation function.

We had hoped that the example of Section 6 would
attract some suggestions from the discussants, and in
this we are not disappointed. Morris’ results on the
first-stage, 16-point design are interesting—in partic-
ular, they indicate that the concentration of the design
in the center of the region also occurs for the much
rougher process corresponding to p = 1 in (9). As this
is only a preliminary stage, and there is not much to
be lost by using a cheaper design anyway, his scaled
quarter fraction makes a lot of sense. In a seven-
dimensional problem, Sacks, Schiller and Welch
(1989) similarly reduced the optimization problem by
restricting attention to scaled central-composite de-
signs. Without doing the optimization or amassing
experience from many problems, though, we cannot

know when the relative performance of cheap designs
will be satisfactory.

For all 32 runs, Easterling recommends two com-
plementary quarter fractions. He rightly points out
the advantage of not having to optimize anything, and
we tried these fractions on {—%, %}° and {—4, %}¢. In
some recent applications where data are cheap to
generate, we have been using Latin hypercube designs,
and for comparison we also report results for a 32-run
Latin hypercube. The six factors have the same 32
equally spaced values, —3Y6s, — 2%, ..., 3%, but in
different random orders. For both designs, the predic-
tor is based on model (14) after re-estimating the
parameters 6, . . . , s and p in the correlation function
(9). Table R1 shows the average squared error of
prediction at the same 100 random points we used
previously. For ease of comparison, the results for our
original design are repeated. The complementary
quarter fractions and the Latin hypercube perform
similarly, with our design showing a modest
advantage.

It is of interest to note that, for certain values of n
and d, scaled standard designs can be optimal. For 8
points in 4 dimensions and 16 points in 5 dimensions



