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(1988) for our current more difficult problem. We next
develop our approximation in the current context
using the procedure of Leonard, Hsu and Tsui (1989).

Let u; denote the vector conditionally maximizing
(17), subject to g(u) = t. Then, expanding log p(u | y)
in a Taylor series about u = u, and neglecting cubic
and higher terms in the expansion yields an approxi-
mation p(u|y) to p(u|y) in a neighborhood of u =
u,. Based upon p;* (u | y), the required marginalization
can be performed without further approximation,
yielding

p*(t]y)
(18) < p(u,|y) | R, |2
x exp{2l7 R 'L} f (¢ uf, R,

where
I
(19) , = dlogply))
au u=u,
_ —0d’log p(u]y)
(20) Rt - a(uuT) _—
and
(21) uf =u + R,

with f (¢ | u, C) denoting the density of t = g(u) when
u possesses a multivariate normal distribution with
mean vector u and covariance matrix C.

In the above derivation, we assume that z and 6
have already been suitably transformed to permit ap-
proximate multivariate normality, conditional on vy,
of the u vector. When applying (18), it is necessary to
either know f or to use a further approximation for
this important f component.

We hope that our suggestions will again help to
catalyze the literature on this interesting topic. We
would like to thank Professor Bjgrnstad for highlight-
ing the importance of predictive inference.

Rejoinder

Jan F. Bjornstad

I would like to thank the discussants for their com-
ments which have extended and illuminated the ideas
of predictive likelihood in the review. In this rejoinder,
I will expand on some of the issues raised by them,
and also take up the issue of additivity for predictive
likelihoods.

%SI

v
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é:g( /2
Statistical Science. RINORE

ACKNOWLEDGMENTS

The authors would like to thank Ella Mae Matsumura
and Ron Butler for helpful comments, and George
Tiao for encouraging the development of (5) at the
University of Wisconsin in 1980.

ADDITIONAL REFERENCES

ALBERT, J. H. (1988). Computational methods using a Bayesian
hierarchical generalized linear model. J. Amer. Statist. Assoc.
83 1037-1044.

GHOSH, M., HWANG, J. T. and Tsui, K. W. (1983). Construction
of improved estimators in multiparameter estimation for dis-
crete exponential families (with discussion). Ann. Statist. 11
351-376.

Hsu, J. S. J., LEONARD, T. and Tsul, K. W. (1988). Bayesian
inference with applications to contingency table analysis. Tech-
nical Report No. 825, Univ. Wisconsin-Madison.

JOHNSON, R. A. and LADALLA, J. N. (1979). The large sample
behavior of posterior distributions which sample from multi-
parameter exponential family models, and allied results.
Sankyha Ser. B 41 196-215.

Kass, R. E., TIERNEY, L. and KADANE, J. B. (1988). The validity
of posterior expansions based on Laplace’s method. Technical
Report No. 396, Dept. Statistics, Carnegie Mellon Univ.

LADpALLA, J. N. (1976). The large sample behavior of posterior
distributions when sampling from multiparameter exponential
family models, and allied results. Ph.D. dissertation. Dept.
Statistics, Univ. Wisconsin-Madison.

LEONARD, T. (1972). Bayesian methods for binomial data.
Biometrika 59 581-589.

LEONARD, T. (1973). A Bayesian method for histograms. Biometrika
60 297-308.

LEONARD, T. (1975). A Bayesian approach to the linear model with
unequal variances. Technometrics 17 95-102.

LEONARD, T. (1976). Some alternative approaches to multiparam-
eter estimation. Biometrika 63 69-76.

LEONARD, T. and Novick, M. R. (1986). Bayesian full rank mar-
ginalization for two-way contingency tables. J. Educ. Statist.
11 33-56.

LEONARD, T., Hsu, J. S. J. and Tsui, K. W. (1989). Bayesian
marginal inference. J. Amer. Statist. Assoc. 84 1051-1058.
MORRIS, C. (1983). Parametric empirical Bayes inference: Theory
and applications (with discussion). J. Amer. Statist. Assoc. 78

47-65.

RUBINSTEIN, R. Y. (1981). Simulation and the Monte Carlo Method.

Wiley, New York.

The comment of Leonard, Tsui and Hsu is con-
cerned mainly with the approximation of Bayesian
predictive distributions, and as such deals not with
the likelihood approach. A predictive likelihood is
based on the joint likelihood I, (z, 8) = f,(y, z), not on
the Bayes posterior density f(z|y). Hence, Leonard,
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Tsui and Hsu are correct in pointing out that approx-
imations of the “flat-prior” Bayes posterior density
are really Bayesian approaches. However, these ap-
proximations can also be viewed as adjustments to the
profile predictive likelihood, L,, to account for the
number of unknown parameters in the model. The
paired comparisons ‘example illustrates well how in-
appropriate L, can be if the number of unknown
parameters is large, while the adjustments based on
approximations to the Bayes posterior density will
correct this deficiency. In this context, it should be
noted that none of Butler’s suggestions are con-
structed as approximations to the Bayes predictive
density. The new approximation suggested by Leon-
ard, Tsui and Hsu when one wants to predict a real-
valued Z = g (Y’ ) seems to be particularly useful when
f(z|6) cannot be obtained in closed analytic form. It
therefore widens the area of prediction problems that
can be handled.

The main issue raised in the comment of Professor
Butler is an important one; namely, how to evaluate
predictive likelihoods by considering the predictive
intervals they generate. Butler claims that the usual
unconditional confidence level, Cl(6), is neither rele-
vant nor useful, and that one should instead use the
conditional confidence level given the appropriate an-
cillary statistic A, for the data. Let us call this the
partial conditional level and denote it by Cy(A,). But-
ler then judges the quality of a predictive likelihood
by the closeness of Cy(A,) to preset nominal values
like .90 or .95. When constructing an interval in the
usual pivotal frequentist way, it is clearly wise to
condition on an ancillary statistic, and in that respect
Cy(A,) is an interesting feature of a prediction inter-
val. However, this certainly does not mean that the
usual confidence level is useless or irrelevant as a
measure of the degree of confidence we have in a
predictive interval. For one thing it is, of course, the
expectation of Cy(A,). More importantly, C1(6) should
be required to be approximately equal to or larger than
the nominal level. Otherwise, repeated use of the pre-
dictive likelihood cannot be recommended (as seen in
the assessment of L, in Section 4). Hence, the uncon-
ditional level Cl(6) plays, in fact, an important role in
the assessment of predictive likelihoods, and I have to
disagree strongly with Butler’s claim that Cl(d) is
irrelevant and useless. As noted by Butler, also Cox
(1986) mentions the need for assessing predictive like-
lihoods in terms of hypothetical long-run properties.

Professor Butler claims that I have introduced new
material on predictive likelihood assessment. That
may be true with regard to considering the conditional
coverage given the data, C,(y). But I cannot take
credit for suggesting C1(6). For example, Lejeune and
Faulkenberry (1982) assess L, in the cases of Poisson
and binomial models by computing Cl(§) for the pre-

dictive intervals generated by L,. Also, using CI() to
assess prediction methods in general is certainly not
new, see, e.g., Aitchison and Dunsmore (1975). In fact,
it seems to be the most common way of evaluating
statistical interval-conclusions generally in prediction
problems.

In the normal case in Section 4, the ancillary and
sufficient statistics are independent, so in this exam-
ple C1(f) and C,y(A,) are identically the same. When
Cy(A,) does differ from CIl(), C4(A,) certainly gives
interesting new insight into the performance of the
prediction method. However, I do not think it is
enough to consider Cl(6) and C,(A,). One should also
look at the fully conditional confidence level given the
data, Cs(y). To me, Cy(y) is the most relevant char-
acteristic on which to base a criterion for evaluating
prediction intervals. One such criterion is Py(Cy(Y) =
1 — «), where 1 — « is the nominal level desired. Also,
an important feature of Cy(Y) is its expected value
ClL(9).

In the normal case of Section 4 and in all the
examples considered by Butler, Py{C,(Y) = 1 — a} is
independent of 6. Hence, the issue raised by Butler
of whether it is sensible to consider inf,P,{C,(Y) =
1 — a} as a criterion does not arise in these cases. If
Py{Cy(Y) = 1 — «} depends on 6, an alternative to
taking infimum is to consider Py{Cy(Y) =1 — a}asa
function of 6, for example restricted to a neighborhood
of § similar to what Butler considers for Cy(AL).

With a nominal level of, say, 90% an alternative to
the usual goal of Cl() (or Cy(A,)) = .9 is to require
that P,{Cy(Y) = .9) = .9. This means that we want at
least 90% conditional coverage 90% of the times.
Typically this implies that C1(6) > .9.

There is a way to combine the fully conditional
evaluation, based on C,(y), and the partially condi-
tional approach. Say we want 90% confidence given
the data for the predictive interval. It is then impor-
tant whether or not the event E = {C,(Y) = .9} occurs.
The probability of E should be calculated in the right
frame of reference which, according to the likelihood

Aprinciple for prediction, is conditional on A,. This

amounts to considering Py(E|A,) = Py{Co(Y) =
9] A,} as a way to assess a predictive likelihood.

In light of the above discussion on predictive like-
lihood assessment, let us now consider Butler’s four
examples. In Example 1, no ancillary statistic exists
and Butler uses CI(f). The 90%-interval based on the
predictive pivotal statistic A, = %(Z — Y), Y + 2.311,
obtains P(Cy(Y) = .9) = .766. The 90% nominal
predictive interval based on L,; and L,3, Y + 2.459,
has P(Cy(Y) = .9) = .809, while the interval based on
L,and L,., Y + 2.045, gets P{C,(Y) = .9} = .619. To
me it is therefore not at all clear that the predictive
pivot-approach is preferable to L,, and L,; here. To
achieve P{Cy(Y) = .9} = .9, the prediction interval



264 J. F. BJIORNSTAD

turns out to be Y * 2.836, which has Cl(§) = .96.
Hence, in order to have 90% confidence in reaching
the nominal level, the unconditional confidence level
must be 96%.

Example 2, the U(6 — Y, 6 + &) case, is of special
interest. As in the parametric case when constructing
confidence interval for 6, it illustrates convincingly
the need to condition on the ancillary statistic A, =
X, — X, when constructing a prediction interval using
the pivotal statistic A, = Z — X. The 90% prediction
interval based on the predictive pivot f(A,|A.) is
given by:

JEpEE if| A.] = .9,
T i1 — AL - VA -A])/10 if|A.]<.9.

It is readily computed that P(C,(Y) = .9) = .543,
which seems rather low. Butler claims that none of
the predictive likelihoods are applicable to this prob-
lem. This is clearly not the case. They may not utilize
all predictive information about Z in the best possible
way, but certainly some of them will work reasonably
well. For L., Butler illustrates clearly when condition-
ing on R will work properly. Here R contains an
ancillary part and hence some information about Z,
and L, will not use all predictive information available
in the data. Still, it is possible to derive L. when
| A, | > 0. The nominal 90% predictive interval based
on L. is given by:

[l E(45)(1-2log|A,]) if|Adze
cTlEE (| Aa] e =] A ]) | Al| <e V.

When x; = .06 and x, = 98, I. = x = 4833 =
(.037, 1.003) which is vastly better than the interval
based on f(A,). The conditional level, given A, = .92,
equals .960. However, P(Cy(Y) = .9) = .812 which is
a big improvement over the predictive pivot approach.
Even though L. throws away some predictive infor-
mation about z, and hence will give an interval larger
than one would think necessary, the 90% predictive
interval based on L. has a fully conditional level,
compared to I, that better reflects how a predictive
interval should behave.

Even though the profile predictive likelihood,
L,, does not work well here, it can be derived. De-
fining L,(z|y) does not require 6, to be unique, being
defined as sup, f;(y, z). Here, L,(z|y) is such that
Z ~ U(x(z) - 1, X(1) + 1), where Xa) = min(xl, x2)
and x = max(x;, x;). The 90% predictive interval
is then:

I, =% % (9)(1 — %|A,|).

With x; = .06 and x, = .98 this becomes (.034, 1.006),
practically the same as I.. Usually, however, I, will be
quite a bit shorter than I,. C1() = .988 for I,, and it
can be shown that C,(y) = .9 for all (6, y) such that
P(Cy(Y) = 9) = 1. In this case, L, will lead to
unnecessarily large predictive intervals.

Let us for this example also consider the partial
guarantee, P(C,(Y) = .9| A,), as a function of | A, |.
For L, this guarantee is 1, of course. For I. and I, the
partial guarantee is given in Figure 1. Figure 1 reveals
a weakness in the predictive pivot approach of con-
structing conditional 90% intervals. It seems that even
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FIG. 1. P{C,(Y) = .9 | A,} for I. (—) and I (----).
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the “not fully informative” conditional predictive like-
lihood does better.

Also in Example 3, I think, one should consider
P(C,(Y) = 1 — «) before one tries to make a prefer-
ential ordering of the predictive likelihoods. In the
U(0, §) case of Example 4 (also Example 4 in the
review), the 90%-inferval based on L,, (0, 1.8260),
obtains P(C,(Y) = .9) = .756, while the 90%-interval
based on L., (0, 56), has P(Cy(Y) = .9) = .968, con-
firming that L.’s interval is too long.

To conclude this discussion on predictive likelihood
assessment, I do not think it is enough to judge the
value of predictive likelihood by considering only C1(8)
or the partial conditional cover C,;(A,). Rather, I re-
gard the fully conditional cover Cy(Y) as the basic
characteristic of a predictive interval, and contend
that P(Cs(Y) = nominal level | A,) and P(Cs(Y) =
nominal level) are more relevant criteria for evaluating
predictive likelihoods.

The other issue considered by Butler is the moti-
vation behind predictive likelihoods based on condi-
tioning on sufficient statistics. I would like to thank
Professor Butler for an interesting and illuminating
discussion of the likelihood perspective on assessing
the compatibility of z with y and how it motivates the
use of L, in the discrete case. For the continuous case,
although the additional Jacobian factor makes the
conditional predictive likelihood independent of the
choice of minimal sufficient statistic, it does have the
unfortunate consequence of making the predictive
likelihood not invariant under scale changes of z,
which to me seems to be a rather serious defect not
shared by L..

I would like to conclude this rejoinder by bringing
up an apparent deficiency of predictive likelihoods
that has not been commented on by the discussants.
As mentioned in Section 1, predictive likelihoods are
typically not additive, e.g., in the discrete case we
usually have L(z € B|y) # Y,.ep L(z|y). However, it
is possible to modify any predictive likelihood to be

additive and such that L(z|y) is left unchanged for
all z. Moreover, it is the additive version of L that is
of interest in practice. Any L(z|y) is defined by a
functional G on I, (z, 6). Consider discrete Y, Z. Then
I,eEB,0) =P(Y=yNZEB) = 3Y.es (2 0).
Hence the joint likelihood is additive in z. However,
unless G is linear,

L(z € Bly) = G{l,(z € B, §)}
# X Gl,(z 0)).

2EB
The quantity G may not even be defined on /,(z € B,
8) (e.g. L., L;). Whatever the case may be, we can
choose to define a modified L™ (z € B | y), for a given
predictive likelihood G{l,(z, 8)} = L(z|y), by

L™z € B|y)
=Y L(zl|y), if Z is discrete
2EB

f L(z|y) dz, if Z is continuous.
B

Since 1, (z, 6) is additive in z for any given 0, it is
certainly a natural requirement that a predictive like-
lihood also is additive. More importantly, when con-
structing predictive regions P,, given by (1.1) in
Section 1, we are using directly the additive version
L™ (z € B|y) and not L(z € B|y). Hence, it should
be recognized that the predictive likelihood used in
constructing confidence regions for z is, in fact, addi-
tive and the apparent distinction between Bayes pre-
diction and likelihood prediction in this regard does
not exist.
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