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the equal allocation probabilities used initially in the
Harvard study.

Cornell also presented an expression which accel-
erates the divergence of the allocation probabilities as
the results in favor of one of the treatments becomes
more pronounced. It is a function of the number of
balls of each type in the urn and has the allocation
formula of Wei and Durham for simple random selec-
tion as a special case. Acceleration would tend to
compensate for a large initial value of u in terms of
its effect on the expected number of patients allocated
to the inferior treatment. It is this acceleration feature
which distinguishes Cornell’s proposal and makes it a
viable alternative to the design presented by Ware
and used in the Harvard ECMO trial.

The last suggestion made by Cornell concerns rejec-
tion of the null hypothesis of equal success probabili-
ties on the control and the new treatment when more
balls for the new treatment are added to the urn. A
balls is added to the urn for one type of treatment
whenever success is obtained on that treatment, or
failure on the other. Cornell proposed that the null
hypothesis be rejected only if the number of balls
added for the new treatment exceeds that for the
control to the extent that the posterior probability of
correct selection, denoted by PPCS and conditional
on observed frequencies, is high. This along with
selection of a large value of u would enable the results
of a randomized-play-winner trials to be used for
hypothesis testing as well as for treatment selection.

An analysis based upon the PPCS would apply for
any adaptive randomization scheme that depends only
on the observed results without knowledge of the
identity of the two treatments. It is a posterior prob-
ability in that it conditions on the observed allocations
and frequencies of success on the two treatments. It

is not a posterior probability in the sense of Bayesian
inference, but is a function of the success probabilities
under the control and new treatment.

The formula for PPCS could be used to evaluate
the power of an RPW trial after completion of the

" experiment by substitution of the null and minimum

alternative values of success probabilities. It could also
be used to calculate an empirical significance level by
substitution of the null and maximum indifference
values of success probabilities. The approaches to
analysis described by Ware would also be appropriate.

Although the accelerated convergence feature of this
alternative design is attractive, detailed procedures for
specifying u, the acceleration parameter, and the
rule for discontinuance of randomization have not
been developed. Neither has it been compared
with the design presented by Ware. His design for
the Harvard ECMO study meets the need for an
adaptive design which responds to ethical considera-
tions, yet provides adequate protection against an
erroneous conclusion.

In closing I commend Professor Ware for the sen-
sitivity to ethical issues and attention to scientific
rigor which he has displayed in his work on the eval-
uation of the ECMO procedure. His discussion of
statistical issues raised by the study will be especially
helpful to anyone considering an adaptive design in a
similar critical situation in the future.
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Comment: Recent Progress in Clinical Trial
Designs That Adapt for Ethical Purposes

Janis Hardwick

1. INTRODUCTION

Controlled medical trials are conducted for a variety
of reasons, but in general the desire to validate new
treatments that will, overall, decrease the suffering of
the afflicted motivates their use. One classical and
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accepted approach to controlled research is the ran-
domized clinical trial (RCT) in which patients are
allocated randomly to competing therapies in such a
way that an approximately equal number of patients
is assigned to each regimen. But, as the current con-
troversy illustrates, disparity often exists between the
environment assumed necessary for a formal scientific
inquiry and that of many real-life research situations.

The conflict between the need to conduct research
and the desire to attend to the needs of individual
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patients has motivated statisticians to develop adap-
tive experimental techniques that address ethical di-
lemmas inherent in RCT’s. However, despite a large
base of statistical literature concerning designs fea-
turing ethical allocation, there are only a few well-
documented examples in which adaptive sampling was
adopted due to ethical considerations. Among these
are the Michigan and Harvard studies of ECMO. I
believe that the issues raised by these studies would
be less volatile and complex if the properties of adap-
tive designs were better understood.

Current concepts of what constitutes high quality
medical research are presently in a state of flux. In
1977, Simon wrote that “Any design that does not
provide for a convincing test of the null hypothesis
has little chance of being adopted for general use.” In
the current article, Ware notes that “Many investi-
gators believe that trials with unusual designs will not
be persuasive.” Challenging these perspectives, Berry
(1989) argues that “The fact that classical inference
is impossible to do in a legitimate scientific enterprise
means to me that we should abandon classical infer-
ence rather than abandoning the enterprise.”

During the last decade, the objective of much statis-
tical research has been to provide the medical com-
munity with options that reduce the divergences of
these views. I'd like to take this opportunity to point
to some recent progress, and I hope, at the same time,
to clarify some of the misconceptions that impede
acceptance of this remarkably flexible class of designs.
To support the latter goal, I've made ample use of
direct quotations, the purpose being to exhibit the
nature of the objections to adaptive techniques with
acceptable precision. Because of space restrictions,
only recent work is emphasized, although certain fun-
damental articles are also noted. There have been, of
course, numerous contributions in this area, and
among these are a number of well written books and
survey articles which provide a wealth of information
for the interested reader. See Hoel, Sobel and Weiss

(1975), Weinstein (1974), Pocock (1983), Shapiro and _

Louis (1983), Siegmund (1985), Wetherill and Glaze-
brook (1986), and Berry and Fristedt (1986).

2, QUANTIFYING ETHICS: THE HARDEST PART

Some researchers insist that ethical considerations
fall outside the purview of statistical analysis. To me
this is arguable. It seems natural that statisticians
should take part in the process of quantifying philo-
sophical factors. Tymchuck (1981, 1982) offers insight
into such structuring of decision processes. He bases
models for ethical decision making on a variety of
guidelines for social scientists, classifying the issues
into seven process factors and four decision criteria.

The process factors include 1) balancing the rights of
individuals against the public interest, 2) avoidance of
illegal or unjustified acts while also avoiding “bad
laws,” 3) using humanitarian and scientific knowledge
in novel cases, 4) justice and equality, 5) multilateral
decision processes, 6) use of guardians and advocates,
and 7) levels of division and supervision. The decision
criteria include A) cost, B) time and effort, C) benefits
and risks, and D) “other aspects.” While Tymchuck’s
work provides no rigorous techniques for quantifying
these factors and criteria, it does provide useful guide-
lines with which to regulate the formation of decision
theoretic models.

A number of the above items (2, 5, 6, 7) are likely
to be dealt with by investigators working in areas of
protocol development quite removed from that of the
statistician (although, in the article under discussion,
it appears that use of the randomized consent design
brought process factors 5 and 6 into play as well.)
Others, like factors 1, 3, 4 and any of the decision
criteria could certainly arise as issues to be addressed
through statistical modeling. Among all of the items
listed, however, process factor 1 seems to represent
the greatest challenge to statisticians trying to model
ethical criteria. The crucial ingredient to quantifying
this balancing factor is the patient horizon. If one
could successfully evaluate the patient horizon and
the impact that a trial will have on it, then the problem
of measuring ethical costs would reduce to defining a
mechanism for weighting the relative worths of cur-
rent and future patients. But, assessment of the size
and role of the patient horizon has been a topic of
debate for decades, and no resolution seems close at
hand. All clinical trials directly affect at least some
segment of the patient horizon. In addition, since the
actual effect of some trials often turns out to be
surprisingly large or small, the role of the patient
horizon needs to be given explicit attention. Issues
that are relevant to the estimation process include the
prospective rate of adoption of new therapies, the
prevalence of the affliction being researched, and the
projected audience of physicians. Discussions may be
found in Armitage (1960), Anscombe (1963), Colton
(1963), Upton and Lee (1976), Hoel, Sobel and Weiss
(1975), Simon (1977), Petkau (1978), Lai (1984),
Armitage (1985), Chernoff and Petkau (1985), Bather
(1985), Hardwick (1986a, b), Woodroofe and Hard-
wick (1988) and Hardwick (1989a).

3. ADAPTIVE DESIGNS: WHAT ARE THE
ISSUES?

Adaptive techniques are not new to clinical trials;
however, the term covers such varied practices that it
rarely suffices as a useful descriptor. Van Ryzin (1986)
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provides an informal definition when he refers to
adaptive procedures as having “the common feature
that they adapt to approximate some ideal or optimal
statistical procedure as observations accumulate in
number and/or time.” (See also Kulkarni, 1988.) The
information observed for each patient in a trial con-
sists of a vector of random variables with three com-
ponents: the measured prognostic factors, an indicator
of treatment, and the measured responses to treat-
ment. An adaptive technique, then, is one that uses
some subset of all information known at any given
time to determine how to allocate the next patient or
whether to stop the trial. Of particular interest here
are designs that adapt for the specific purpose of
minimizing an ethical cost.

The adaptive nature of the design must be desig-
nated in a formally structured set of protocols, other-
wise, possible ad hoc decisions might invalidate the
trial. For example, trials in which patient responses
are merely monitored for extreme behavior are not
adaptive in the current sense because resulting capri-
cious termination would destroy the intended statis-
tical environment. (See, for example, Pocock, 1982,
Goldman, 1987 and Berry, 1988).

Although there are often compelling reasons to pre-
fer adaptive experiments to those with predetermined
allocation schemes, as a rule, the design and analysis
of such experiments is more complicated, largely be-
cause sampling distributions are influenced by sequen-
tial design or optional stopping. Further complications
arise when the physical limitations of the data collec-
tion process must be incorporated into an already
intricate design. In order for sequential procedures to
be considered as acceptable foundations for clinical
trial protocols, they must be shown to be general
enough to encompass the complex phenomena that
arise in medical research.

The skepticism evoked by adaptive techniques is
both practical and philosophical in nature; the former
relating to what we are able to do, and the latter to
what we should do. Criticisms of adaptive designs
address their ability to handle randomization, balance,
group sampling, delayed responses, and covariates,
while at the same time allowing desired tests of hy-
potheses and inference procedures. Philosophical
concerns are the usual sort involving: type of analysis
(frequentist, Bayesian, other); the use of prior infor-
mation (historical controls, informative priors, initial
parameter estimates); ethical criteria (loss functions,
horizon size, myopic allocation); and, more generally,
the difficulties faced in any attempt to get a new type
of design accepted in practice (what constitutes con-
vincing evidence, possible exposure to liability, and
so on). With the above factors in mind, I’ll focus
on several approaches, each with a different mecha-

nism for combining statistical, practical and ethical
concerns.

3.1. General Approaches

A useful method of formalizing the design goals of
a trial is to use decision theory. With this approach,
one can attempt to construct a loss function that
represents costs associated with treating patients sub-
optimally during the trial, invasiveness and side ef-
fects of each treatment, reaching incorrect conclusions
at the end of a study, and, more generally, making
“poor” inferences about parameters.

In allocation problems, where the “sampling” costs
are a function of the therapy prescribed, good solu-
tions are apt to depend on two factors: knowing when
to stop and achieving a fixed balance in treatment
assignments. Usually, the “optimal” balance depends
on unknown parameters and, thus, the ability to up-
date parameter estimates as the trial proceeds is likely
to be rewarded with a reduction in overall risk. In
realistically formulated allocation problems, identify-
ing a class of optimal procedures is extremely difficult.
This is not a critical problem, however, since optimal
rules are frequently too intricate to be practicable.

A first step, then, may be to seek a class of rules
that is asymptotically optimal (in an appropriate
sense). Suppose, for example, that 6 is the parameter
of interest and that, at time &, émk,,,k is the estimate
based on m; and n, observations from treatments I
and II, respectively, with m;, + n, = k. Then if p(#) is
the (unknown) proportion that we wish to allocate to
treatment I, an allocation rule suggested by asymp-
totic analyses might proceed as follows:

Rule 1: Sample from T at stage k + 1 if and only if
mk/k = p(omk,nk)-

Rule 1 has the “practical” disadvantages of requiring
that new computations be made after every observa-
tion and that each patient’s response must be available
before the next patient may be assigned. The next
move, therefore, may be to determine conditions under

“which the class of asymptotically optimal rules will

include designs that are more realistic and easy to use.
Ideally, such conditions, while constraining the theo-
retical solutions, will not seriously hinder the func-
tionality of the problem formulation. In the present
context, it is primarily designs such as these, which
encompass utilitarian rules, yet retain some degree of
approximate optimality, that merit further study.

In many cases, locating the minimum achievable
risk, if not the rules that achieve it, can be a relatively
easy task. If so, when evaluating approximate rules, it
is useful to determine both the extent of their defi-
ciencies relative to optimal designs and the magnitude
of their improvement over designs in current use.
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3.2. Group Allocation

A simplifying constraint that is desirable (particu-
larly to investigators involved in multi-center trials)
is the allocation of subjects as part of a group rather
than as individuals. Data from previous patients is
not always available when a new patient needs to be
assigned, and grouping the patients allows more time
for data to arrive. Moreover, procurement and analysis
of data from a group sequential trial is often more
straightforward than analysis of a fully sequential
trial. During each stage of a multi-stage design, pa-
tients are ordinarily allocated to the treatments in
fixed proportions, although the allocation process may
be either deterministic or random. After each stage,
adjustments to the sampling scheme may be made or
the trial may be stopped.

Multi-stage designs comprise a huge family. The
simplest of these, at least intuitively, are two-stage
designs which allocate to both treatments during the
first phase, but to a single treatment thereafter. The
design used at Harvard falls into this class, and,
despite the apparent lack of use of such designs, they
have been proposed numerous times as a simple vari-
ation of the RCT (Colton, 1963; Begg and Mehta,
1979; Witmer, 1986; Berry and Pearson, 1985).

Designs referred to as “group-sequential” form an-
other set in this class. In group-sequential designs,
patients are usually sampled according to the same
fixed scheme during every stage. The ultimate goal of
such designs is usually a test of hypothesis; so, after
each group is sampled, the data are checked for “sig-
nificant” results. A problem of theoretical interest
raised by group sequential designs is how the repeated
examinations of the data affect significance levels.
DeMets and Lan (1984) review several approaches to
the concept of “spending” the type I error level, and
more recent attention has focused on obtaining con-
fidence intervals following group sequential tests. (See
DeMets and Ware, 1980; Jennison and Turnbull, 1983,

1984; DeMets and Kim, 1987a, b; Geller and Pocock,

1988; Rosner and Tsiatis, 1988).

A further class of multi-stage designs can be derived
from the type of strategies exemplified by Rule 1.
Here, however, the updated parameter estimates are
computed only after groups of patients have been
observed. For simplicity, the number of groups is
usually small and, as before, the periodic examinations
serve the two-fold purpose of allowing for adjustment

~of the allocation scheme or for determining whether
to stop the trial. The decision theoretic formulation
allows either testing or estimation, of course, and,
recently, there has been some work on models in which
ethical costs are explicitly expressed in the loss func-
tion (Woodroofe and Hardwick, 1988; Hardwick,
1989a). There are a variety of potential applications

for adaptive multi-stage rules, and they appear to offer
promising compromises between fully sequential and
fixed proportion allocation rules. For further discus-
sion see Hall (1981), Siegmund (1985), Clayton and
Witmer (1988), Woodroofe (1988), Lorden (1988), and
the references for Section 5.1.

3.3. Randomization

The quotations below typify often-occurring exces-
sive expectations for RCT’s.

“The data of Bartlett et al. do not, therefore, per-
form the function of a randomized trial, which is to
convince practitioners that extracorporeal membrane
oxygenation is definitely superior to conventional
treatment ... more importantly, the inference from
this statistical calculation is only valid if the two
treatment groups were identical in all respects except
treatment” (Panath and Wallenstein, 1985).

“Their experience shows, however, the need for
caution in replacing conventional randomization with
adaptive schemes.... The imbalance in treatment
assignments illustrates a danger with adaptive de-
signs, namely, that the design may have good perform-
ance on the average but fail to provide a good
comparison between the regimens in a particular in-
stance” (Ware and Epstein, 1985).

Randomization never guarantees that the “treat-
ment groups will be identical in all respects except
treatment,” and it frequently fails “to provide a good
comparison . . . in a particular instance.” While it does
provide an appropriate environment for tests of sta-
tistical significance, randomization should not be
viewed as a panacea for the disbalancing effects of
covariates, known or unknown. Regardless of whether
a trial has been randomized, good statistical practice
always includes analysis of treatment groups for biases
in pertinent prognostic factors. Ware specifically men-
tions post hoc analyses for biases done on the phase
variable (random versus nonrandom), and it is likely
that similar exploratory analyses were carried out on
other potentially confounding variables. Of course,
such analysis does not necessarily protect the data
from biases caused by lurking variables, but then, one
is likewise never assured that a standard randomiza-
tion scheme will do so.

Although the option of randomizing is not always
available, it is preferable whenever possible to utilize
designs with randomization sufficient to protect as
well as can be against selection bias, time trends, and
any of a wide variety of unknown factors. The signif-
icant lag time that exists between the time new ideas
are published and when they are assimilated into
general practice is demonstrated by Ware’s com-
ment that “Sequential methods are not especially
effective in this setting ... They do not use adaptive
randomization.” .
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There is no dearth of techniques available for in-
corporating randomization into deterministic adaptive
schemes. One fairly straightforward method, involves
superimposing the allocation strategy with a “biased
coin” scheme (Efron, 1971; Wei 1977, 1978). As an
illustration of this procedure, consider again Rule 1,
and note that the following rule has similar properties
and also is randomized:

Rule 2: Sample from treatment 1 at stage k + 1 if
and only if U < p (0, ,), where U is a uniform random
variable on (0, 1).

The main problem accompanying this technique is the
sparseness of published theoretical examinations of
the impact brought about by adding randomization.
Research in this area is being conducted, however. For
example, there are several cases for which it has been
established that the deterministic version of a rule
such as Rule 1 is asymptotically optimal, and it is
believed that the randomization will affect the oper-
ating characteristics of the original rule only margin-
ally. This view has been confirmed for the sequential
version of the Behrens-Fisher problem in the sense
that first order asymptotic efficiency is retained when
an adaptive biased coin scheme is overlaid on the
adaptive allocation scheme suggested by Robbins,
Simons and Starr (1967) (see Eisele, 1989). Other
cases under study include estimation problems with
ethical cost (Hardwick, 1989b) and modified repeated
significance tests (Siegmund, 1983, 1985; Hardwick,
1989a).

Also relevant to this topic are articles presenting
comparisons of nonrandomized adaptive, randomized
adaptive and/or randomized nonadaptive rules. (See,
for example, Berry and-Eick, 1989; Bather, 1981; and
Glazebrook, 1980.)

4. TESTING AND INFERENCE
4.1 The Null Hypothesis

Because of its inclination toward the use of classical
5% tests for rejecting a true null hypothesis, the
medical community may be placing excessive confi-
dence in this one interpretation of what the “correct”
statistical analysis should be. The traditional empha-
sis usually placed on whether and how to test hy-
potheses often causes other retrievable information in
the data to be overlooked. Clinical trials can be initi-
ated with a variety of different objectives, and some
of these goals may depend on aspects of the therapies
that are not considered in the simple success-fail loss
function. Such neglected factors should be an argu-
ment in favor of the utilization of less standard and/
or more exploratory techniques.

One problem that plagued the original ECMO trial
seems to have resurfaced to haunt the present one.

What I find perplexing is that, in each study, the
design parameters were specified in a way that seems
to contradict the assumption of equipoise described
by Ware. In the Michigan study, the sample size
calculation was based on a discrimination parameter
(call this Aj;) defined to be 0.4, and on the initial
estimate of the survival rate for ECMO, P, = 0.8.
In the Harvard study, the research question may
be inferred from the statement of the hypotheses:
Hy:P, = P, = 0.2 and H;: P, = 0.2, P, = 0.8. In this
design, the value P, — P; assumed under the alterna-
tive hypothesis (call this A) serves essentially the
same purpose as does Ay, in the Michigan design.
Specification of a discrimination parameter such as
Apg or Ay should be based, not on a prior estimate of
P, — P;, but rather on the smallest difference in
survival rates that the investigators either would have
found meaningful or had the resources to detect, i.e.,
the clinical significance. If Ay = 0.6 and Ay, = 0.4 were
estimates of P, — P, before the trial began, then the
assumption of equipoise was clearly not met. On the
other hand, it is difficult to imagine that 0.4 or 0.6
could be the smallest clinically significant difference
for a therapy where failure means death. Suppose the
true difference in efficacy rates at Harvard had been
0.3. Surely this is a difference worth notice. But, had
the Harvard null hypothesis been rejected, the study
conclusion would have been that there was insufficient
information to conclude ... what? To conclude that
there was a greater than 60% difference between ther-
apies or to conclude that there was a meaningful
difference between therapies? I suspect that the an-
swer is neither. The alternative hypothesis was prob-
ably specified as it was to reduce the sample size
needed to find a statistically significant difference,
and there are clearly reasons why a small sample size
would have been a desirable goal. These comments
are not intended to raise doubts about the validity of
the assumption of equipoise made in the Harvard
study, but to investigate whether the research ques-
tion, currently stated in terms of a hypothesis test,

‘would not have been better answered through the use

of some other analytic technique.

Adaptive trials with ethical constraints have not
been used much, leading to a natural lack of familiarity
with related techniques of design and analysis. Follow-
ing the Michigan study, the investigators and discus-
sants apparently felt obligated to try to analyze their
results as if the data had come from a standard RCT.
Panath and Wallenstein (1985) state: “Had the results
of Bartlett et al.’s study emerged from a randomized
clinical trial, a conventional analysis would be to use
the Fisher-Irwin test. This yields a one-tailed proba-
bility of 0.083, which is not statistically significant.”
Ware and Epstein (1985) add: “In particular, the type
1, or false positive, error rate for this design is 0.5!”
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Even Bartlett and his colleagues contribute: “. .. the
lower 99% one-sided confidence interval on the prob-
ability of survival with ECMO is 78.5. . . . This conclu-
sion is based on all the data on ECMO, both before
and after the discontinuance of randomization, and
on standard confidence interval calculations.”

As a graduate student, I took great interest in the
published discussions of the ECMO study at Michi-
gan. This is largely because the design used, based on
Durham and Wei’s randomized play-the-winner rule,
has certain properties in common with the modified
bandit, a highly adaptive rule that I was proposing in
my dissertation. Out of this interest grew a discussion
that was included in the dissertation, and in it, I
responded (a bit overzealously, perhaps) to the above
interpretations of the study data: “Because the ECMO
data were not collected with the intention of perform-
ing tests such as those described, the above are rather
ill-adapted analyses. If there were test statistics of the
sort described above, they would not inherit the dis-
tributional laws ascribed to them in these references
because sampling distributions are affected by study
designs. Unless one sticks entirely to a likelihood
interpretation of the data, one must interpret the
study results in terms of the design that produced
them, i.e., the probability was 0.05 that the inferior
treatment would have been designated as the better
one when the difference between the success rates was
at least 0.4. If a test of the significance of the HEQ
(the null hypothesis of equality) is an important ob-
jective of the trial, such a test should be incorporated
in the design at the outset, not concocted after the
results are in. It is worth noting, however, that another
option was available, although apparently not consid-
ered. The statisticians could have performed random-
ization tests of the desired hypotheses. Given the small
expected sample size, the computational problems
would have been quite manageable, and the resultant
tests would have provided the requisite p-values and
error probabilities. ... The allocation rule employed

has little bearing on whether the data are eventually

analyzed using the classical HEQ. Rather, it is the
overall formulation of the design that affects the avail-
ability of the desired test. Nevertheless, because the
mmedical community evinces a strong preference for
the use of HEQ’s in the designs of experiments, in-
novative designs for comparing standard therapies
with new ones are more likely to be adopted if they
also include HEQ tests.”

Of course, permutation tests for these data were
eventually carried out, and the algorithms used were
concise and elegant (Wei, 1988). Wei, responding to
his own question of whether “. .. the design can be
ignored in the analysis,” adds that “... the degree of
significance of the treatment effect is exaggerated if
the design is ignored in the analysis.” (See also Wei

and Lachin, 1988.) Finally, it may be worth noting
that some selection designs (the class in question
during the Michigan discussions) do incorporate tests
of the null hypothesis (see Kiefer and Weiss, 1971,
1974; Hoel, Weiss and Simon, 1976; Hardwick, 1986b).

4.2. Repeated Significance Tests

The assumption that adaptive designs preclude
making frequentist inferences is not entirely correct.
Among adaptive rules, repeated significance tests
(RST’s) have, perhaps, the greatest potential for use
in clinical trials. These tests have received considera-
ble attention, and their properties are quite well
understood.

Traditionally, subjects are allocated evenly between
the two treatments, either in pairs or in larger groups.
After each group, the test statistic of interest is up-
dated and checked against a stopping boundary which
is a function of the total number of patients observed
to date. If the test statistic exceeds the boundary then
the result is significant, but if a truncation point is
reached first then the null hypothesis is not rejected.
Numerous modifications of RST’s have been studied,
many of which are discussed in Siegmund, 1985, Chap-
ters 4-6. (Of particular interest is Section 3, Chapter
6, in which the author discusses adaptive allocation.)
Siegmund carefully addresses the practical issues re-
lated to use of these tests and, by means of Monte
Carlo studies, demonstrates approximate gains and
losses associated with the various modifications.
Among modifications currently under study are RST’s
that incorporate ethical costs (Hardwick, 1989a).
These include both group and fully sequential adap-
tation, in the sense that adjustments to the allocation
strategy take place only after groups of patients have
been observed, but stopping criteria are checked after
each observation. It is anticipated that the results
will be relatively insensitive to the design, and that
approximations of the operating characteristics of
these procedures will be similar to those derived by
Siegmund. In a recent paper, Hu (1988) reviews
analytic techniques for working with modified
RST’s and extends some of the results that had pre-
viously been shown only for normal random variables
to random variables from exponential families. (See
also Takahashi, 1987.)

4.3. Confidence Intervals

“One difficulty with adaptive designs is that meth-
ods ... for calculating confidence intervals at the
completion of the study, are not presently available”
(Ware and Epstein, 1985).

This comment deserves at least a brief response.
While moving away from RCT’s may imply giving up
familiar analytic techniques, it does not necessarily
mean that less common procedures do not provide
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legitimate alternatives which may be substituted when
the former are either not available or not accurate. As
mentioned in Section 3.2, substantial research has
been carried out on the formation of confidence inter-
vals following group sequential tests. Progress in this
area has also been made with regard to other types of
sequential designs:

e Many authors have discussed fixed width confi-
dence intervals, in which sampling continues until
a predetermined level of precision is estimated to
have been obtained (Robbins, Simons and Starr,
1967; Siegmund, 1985; Woodroofe, 1988; Meslim,
1987; Eisele, 1989).

¢ Using the Michigan data, Wei, Smythe, Lin and
Park (1990) compare a number of methods for
generating confidence intervals for adaptive de-
signs. In fact, the profile likelihood methods de-
scribed by Wei and colleagues were used to derive
confidence intervals for the Harvard study.

e Using a relatively new approach, Woodroofe ex-
hibits methods for adjusted confidence intervals
using estimates whose sampling distributions
have been affected by the use of a stopping rule
or an adaptive sampling procedure. These bias
corrections are based on very weak expansions for
the distribution of an appropriately transformed
parameter estimate, and they have been examined
in several situations where first order asymptotic
approximations do not account for biases intro-
duced by an unusual sampling scheme (Wood-
roofe, 1986, 1989; Hardwick and Woodroofe,
1989).

5. OTHER- APPROACHES
5.1. Bandit Problems

“... the dividing line between experiment and rou-
tine should really not exist at all. In terms of the
accumulation of clinical knowledge, an experiment
should not be thought of as a discrete entity but rather
as one phase of the ongoing experience with a clinical
procedure . . . Thus, the experiment never really ends,
and concern for the subject as a patient begins the
first time a procedure is used” (Weinstein, 1974).

Clearly, in most research settings, the medical com-
munity is reluctant to respond to such remarks by
changing dramatically their concepts of scientific in-
vestigations. However, in settings where ethical con-
siderations are dominant but where it has been
decided that some sort of comparative trial must take
place, it may be reasonable to consider design formu-
lations based on bandit problems. In bandit problems,
optimal policies are those that indicate which treat-
ment should be assigned at each stage in a, possibly
infinite, series of trials, with the goal being to maxi-

mize the sum of discounted patient responses. The
vast assortment of discount sequences available sug-
gests a variety of ways to quantify ethical criteria. The
attitude expressed by Weinstein is well represented
by geometric discount sequences, {1, 8, 6% ...},
0 < 8 < 1, for these reflect a version of equity with
regard to patient treatment: regardless of when the
patient is treated, the weight given their response,
relative to the sum of the weights of all future patients,
is a constant function of 3, ((1 — B)/8). Another
advantage of the geometric sequences is that the prob-
lem of obtaining optimal strategies is far more tract-
able mathematically (Gittins and Jones, 1974);
however, the infinite horizon of the geometric bandit
is a drawback for, without a formal end to the data
collection phase, it is difficult to perform classical
statistical analyses. A couple of options exist. One can
either truncate at a predetermined time or simply
overlay an ad hoc stopping rule. These options are
discussed in Hardwick (1986a, b). The entire area of
bandit problems offers approaches to sequential de-
sign problems that, as yet, have been impossible to
examine in depth. But, given recent advances, numer-
ical solutions of such problems are now feasible in
more practical situations (Chernoff and Petkau, 1983;
Lai, 1987; Gittins, 1989). Many extensions to conven-
tional bandit problems have been examined, and they
include rules that incorporate covariates (Woodroofe,
1979; Clayton, 1988; Sarkar, 1989); delayed responses
(Eick, 1988; Flournoy, 1989); and multi-stage sam-
pling (Lai, Levin, Robbins and Siegmund, 1980; Wit-
mer, 1986). Also, in their monograph, Berry and
Fristedt (1986) provide an excellent annotated
bibliography of contributions to research on bandit
problems.

5.2 Desperate Measures

There are unquestionably cases that arise in which
controlled studies are judged completely unethical.
This doesn’t mean that everyone should give up and
go home. There are options available. Attempting to
discourage randomized trials in such situations, in
Hardwick (1986a), I suggested that if, in the design
stages of a trial, “it became apparent that certain
treatment assignments would present insurmountable
ethical problems to participating investigators, they
should have decided against the trial. The option of
continuing to provide their own patients with ECMO,
and, in time, of sharing their carefully documented
records with other physicians was always available
and could have been substituted for a trial.” One way
of supporting the validity of information collected in
such a fashion is to work with predictive models or
Bayesian analyses.

Logistic regression has been used to model survival
of ECMO patients (Toomasian, Snedecor, Cornell,
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Cilley and Bartlett, 1988). Similar models based on
historical data collected by Bartlett prior to his study
are being developed for non-ECMO patients (Berry
and Hardwick, 1989). Preliminary results indicate
that, even while controlling for the effect of techno-
logical advances in treatment, these models predict
survival extremely well (90%). In addition, it is antic-
ipated that models utilizing more recent data will
support the contention that there were respectable
alternatives to the randomized study performed at
Michigan. See Doll and Peto (1980) and Gehan (1984)
for discussions on the use of historical controls.

Tackling the Bayesian viewpoint head-on, some
statisticians are trying to formalize methods for elic-
iting priors from “experts,” anticipating that such
information can be used to generate “prior” distribu-
tions. This approach is quite removed from the ideas
discussed here, but it represents a departure from
classical methods and often does so with the intent to
increasing the well being of the patient horizon. Re-
lated references include Kadane (1980), Chaloner
(1983) and Freedman and Spiegelhalter (1983).

Obviously the problems mentioned above must be
approached with great caution, for there are tangible
difficulties that go hand in hand with inferences based
on Bayesian analyses and historical controls. In fact,
many obstacles must be overcome before inferences
based on nonfrequentist arguments will find accept-
ance. Even so, I hope such work will provide examples
of how such inferences can be made when classical
randomized methods are not viable.

6. THE ULTIMATE GOAL: ARE ADAPTIVE
DESIGNS WORTH IT?

In his discussion, Ware refers to an attitude that
can easily catch one off guard: “Some statisticians
believe that randomization with constant randomiza-
tion probabilities should be continued so long as ran-
domization is ethically justified, and that adaptive
rules are an insufficient response to evidence that the
therapies are not equally effective.” My immediate
reaction to this statement is to agree, but on closer
inspection, I think that such statements can imply
contradictory postures depending on how one inter-

'prets the word “evidence.” As statisticians, we are
often faced with the task of delineating the difference
between data that “seem to show something” or “look
worrisome” and data that are statistically meaningful.
If, to an ordinary person, a physician said that current
evidence points to a 10% survival rate for CMT and a
90% survival rate for ECMO, then that person would
say “I want my baby to have ECMO.” A statistician,
on the other hand, would begin to ask question upon
question, trying valiantly to assess the value of the
comparison given by the physician. Prior to the ran-
domized study at Michigan, it was decided that what-

ever was meant by those words was not evidence of a
difference between ECMO and CMT; yet, clearly,
whatever evidence the investigators had at that time,
while not being statistically significant in an accept-
able sense was strong enough to keep the human
subjects review board from allowing an RCT to be
conducted. Where does that leave us? Certainly, if we
believe that the treatments are not equally efficacious,
the assumption of equipoise is violated and we should
not be conducting a randomized comparative trial.
Suppose however, that prior data show a trend in
favor of ECMO and that, once the trial is started, the
data seem to point strongly in the same direction, but
are not extreme enough to invoke the stopping rule?
Without adaptation and without nonfrequentist alter-
natives, what are the options? The trail can be stopped
before statistically convincing results are obtained or
the trial can be continued with 50%-50% randomiza-
tion, and, if the data trend is confirmed by eventual
significant results, an excessive number of patients
will have been exposed to the inferior treatment. As
long as we stick to the philosophy that data are
informative only when they can be shown to represent
statistically significant results, our options are
few, and adaptation is one of the only precautionary
measures available.

Recall that the main attribute of an adaptive rule is
that it allows the trial to continue to its conclusion
while limiting exposure of the trial patients, and, in
this sense, adaptive rules truly offer a compromise
between an RCT (which may harm the trial patients
unnecessarily) and no trial at all (which may result in
harm to future patients who won’t have the benefit of
scientific results). In medical trials we deal with the
unknown, so everything is a gamble. But if, by using
a certain trial design, we expect even an extra 1 or 2%
of the patients to live than would otherwise (and if we
don’t pay for this gain by obvious losses in another
area), then I believe that the answer is yes: yes, it is
worth all the controversy and all the hours that we
spend studying such possibilities.

7. CONCLUSIONS

Acknowledging the lack of faith that most investi-
gators place in nonclassical RCT’s, Ware defends the
Harvard researchers by noting that they recognized
the limitations of their study “... relative to the
classical RCT, and made special efforts to maintain
other strengths of randomized trials, especially stand-
ardized accrual, treatment, and data collection meth-
ods, throughout the study.” It’s unfortunate that such
a statement was necessary.

A substantial obstacle preventing adoption of new
design techniques is the prevalent view that because
patients are not randomly assigned to treatment
groups, all other aspects of the study must then be



INVESTIGATING THERAPIES 335

suspect. Correct practices such as controlling for ex-
ternal biases, maintaining strict data collection stand-
ards, and generally enforcing consistent behavior
throughout an experiment are independent of ran-
domization; they are simply good scientific practice.
It is possible, in fact, that the excessive confidence
placed in randomization even generates a kind of
lazy negligence regarding other aspects of rigorous
procedure.

Quite often and unexpectedly, challenges associated
with a new clinical trial are found to be unprecedented
or unique, demonstrating that no single class of clin-
ical trial designs should have a universal role in the
ongoing process of medical research. In striving to
retain the high level of rigor that is popularly consid-
ered to go hand in hand with the classical RCT, the
profession sometimes underrates the applicability of
alternative techniques. Rejection of new methodology
often results from misinformation or lack of easily
available information regarding its applications and
properties.

Choosing a trial design that will serve the needs of
patients affected by that trial requires a significant
degree of open mindedness and courage. Regardless of
whether “the right thing was done,” Ware and his
colleagues are to be commended for their willingness
to try something new; there were no loss-free decisions
in the project that they undertook. Lebacqz (1983)
neatly covered the essentials of the matter when, after
discussing a debate not unlike the current one, she
remarked that “The preceding study illustrates well
two conclusions to be drawn from this discussion of
ethical issues in clinical trials; first, that the issues
must be decided on a case by case basis, and second,
that public discussion. and debate is important for
clarifying the issues.”
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