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Comment

A. Owen, J. Koehler and S. Sharifzadeh

We have been running computer experiments re-
lated to semiconductor process design and recently
switched over to the paradigm described by the au-
thors. We have found it to be more flexible than
response surface methodology in handling determin-
istic responses. -

The Bayesian approach suggests how to interpolate,
extrapolate, assess uncertainty and construct designs.
To what extent do the Bayesian answers make sense,
if one does not hold the prior belief? The authors cite
several works in which connections are drawn between
well accepted interpolation methods and various
priors and give an example in which the uncertainty
assessment is accurate. It would be very interesting if
the uncertainty assessments were reasonbly accurate
for a large class of underlying functions. Have the
authors investigated this point? We doubt that the
Bayesian method will help in extrapolation (which we
suspect should be avoided) and thus are worried that
the optimal designs sometimes concentrate near the
center of the design space.

Our main comments are directed at the design prob-
lem and at estimation of the parameters of the covar-
iance model. Our applications have 5 to 10 input
variables and a like number of outputs. The programs
we use are fast enough to make it feasible to consider
50 or more runs.

Before addressing the design and estimation issues,
we wish to point out that ideas from exploratory data
analysis have a role to play in computer experimen-
tation. The authors (with their coworkers) have plot-
ted contours, trajectories and the additive main effects
(mentioned in Section 6) of the response functions.
We think their contributions are noteworthy and look
forward to further developments. When there are
many response variables, care should be taken in
optimizing a functional of the responses without first
considering the tradeoffs among competing goals. The
approach taken in Sharifzadeh, Koehler, Owen and
Shott (1989) is to evaluate the model functions at
thousands of input points and to explore the resulting
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data set with interactive graphics, in this case S
(Becker, Chambers and Wilks, 1988).

DESIGN ISSUES

In the authors’ Figure 1, the design points are all
quite close to the center. We share the misgivings of
the authors, suspecting that this leads to a robustness
problem. Extrapolation by conditional expectation de-
pends to a far greater degree on the covariance func-
tion used than does interpolation. Thus outside of the
convex hull of the data, the predicted values will
depend strongly on hard-to-verify properties of the
model.

We have been using low discrepancy sequences,
mentioned in Section 7.5, as designs. These designs
are constructed so that the empirical measure of the
design points is close in a Kolmogorov-Smirnov sense
to the uniform measure on the cube. These should be
good designs in the case of large 6, when estimation is
difficult. Johnson, Moore and Ylvisaker (1988) char-
acterize the optimal designs in the large 6 limit. Min-
imizing the maximum distance from a point in the
cube to a design point leads to their version of G
optimality and maximizing the minimum distance be-
tween two sample points leads to their version of D
optimality. Low discrepancy sequences (such as Hal-
ton-Hammersley sequences) tend to have small, but
not minimal, maximum distances from points in the
cube.

We have found that sometimes some of the §; appear
quite small while others are large. That is a response
variable is heavily dependent on a few of the d inputs
and not very sensitive at all to the others. We may
not know in advance which input variables are the

. important ones or, more commonly, each output vari-

able may depend most strongly on a different small
set of inputs. This opens up the possibility of reducing
the dimension of the problem by considering the re-
sponse as a function of the most important inputs,
possibly with some noise due to the other inputs. For
instance, in our first experiment the thickness of a
layer of SiO, only depended on the oxidation temper-
ature. Unfortunately, our design (an all-bias design)
only used three distinct values of the temperature in
43 runs. If our experiment had had 43 nearly equis-
paced temperature values, the results would have been
more informative.

Low discrepancy designs have the added benefit
that when projected onto a cube defined by a subset
of the original variables they are still nearly uniform.

L2

Statistical Science. RINORY

WWWw.jstor.org



430 J. SACKS, W. J. WELCH, T. J. MITCHELL AND H. P. WYNN

Thus if the dimension can be reduced, the design in
the remaining dimensions is still reasonably good. The
optimal designs depicted in Johnson, Moore and
Ylvisaker (1988) do not tend to project uniformly.

We prefer the sequences of Faure (1982) to
the Halton-Hammersley sequences. The Halton-
Hammersley sequences are usually based on the first
d prime numbers, whereas Faure uses the same prime
number (the smallest prime r = d) on each axis. When
n = r* the Faure sequences exercise each input vari-
able in much the same way Latin hypercube designs
do. Moreover for k = 2 they exercise pairs of input
variables in that, for any given pair of inputs, one can
partition their domain into r? squares and find r*—2
points in each square. Similarly there are equidistri-
bution properties for three or more axes. The equidis-
tribution properties of the Halton-Hammersley
sequences are different for each marginal subcube,
depending on the associated primes. We have found
that with n =r? and r = 5 or 7 that the Faure sequences
appear to lie on planes in three dimensions. This is
alleviated by replacing each digit b in the base r
representation of the Faure sequence by o (b) where o
is a permutation of 0, ..., r — 1. The permutation
does not alter the equidistribution properties. One can
inspect three-dimensional scatterplots to make sure
that a given permutation is effective.

PARAMETER ESTIMATION

We would like to mention a quick way of estimating
0 ..., 65 in the covariance given by the authors’

Comment

Anthony O’Hagan

The authors are to be congratulated on their lucid

and wide-ranging review. Like others before, I have
independently rediscovered many of the ideas and
results presented here. I therefore sincerely hope that
the greater prominence given to those ideas and results
by this excellent paper will enable future researchers
to start well beyond square one. I first have some
comments concerning the derivation of the basic es-
timator (7), and I will then discuss the model and the
practical implementation of the methods from my own
experience.

Anthony O’Hagan is Senior Lecturer and Chair,
Department of Statistics, University of Warwick,
Coventry CV4 7AL, United Kingdom.

equation (9) with p = 1. When the function Y(x) is
nearly additive, we can estimate the main effects using
scatterplot smoothers. This corresponds to the inner
loop of the ACE algorithm in Breiman and Freidman
(1985). Let g; denote the estimate of the jth main
effect. A very smooth g;j(-) is evidence that 6;
is small and a rough g;j(-) suggests that 6, is
large. The roughness may be assessed by %, =
Yr.(g (i/m) — g ((i — 1)/m))? where the domain of g;
has been rescaled to {0, 1]. The expected value of .%;
may be expressed in terms of 6; through 6,, for fixed
o. The d equations in d unknowns can be solved
iteratively. The likelihood can be used to choose be-
tween the answers from several different values of m.
This avoids a high dimensional search for 6,, ..., 6,.
The first time we tried it, we got better parameter
values (as measured by likelihood) than we had found
by searching. Alternatively it suggests starting values
for such a search.
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The authors mention three derivations of (7). In a
classical framework, it is the MLE if the process
Z(-) is Gaussian, and relaxing this assumption it is
the BLUP, minimizing (2). Thirdly, it is the posterior
mean of Y(x) in a Bayesian analysis with a Gaussian
Z(-) and a uniform prior on 8. It is first worth pointing
out that with a proper multivariate normal prior
B8 ~ N(b, B) and known o2 the posterior mean of Y(x)
has the same form as (7), but with 3 replaced by the
posterior mean of 3, i.e.,

B = (F'R'F + o*B™)(F'R'FB3 + ¢2 B™).

The interpretation of (7), as comprising the fitted
regression model plus smoothed residuals, still holds.

We can also dispense with normality in the Baye-
sian framework, using a similar device to (2). The



