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from the ancillary statistic A, (as well as the model)
while 6, a complimentary portion of the data, is being
used to assess the accuracy of these coverage func-
tions. In parametric inference the roles of these sta-
tistics are reversed in that the ancillary statistic A,
assesses the accuracy of § in determining the true
model. Practical examples are needed to bear out the
sensibility of basing recipe choice on coverages at and
near §.

Many practical models such as generalized linear
models do not admit exact ancillary A, upon which to
condition. In such instances we must find approximate
ancillaries as has been done in Hinkley (1980) and
Barndorff-Nielsen (1980, 1983).

I do not agree with Bjgrnstad’s suggestion that
pr{Z € I4(Y); 8} as an unconditional probability can
be used to meaningfully assess the various recipes.
Also measuring the worth of an interval (or its asso-
ciated recipe) by its guarantee of 90% coverage,
infy pr{Cy(Y) = .9} where Cy(y) = pr{Z € Io(y)|
y; 0}, amounts to a worst case scenario assessment.
This could be a very unrepresentative assessment
measure to use as a basis for recipe choice.

Comment

Tom Leonard, Kam-Wah Tsui and John S. J. Hsu

Professor Bjgrnstad is to be congratulated on an
excellent review of an important area. Previous statis-
tical practice largely referred to point predictions and
estimated standard errors when predicting future ob-
servations from current data. When analyzing time
series, contingency tables or nonlinear regression
models, it is often thought necessary to refer to asymp-
totics, even to obtain an approximate standard error.
However, methods are now available permitting pre-
cise predictions based upon finite samples. Moreover,
the applied statistician can refer to an entire predic-
tive likelihood or density or probability mass function,
summarizing the information in the data about any
future observation. This broadens the type of nonlin-
ear model, with several parameters, which may yield
useful predictions. These predictions can now be ex-
pressed in terms of probability statements, thus en-
hancing their interpretability, e.g., for noisy data sets.

Tom Leonard is Associate P}'ofessor, Kam-Wah Tsui
is Professor and John S. J. Hsu is a graduate student,
Department of Statistics, University of Wisconsin-
Madison, Madison, Wisconsin 53706.
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Let p(y | 8) denote our density (or probability mass
function) for an n X 1 vector y of current observations,
given a p X 1 vector § = (6, - --, 6,)7 of unknown
parameters, and p(z | §) represent the corresponding
density for an independent m X 1 vector z of future
observations. If 7(8) is the prior density of 6, for 6
lying in the parameter space 0, then the predictive
distribution '

(1) p(z|y) = J;p(zw)vr((ily) do
of z given y is also representable in the form

p(z|0)x(0]y)

(2) plz|y) = ~Oly.2) 0 € 0.
Here we have
3) ©(8]y) « 7(0)p(y|0), 6€E,

denoting the posterior density of 8, given y, and
(4) m(0]y, z) x p(z|6)r(8]y), 0 € O,

denoting the postposterior density of 0, given y and z.
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Leonard (1982) was the first to use a multivariate
normal approximation to (4) to justify the Laplacian
approximation to (1)

(5) p*(z|y) « |Rz|p(z, 62]y),
where .

(6) p(z,0|y) =p(z|0)x(6]y)
and

—9”log p(z, 0| y)
3(607) o,

(7) Rz =

is the postposterior information matrix, with 8, de-
noting the conditional maximum of (6) with respect
to @ for each fixed z and the observed y. He approxi-
mated the postposterior mean vector and covariance
matrix by 6; and Rz', respectively, in which case (5)
is a consequence of replacing 8 in (2) by 6z. Recent
developments and extensions of (5) are summarized
by Hsu, Leonard and Tsui (1988, Section 8) and
Leonard, Hsu and Tsui (1989), who also consider the
important problem of making a marginal inference
about a function of several unknown parameters. The
tremendous research effort stimulated by the short
1982 note was perhaps unpredictable at the time. We
would now like to resummarize and extend the appli-
cations of the original idea. Note that if the prior
density w(0) can be specified then the approximation
(5) will be unnecessary in situations where importance
sampling (e.g., Rubinstein, 1981) can be used to sim-
ulate the exact predictive distribution in (1). Let 0
denote the vector maximizing the posterior density
7(0]y) and R denote the corresponding posterior
information matrix. Then, in cases where the posterior
distribution of 8 is roughly multivariate normal, the
exact predictive distribution in (2) can be simulated
as precisely as possible by

_ p(z, 0;]y) Lolwg1y)
®) plzly) 122,21[ v (6;) ;l/fglli‘l,(oj):l’

where ¥ () denotes a multivariate normal den51ty for
6, with mean vector  and covariance matrix R~ and
0;, 6,, - -- represent simulated realizations of 6 from
v(0).

The representation in (2) can be used to refine the
approximation to (1) described in (5). Ladalla (1976)
and Johnson and Ladalla (1979) propose very accurate
approximations, based upon Edgeworth expansions,
to posterior mean vectors and covariance matrices.
Hence a range of superior approximations, 6, and
R' can be developed for the postposterior mean vec-
tor and covariance matrix, and these can be used to
replace 0; and Rz' in (5). More complicated adjust-
ments to (5) can be developed via Edgeworth expan-
sions to the postposterior density in the denominator

of (2). We do not regard any refinement to (5) as
sensible unless it can be shown to parallel an approx-
imation to 7 (0 | y, z).

The second term on the right-hand side of (5)
corresponds to the profile predictive likelihood. The
following counterexample demonstrates that adjust-
ments to this formulation are indeed necessary (see
also Bjgrnstad’s Example 5 of Section 3).

Suppose that (y;;, yi2) are independent for i =
1, -- -, n and independent of (z;, 2,), where all obser-
vations are normally distributed with common vari-
ance 7°. Let y;; possess mean 6;, i = 1, ---, n, and z;
possess mean 8,1, for j = 1, 2. Consider the prediction
of u = 2; — 2,. The profile predictive likelihood of w,
given only d; = Y11, — ¥a1, * -+, dn = Y10 — Yon, 18

n —(1/2)(n+1)
9) Luld) « [uz + 2 d?]
i=1

which is proportional to a t-density with n degrees of
freedom.

This contradicts the less sensible profile predictive
likelihood
n :I—(1/2)<2n+1)

L(uly) « [uz + ¥ d?f
i=1

of u, given all the y’s, which doubles the degrees of
freedom. The determinant adjustment in (5), however,
still leads to (9), under a suggestion for the linear
model with unknown variance which is described
below.

We now discuss the choice of prior 7(8). No prior
measure, whether proper or improper represents prior
ignorance, i.e., there is no such person as an ignorant
Bayesian! For example, an improper uniform distri-
bution on p-dimensional real space provides informa-
tion that # is equally likely to lie in either of two
regions, if these possess the same hypervolume. There-
fore (1) and any “predictive likelihood” based upon
(1) must depend upon a specification of prior infor-

-mation. Proponents of predictive likelihood would ap-

pear to be misleading themselves if they arrive at a
specification based on (5), which is apparently free
from prior assumptions about 6.

The practical problem remains as to how an applied
statistician could construct an appropriate prior for
0. If there is definite prior information then one may
wish to think in terms of interdependencies between
the 8’s. One of the few available ways of reasonably
doing this is to firstly transform the parameters in
such a manner that a multivariate normal distribution
seems reasonable for the new parameters (e.g., Leon-
ard, 1972, 1973, 1975). The multivariate normal co-
variance matrix then provides a flexible mode for
representing interrelationships between the parame-
ters. Natural transformations such as log or logit, may
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often be used and frequently coincide with transfor-
mations which will improve the multivariate normal-
ity of the postposterior distribution (4), and hence the
approximation in (5). -

As the multivariate normal prior variances ap-
proach infinity, the precision of the prior information
decreases, and our specification provides a uniform
distribution over R” for the transformed parameters.
Therefore, if a uniform distribution is to be employed,
we recommend first transforming the 6’s to satisfy our
notions of multivariate normality. This leads to the
approximation in (5) but with p(z, 8 | y) in (5) and (7)
replaced by

(10) p(z,y|0) =p(z|0)p(y|0),

thus satisfying Butler’s concept of a “predictive like-
lihood.” The dependence on the parametrization,
which seems to be of immense concern to Professor
Butler, can be greatly reduced by seeking a parame-
trization which ensures good multivariate normality.

As an example, suppose that y and z possess inde-
pendent multivariate normal distributions with re-
spective mean vectors X; 8 and X, 8, zero covariances,
and all variances equal to 72, where X; and X, are
specified n X ¢ and m X g matrices. Then, under a
uniform prior for the normalizing transformation 6 =
(B, log 7%), Leonard’s approximation gives predictive
distributions for the z’s which correctly relate to the
t-distribution with n — ¢ degrees of freedom, and
predictive distributions for sums of squares which
correctly relate to the chi-squared distribution with
n — q degrees of freedom. None of Butler’s differing
suggestions match all these degrees of freedom pre-
cisely, and his approximations will therefore possess
inferior frequency properties in this important case.

However, if p is moderately large, it can be danger-
ous to use a uniform prior for any parametrization of
0 since this is likely to lead to vastly inferior frequency
properties for both point estimates of #’s and point
predictions of the z’s, owing to the Stein-effect (e.g.,
Ghosh, Hwang and T'sui, 1983; Morris, 1983). A more
promising approach involves an exchangeable prior
distribution. Following Leonard (1976), assume that
appropriate transformations have been performed on
the 8 vector (or the 8 vector in the above linear model
example) to ensure “prior white noise,” i.e., reasona-
bility of the prior assumption that, given u and o2, the
elements of the new 0 are independent and normally
distributed with common mean p and variance o2,
where u and o2 are independent and uniformly distrib-
uted over their ranges of possible values.

In hierarchical models of this type (see also Leonard
and Novick, 1986; Albert, 1988), the postposterior
distribution of (8, u, %) can seldom be transformed
to ensure approximate multivariate normality, owing
to tedious dependencies between ¢ and 6. It is more

accurate to condition on ¢2 first, with u integrated out
from the prior. The predictive distribution of z, given
y and ¢2, can be approximated by p*(z | y, ¢2), which
replaces p(z, 0| y) in (5) and (7) by

p*(z, 0]y, o)
o« (¢%)" WP Up(z|60)p(y | 0)

2y (6:—9)°
Xexp{——-—-————z ;:;2 )}

(11)

with 6§ denoting the average 6,.
The posterior distribution of ¢2, given y, may be
replaced by the Laplacian approximation

(12)  7*(e®|y) = |R,|7* sup 7 (8, o*|y),
[}

where

(0, o*|y)
(13 P (9. —0)?

) o (0,2)—(1/2)(p—1)p(y I o)exp{_ zz—l (012 0) }
20
and
—d%log w (0, ¢%|y)

14 . =
(14) R o -

with 6, denoting the vector maximizing (11) for fixed
o®. The unconditional predictive distribution of Z,
given y, may now be approximately computed by the
one-dimensional numerical integration

(15) p*(Z|y)=J; p*(z|y, ¢®)r*(c?|y) do

The possibility in (15) provides the main suggestion
of this comment. It is likely to lead to more stable and
reasonable predictions than using (5) with a uniform
prior. Extensions of this idea are available which
consider several exchangeable subsets of the 8 vector.

We now address the more tedious problem of ap-
proximating the marginal distribution, conditional on

'y, of a real-valued function

(16) t=g()

of u = (8, z)”. If t does not depend upon 6, then our
problem reduces to approximating the predictive dis-
tribution, given y, of this summary statistic of the
future observations. We in general refer to

(17) p(uly) =p(z,0|y) =p(z|0)x(6]y)

and the procedure due to Leonard, Hsu and Tsui
(1989) for approximating the marginal posterior den-
sity of a function of several parameters. This seems
to be more accurate in a number of special cases than
a rather tentative modification to Leonard’s (1982)
procedure suggested by Kass, Tierney and Kadane
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(1988) for our current more difficult problem. We next
develop our approximation in the current context
using the procedure of Leonard, Hsu and Tsui (1989).

Let u, denote the vector conditionally maximizing
(17), subject to g(u) = t. Then, expanding log p(u | y)
in a Taylor series about u = u, and neglecting cubic
and higher terms in the expansion yields an approxi-
mation p (u|y) to p(u|y) in a neighborhood of u =
u,. Based upon p/ (u | y), the required marginalization
can be performed without further approximation,
yielding

p*(t|y)
(18) « p(u,|y) | R, |72

x exp{2l7 R;'L}f (¢ uf, R,

where
1
(19) , = Qogply))
au u=u,
_ —3%log p(u]y)
(20) Rt - a(uuT) e,
and
(21) uf =u + R;'L,

with f (¢ | u, C) denoting the density of t = g(u) when
u possesses a multivariate normal distribution with
mean vector u and covariance matrix C.

In the above derivation, we assume that z and 6
have already been suitably transformed to permit ap-
proximate multivariate normality, conditional on y,
of the u vector. When applying (18), it is necessary to
either know f or to use a further approximation for
this important f component.

We hope that our suggestions will again help to
catalyze the literature on this interesting topic. We
would like to thank Professor Bjgrnstad for highlight-
ing the importance of predictive inference.

Rejoinder

Jan F. Bjornstad

I would like to thank the discussants for their com-
ments which have extended and illuminated the ideas
of predictive likelihood in the review. In this rejoinder,
I will expand on some of the issues raised by them,
and also take up the issue of additivity for predictive
likelihoods.

ACKNOWLEDGMENTS

The authors would like to thank Ella Mae Matsumura
and Ron Butler for helpful comments, and George
Tiao for encouraging the development of (5) at the
University of Wisconsin in 1980.

ADDITIONAL REFERENCES

ALBERT, J. H. (1988). Computational methods using a Bayesian
hierarchical generalized linear model. J. Amer. Statist. Assoc.
83 1037-1044.

GHOSH, M., HWANG, J. T. and Tsuil, K. W. (1983). Construction
of improved estimators in multiparameter estimation for dis-
crete exponential families (with discussion). Ann. Statist. 11
351-376.

Hsu, J. S. J., LEONARD, T. and Tsui, K. W. (1988). Bayesian
inference with applications to contingency table analysis. Tech-
nical Report No. 825, Univ. Wisconsin-Madison.

JOHNSON, R. A. and LADALLA, J. N. (1979). The large sample
behavior of posterior distributions which sample from multi-
parameter exponential family models, and allied results.
Sankyha Ser. B 41 196-215.

Kass, R. E., TIERNEY, L. and KADANE, J. B. (1988). The validity
of posterior expansions based on Laplace’s method. Technical
Report No. 396, Dept. Statistics, Carnegie Mellon Univ.

LADALLA, J. N. (1976). The large sample behavior of posterior
distributions when sampling from multiparameter exponential
family models, and allied results. Ph.D. dissertation. Dept.
Statistics, Univ. Wisconsin-Madison.

LEONARD, T. (1972). Bayesian methods for binomial data.
Biometrika 59 581-589.

LEONARD, T. (1973). A Bayesian method for histograms. Biometrika
60 297-308.

LEONARD, T. (1975). A Bayesian approach to the linear model with
unequal variances. Technometrics 17 95-102.

LEONARD, T. (1976). Some alternative approaches to multiparam-
eter estimation. Biometrika 63 69-76.

LEONARD, T. and Novick, M. R. (1986). Bayesian full rank mar-
ginalization for two-way contingency tables. J. Educ. Statist.
11 33-56.

LEONARD, T., Hsu, J. S. J. and Tsul, K. W. (1989). Bayesian
marginal inference. J. Amer. Statist. Assoc. 84 1051-1058.
MORRIS, C. (1983). Parametric empirical Bayes inference: Theory
and applications (with discussion). J. Amer. Statist. Assoc. 78

47-65.

RUBINSTEIN, R. Y. (1981). Simulation and the Monte Carlo Method.

Wiley, New York.

The comment of Leonard, Tsui and Hsu is con-
cerned mainly with the approximation of Bayesian
predictive distributions, and as such deals not with
the likelihood approach. A predictive likelihood is
based on the joint likelihood I, (z, 8) = f,(y, 2), not on
the Bayes posterior density f(z|y). Hence, Leonard,



