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natural. It is not clear, however, what the standard
says about the length of time for which the violation
occurs. For the people in Houston, Texas it makes a
big difference whether a single measurement exceeds
the permitted threshold or whether the violation lasts
for many hours or days. How does the Air Control
Board count the violations if they are interrupted by
a few hours: as one or more?

2. EXTREMAL INDEX

Smith chose a cluster-interval of 72 hours. Every
such interval, with its 72 hourly measurements, is
represented by the largest value—the peak. An index
that measures the average length of a cluster of ex-
ceedances is the extremal index 6 (1/0 being the mean
cluster size). Smith introduced 6 in the theoretical
section but did not use it in the analysis of the ozone
data.

It should be emphasized that the rate of exceed-
ances, reported by Smith, is in fact the rate of 72-hour
intervals with at least one exceedance. Two periods
with the same rates could still have different 6 values.
In view of the fact that the data did not exhibit very
conclusive improvement in time (i.e., increasing rate
of exceedances over 8 and 12 parts per 100 million,
decreasing rate of exceedances over 16 plus), the com-
parison of § values could add another dimension for
judgment whether or not the situation in Houston has
improved or worsened.

Smith himself did use the extremal index ones. In
Smith (1984) he studies wave heights in the English
Channel. The extremal index 6 is discussed and esti-
mated together with the other parameters. In a recent
paper of Leadbetter, Weissman, de Haan and Rootzén
(1989), the extremal index of stationary dependent
sequences is discussed. Asymptotically, under some
regularity conditions, the value of 6 is not influenced
by the choice of the threshold level, the cluster-
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interval or cluster-definition. But for finite sample
sizes, the estimation of 6 is influenced by them.

3. ESTIMATION OF N-YEAR RETURN VALUES

Estimates of N-year return values are reported in
Table 3. We observe very little variability due to the
choice of threshold level and cluster interval—much
less variability than exhibited by the estimation of the
natural parameters. A similar phenomenon was ob-
served in Smith and Weissman (1985) when extreme
value methods were applied to Kimball’s (1960) data.
The conclusion was that “tail percentiles of a distri-
bution can be estimated more accurately than the
endpoint itself.” Notice that here, too, under the pres-
ent model, the upper endpoint u + o/k is finite and
unknown.

4. POSSIBLE EXTENSIONS

It is not clear whether or not readings of other
environmental variables are available for the period
under study in Houston. If there are not any, stop
reading here. If there are, obviously more information
could have been extracted. These variables could
either be used as explanatory variables for the ozone
variable or their joint distribution with ozone could be
analyzed by multivariate extreme value methods.
Richard Smith has been the driving force in develop-
ing these methods and it would no doubt be illumi-
nating for him to apply them here also.
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statistical methodology embedded in the description
and analysis of an important scientific problem. The
text of his paper consists of four themes, the main
ones being an up-to-date summary of the use of ex-
treme value theory and its ramifications for environ-
mental data analysis, and a conclusion regarding the
downward trend in extreme values of ozone concen-
trations in Houston. The other themes pertain to a
description of the Houston ozone data and an ap-
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proach towards the analyses of these data. The four
themes are tactfully interwoven with each other, en-
forcing a standard for statistical papers in the physical
sciences; however, this is achieved at the cost of re-
quiring of the reader several passes to gain apprecia-
tion of its content. Of particular emphasis is an
advocacy of the point-process approach for studying
environmental data.

Whereas I feel convinced of the merits of the point-
process approach in working with such data, and find
the authors decomposition of the entire series into
M-day periods with the representation u;; = o; + if;
reasonable, the material in Section 5 leaves me with a
sense of uneasiness. This does not imply a noncon-
currence with the author’s conclusion regarding the
downward trend in extreme values; Table 5 supplies
sufficient evidence for this. Notwithstanding the usual
Bayesian’s objections to an exclusive reliance on the
likelihood function and its associated paraphernalia
for guiding the nature of the data analysis, the ap-
proach to declustering is of concern. The author is
cognizant of this latter issue and has attempted to
soothe criticism by way of Table 3, but a matter that
may be germane is the appropriateness of the asymp-
totic theory of equation (3.6) for different choices of
the cluster interval. The Bayesian position for con-
cluding the absence of a long term trend would be to
incorporate prior information about the 38,’s based on
a knowledge of the efforts of the regulatory boards
and use the ensuing posteriors to infer trend. In this
connection, the author’s model, as exemplified by
equations (4.1) and (4.2), is ideal for a Bayesian de-
velopment; (4.1) is reminiscent of Lindley and Smith’s
(1972) set up for linear models. The above matter is
germane because a downward trend in the crossing
rates of high levels, especially levels much higher than
the official 12 parts per hundred million, may not be
of much solace to the regulatory agencies. Incidentally,
would an illustration analogous to that of Figure 6,
but with a threshold of 16 and above, indicate a
downward trend in the mean excess level? Also, the
ordinate of Figure 6 suggests three additions to an
otherwise exhaustive list of references; these are Bar-
low (1972), Barlow and Singpurwalla (1974) and
Mittal (1978). Finally, is there a connection between
the Poisson point-process model of equation (3.6) and
the gamma process model of Ferguson and Klass
(1972)? If not, would the latter be a viable alternative
to the former?

Whereas an analysis of the type undertaken by
Richard Smith and his references can be classified as
being “passive,” in the sense that the role played by
the statistician is one of measurement and monitoring,
the models described by Smith can be put to more
“active” use in the context of decision making and
control. It appears that the potential for such a role
has not been fully recognized in many areas of the

biological, engineering and physical sciences, includ-
ing those pertaining to the environmental sciences.
Thus, for example, the setting of air quality standards,
such as the U.S. Environmental Protection Agency’s
no more than three exceedances of 12 parts per 100
million in any 3-year period, should be based on de-
cision theoretic considerations which would balance
the risks of health hazards versus the economic hard-
ships caused by stringent air pollution requirements.
The point-process model described in this paper would
play an essential role in undertaking the decision
theoretic considerations. In general, the possibility of
harnessing the very attractive results of extreme value
theory in the broader context of decision making
under uncertainty, in engineering design and environ-
mental control, remains to be explored. Furthermore,
if the task of regulatory bodies is to introduce meas-
ures to reduce the frequency and level of high exceed-
ances, then a methodology that could be of natural
value to them would be that of control theory. Control
theory has a statistical foundation, in the sense that
corrective action is taken prior to the occurrence of
an undesirable event, whose forecast is based on an
extrapolation of a time series. Here again, Richard
Smith’s model, as exemplified by his equations (4.1)
and (4.2), would provide the necessary ingredient for
a more general development of the kind say in Smith
and Miller (1986), but with a control component. Thus
is appears to me that the decomposition (4.1) may
have broader implications than its original intent of
simplicity.

As a concluding remark, if someone like myself who
has an interest in extreme value theory, but who does
not claim any specialization in it, were to ask if this
paper has anything enlightening to say, then my an-
swer would be a most emphatic yes. Of course, being
an admirer of Richard Smith’s work, I have come to
expect interesting contributions from him, of which
this paper is another example.
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