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Role of Models in Statistical Analysis

D. R. Cox

Abstract. A number of distinct roles are identified for probability models
used in the analysis of data. Examples are outlined. Some general issues
arising in the formulation of such models are discussed.
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1. INTRODUCTION

Many accounts of the theory of statistics start from
three premises: (i) that observations on response vari-
ables correspond to random variables; (ii) that there
is given a family of possible probability distributions
for these random variables, the “true” distribu-
tion being an unknown member of that family; and
(iii) that the objective of the analysis is connected
with some aspect of the unknown “true” distribution.

These are decidedly nontrivial abstractions, very
fruitful indeed for some purposes of exposition and
development, yet in a sense fairly remote from the
reality of some applications. In particular, choice of
an appropriate family of distributions may be the most
challenging phase of analysis.

Possibly partly as a reaction to the overformaliza-
tion involved in many accounts of statistical analysis,
we have seen recently increased emphasis on methods
of analysis in which probability considerations play
no explicit role. An implied theme of the present paper
is that, important and interesting though informal
methods are, the confinement of probability models
to so-called confirmatory analysis and the separation
of “exploratory data analysis” from “statistics” are
counter-productive. Indeed the exploration of ground
common to the two viewpoints is particularly fruitful.
What graphical methods are appropriate for associa-
tion with a particular formal technique? What prob-
abilistic considerations go reasonably with a particular
technique suggested initially on nonprobabilistic
grounds? .

The primary object of the paper is to review a
number of rather different roles for probability
models. Any thinking about a complex phenomenon
is likely to involve elements of simplification and
idealization and hence to rely on a model of some sort,
often a qualitative one. To discuss the formation and
use of such models would take us too far afield,
and in this paper the word ‘model is restricted to
probability models.
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Probability is used in two distinct, although inter-
related, ways in statistics, phenomenologically to de-
scribe haphazard variability arising in the real world
and epistemologically to represent uncertainty of
knowledge. Discussions of statistical inference focus
on the latter, whereas here the emphasis is firmly on
the former.

We shall distinguish three broad roles for models,
each with some variants. These roles can respectively
be described concisely as substantive, empirical and
indirect. While they may occur in combination in a
specific application, it may clarify thinking to bear in
mind the rather different emphases involved.

2. SUBSTANTIVE MODELS

In many ways, the most appealing models are those
that connect directly with subject-matter considera-
tions. There are several subdivisions of such models.

2.1 Directly Substantive

These models aim to explain what is observed in
terms of processes (mechanisms), usually via quan-
tities that are not directly observed and some theoret-
ical notions as to how the system under study “works.”
A rather simple example concerns the one-hit or two-
hit theories of binary response in which at “dose” x
the probability of a positive response (success) is
either 1 — e or 1 — (px + 1)e**. The background

‘theory is that there is a Poisson process of unknown

rate p and a period, x, of exposure such that a success
is observed if and only if there is at least one point
realized in the Poisson process in the first form, and
at least two points in the second version. Such models
have been suggested in connection with studies of
perception and of cancer incidence.

A less simple example concerns stochastic models
for, say, hourly rainfall in which (Rodriguez-Iturbe,
Cox and Isham, 1988) there is a Poisson cluster proc-
ess of rain cells, each cell being a random burst of rain
of constant but random depth and random duration,
the total rainfall intensity at one time being the sum
of contributions from cells active at that time. This
leads in the simplest formulation to a five-parameter
scheme. The parameters represent storm arrival rate,
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mean number of cells per storm, mean interval be-
tween cells within a storm, mean cell duration and
mean cell depth. Such models, while highly idealized,
offer a way of summarizing a long time series of
complex structure via a relatively small number of
parameters of physical significance. Note that the
notion of cells is widely used in physical descriptive
studies of precipitation.

A third example is that empirical fitting of numbers
of cases in an epidemic (e.g., AIDS) may well most
fruitfully be done via a representation derived from
the transmission models of epidemic theory, even
though the process of infection, incubation, etc. is not
directly observable.

An example of a substantive model rather closer to
some of the more empirical models to be discussed in
the next section is provided by the diagonal models
used particularly in some sociological contexts (Sobel,
1981, 1985). Consider a two-way square arrangement
in which the labelings of rows and columns are essen-
tially the same, so that the diagonal cells have partic-
ular meaning. If u;; is the expected response in cell
(z, ), it may be reasonable on subject matter grounds
to suppose that

wij = pui + (1 — p)uy;

the notion is that “individuals” in cells (i, i) and
(j,7) represent “pure” i and j individuals, respectively,
whereas individuals in cells (i, j) have moved from i
toj and represent some intermediate category. In more
complicated versions, p depends on further features
such as additional explanatory variables.

2.2 Substantive Hypothesis of Dependence and
Independence

A second rather weaker probability is that, while
there is no detailed knowledge of processes or mech-
anisms underlying the generation of the data, there
are hypotheses, arising from.a subject-matter base,
about dependencies. Typically these might take the
form that, given certain intermediate responses and
explanatory variables, some other variables -are con-
ditionally independent. These are the research hy-
potheses of Wermuth and Lauritzen (1989). A fairly
typical example is as follows: for a particular popula-
tion of individuals, given age, weight and gender, blood
pressure is conditionally independent of certain meas-
ures of personality characteristics. Another weaker
possibility is that the hypothesis might specify the
direction of some conditional dependency. Probability
models are a valuable if not absolutely essential tool
for formulating and testing such hypotheses. Note that
to some extent the formulation in terms of hypotheses
is just a convention. One could just say that subject-
matter considerations lead to interest in the nature

and direction of any conditional dependency of the
kind mentioned.

2.3 Retrospective Discovery of Substantive Issues

In the previous discussion, it is assumed that the
subject-matter considerations on which the model is
based are available independently of the data under
analysis. Sometimes, however, the argument may go
in the other direction. If unexplained regularities are
detected by more empirical methods, especially if such
recur in independent sets of data, it may be worth
aiming for a tentative explanation via an underlying
process. For instance, suppose that a number of binary
response relations are linearized by the complemen-
tary loglog transformation. That is, if § denotes the
probability of success log(—log 6) is a linear function
of an explanatory variable, x. This relation can be
generated via a distribution of latent tolerances having
an extreme-value form. This suggests at least the
possibility that a phenomenon of the general extreme
value type underlies the systems under study.

Again, suppose that time series of a particular kind
repeatedly show irreversibility, for example slow rises
and rapid falls. Such phenomena are not generated by
stationary Gaussian processes or point-wise transfor-
mations thereof and are evidence either of nonlinear-
ity or of a linear system forced by non-Gaussian
innovations. Then it is worth considering whether one
of the stochastic models that generate such data is
useful either as a basis for data reduction or as an
elucidation of an underlying mechanism or process.
Similar remarks apply to long-range dependence
(asymptotic self-similarity) (see, for example, Cox,
1984). In these, the lag h correlation between the
means of long sections h “steps” apart takes a fixed
nonzero form regardless of the length of the section.
These are essentially fractal processes in which the
emphasis is on very long-term (low-frequency) varia-
tions rather than very short-term (high-frequency)
variations.

3. EMPIRICAL MODELS

The more common type of model in many fields of
application is not based on any very specific subject-
matter considerations but rather aims to represent in
idealized form dependencies, often “smooth” depend-
encies, thought likely to be present. The parameters
in the model capture aspects of what would be ob-
served “in the long run” in hypothetical repetitions
and hence to represent features of the system under
study free of the accidents of the particular data under
analysis.

We shall call such models empirical models: many
of the standard models of analysis of variance and of
multiple regression and its generalizations are of this
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type. It is at the same time the power and the limita-
tion of such models that they are very widely
applicable and are not based on highly specific
subject-matter considerations.

There are at least two somewhat different roles for
such models.

3.1 Estimation of Effects and Their Precision

This is probably by far the most common use of
models. The models lead to methods for estimating
unknown parameters of interest by confidence inter-
vals or some roughly equivalent inferential procedure.
The more “direct” the method of analysis the better,
in the sense that dependence on the precise details of
the model is thereby lessened. For example, if error of
a contrast is estimated by comparison of estimates
from independent replicates of some investigation, i.e.,
in analysis of variance jargon, via a contrast X repli-
cate mean square, this has a more direct appeal than
an estimate of precision derived say by explicit appeal
to some parametric distributional form. There is, of
course, a large literature on these themes. It is impor-
tant to distinguish the parts of the model that define
the aspects of subject-matter interest, the primary
aspects, and the secondary aspects that indicate effi-
cient methods of estimation and assessment of preci-
sion. The critical secondary assumptions for the study
of precision are frequently ones of independence.

Quite often the full specification of a substantive
model will call for empirical formulation of some
aspects.

3.2 Correction of Deficiencies in Data

While there is a close connection between this and
the previous use, it is worth distinguishing situations
in which probability models are used particularly to
correct for deficiencies in the data; the assumptions
made are often quite critical. Examples are correction
for attenuation in regression, when explanatory vari-
ables are measured with error, the imputation of miss-
ing values in data of relatively complex structure and
the need to adjust for unusual methods of sampling.
‘Not only do adjustments have to be made but, unless
these are minor, the resulting degradation in precision
needs to be measured.

There is, of course, an extensive literature on im-
putation in regression and survey analysis (Little and
Rubin, 1988; Rubin, 1988). A rather special example
concerns allowance for reporting lags in collecting
data on a series of point events. Thus if such events
occur in a Poisson process of rate pp(t) and each point
is subject to a reporting lag with cumulative distribu-
tion function F'x (x), the recorded process of diagnoses
based on data available at that time ¢, shows a dip in
rate near t, because of missing entries. For discussion

of statistical problems associated with this system, see
Cox and Medley (1989). For corrections involving
unusual sampling methods in industrial contexts, in
particular length-biased sampling and recurrence-
time sampling, see Cox (1968). In a much deeper and
broader sense, the whole field of stereology is con-
cerned with this issue.

4. QUASI-DETERMINISTIC MODELS OF
RANDOMIZATION THEORY

Somewhat intermediate between the models of Sec-
tions 2 and 3 lie the models of unit-treatment additiv-
ity used in the randomization theory of experimental
design. In these, the assumption is made that the
observation obtained on a particular experimental
unit depends only on the treatment applied to that
unit and is the sum of a constant characteristic of the
unit and a constant characteristic of the treatment.
The randomization full null hypothesis is that on any
unit the observation is the same regardless of the
treatment. These are deterministic statements. Prob-
ability enters only in the randomization of treatments
to experimental units and allows probability assess-
ment of the uncertainty in causal statements of the
effect of treatments. The word causal is used because,
under the assumptions indicated, the inference com-
pares the response on a unit receiving a particular
treatment with what would have been observed had a
different treatment been used, all other aspects being
unchanged. Of course whether this conforms to causal
in a direct physical sense is another matter.

Such hypotheses of unit-treatment additivity are
typically empirical in the sense that they are not based
on a specific subject-matter “theory” of an underlying
process, except perhaps insofar as the choice of a
particular function of the response variable is con-
cerned. On the other hand, they are intended as a
basis for conclusions rather deeper than the purely
descriptive, and considerably stronger than in com-
parable observational studies.

5. INDIRECT MODELS

Finally we give two situations in which probability
models are used rather indirectly either to suggest
methods of analysis which can then be assessed via
success in some specific application, as judged by a
direct practical verification of, for example, predicta-
bility or are used to study the properties of particular
techniques of analysis.

5.1 Calibration of Methods of Analysis

Some fairly widely used methods of analysis have
been suggested from largely or entirely nonprobabilis-
tic viewpoints. Examples are nonmetrical scaling, var-
1ous forms of cluster analysis, automatic interaction
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detection and classification and regression tree analy-
sis. It can throw useful light on such methods to
examine their behavior on data generated by known
probability models and used without there being any
suggestion that such models are appropriate for any
particular set of data. A simple example is the finding
by Day (1969) that a simple clustering method applied
to homogeneous samples from a ten-dimensional mul-
tivariate normal distribution usually identified a num-
ber of distinct clusters.

In this situation, data of “known” structure are used
to study “unknown” methods of analysis rather than
“known” methods being used to study data of “un-
known” structure. A similar distinction applies to the
use of much-analyzed sets of historical data to illus-
trate new techniques.

5.2 Development of Automatic Data Reduction

Here the emphasis is on the use of a model to suggest
a method of data reduction that can then in some
sense be tested directly. Image analysis provides a
number of examples. The hidden Markov models used
in speech technology (Juang, 1985; Jack and Laver,
1988) suggest methods of analysis for, say, recognition
purposes where success can be assessed directly. In
fact, dynamic time warping, i.e., nonlinear data-based
stretchings of the time scale, may be based on optim-
izing an empirical criterion or on a model in which
the time-varying spectrum shifts between a number
of forms on the basis of an unobserved discrete-state
Markov process. While in a sense such a model is
substantive, its success is to be judged via some ex-
plicit practical criterion.

A rather different aspect of the calibrative view
arises if, say, the difference between the means of two
groups of observations is calculated together with a
corresponding standard error and normal-theory p-
value. Then, without any very specific proposal of a
probability model, one may regard the p-value as
ranking possible differences in the light of the distri-
bution of differences that would be generated if the
data were randomly sampled from a common normal
distribution. This is a very weak but not vacuous

" justification of standard error and p-values.

6. DISCUSSION

We have thus distinguished three broad roles for
probabilistic models, the substantive, the empirical
and the indirect, with no suggestion that the categories
are rigidly defined. In particular, quite often parts of
the model, e.g., those representing systematic varia-
tion, are based on substantive considerations with
other parts much more empirical. The distinctions
between the different types are of most importance

when formulating models and in checking and modi-
fying such models.

The iterative nature of the passage between data
and model will not be discussed explicitly, although
its importance is beyond question. In the following,
we address briefly, almost in note form, just some of
the more detailed issues of model formulation and
parameterization.

Meaningful models. For empirical and indirect
purposes, it may be enough that a model defines the
joint distribution of the random variables concerned,
but for substantive purposes it is usually desirable
that the model can be used fairly directly to simulate
data. The essential idea is that if the investigator
cannot use the model directly to simulate artificial
data, how can “Nature” have used anything like that
method to generate real data? Thus simplified ver-
sions of simultaneous models sometimes considered
in econometrics, such as

BuY: + B2Ye + oy = Uy,
Ba1 Y, + BzzYz + ay = Uz,

where (U, U,) are independently standard normal
random variables, certainly define the joint bivariate
normal distribution of (Y;, Y,) but cannot be used for
direct simulation if 8,2, 82, # 0. Similar remarks apply
to {Y;; } defined on a lattice via conditional statements
such as that given {Y;;+1, Yis1;}, Y is normal with
mean o + B(Y;;-y + Yijs1 + Yioy; + Yiy;) and
variance o2 Of course both models can be recast in a
different form, the latter by regarding it as a cross-
section of a spatial-temporal process to be simulated,
for example by the Gibbs sampler.

Testability of models. Other aspects concern the
extent to which models are defined in a narrowly
operational sense, i.e., whether the data gathering
operation can be repeated many times under virtually
the same conditions in reality, in principle hypothet-
ically, or not at all, and the extent to which models
contain latent features that are not directly testable;
the randomization theory model of Section 4 is a
rather extreme form of the latter. Substantive models
are very likely to contain latent features, but models
for which absolutely no check is available from the
data are to be viewed with particular caution. Note,
for example, that the assumptions of unit-treatment
additivity in randomization theory can be tested as
soon as the experimental units are distinguished in
some rational fashion, e.g., via the value of a concom-
itant variable.

Because all models are idealizations, it makes sense
to test only features that have a direct or indirect
bearing on the conclusions to be drawn.

Empirical models that do not fit will normally be
replaced by models that do fit, but for substantive
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models in whose basic soundness there is considerable
confidence, it may be more fruitful to specify qualita-
tively the nature of any failure and the broad inter-
pretation to be given to the departures. Indeed one
main use of simple models may be to discover the
point at which they break down.

Choice of models in light of data. Particularly with
empirical models, it is often wise to amend the model
in the light of the data under analysis. A distinction
should be drawn between doing this so as to change
(a) only secondary features of the model in a way not
affecting the definition of the parameters of primary
interest; (b) the quantitative but not the qualitative
aspects of primary importance; and (c¢) the whole focus
of primary concern.

Thus under (b) one might decide that it is better to
regress log y on log x than y on x, whereas under (c)
the whole focus of interest may change. While (c¢) can
in some ways prove the most rewarding possibility,
obviously the dangers of overinterpretation are con-
siderable and conventional measures of uncertainty
have to be adjusted if feasible and in any case regarded
as giving lower bounds to the uncertainty involved.

Minimal modeling. Especially in empirical model-
ing, it may be wise to model explicitly only those
aspects of the data of direct concern. Thus in so-called
repeated measures designs it is often unnecessary to
model explicitly the variation “within” individuals,
but for the assessment of precision to rely on the
variation “between” individuals in suitable summary
statistics (see, for instance, Yates, 1982). Of course
this applies only when the structure of the “within”
individual variation is not of detailed intrinsic
interest.

Models in an exploratory context. In both substan-
tive and empirical contexts, the conclusions may be
so clearcut that no consideration of random variation,
or at most very perfunctory consideration, may be
adequate. Indeed, this is the case in many contexts in
physics, where a traditional approach to random var-
iation is to improve experimental technique to the
point where the random variation is of minor impor-
tance. There are, however, an increasing number of

, parts even of mainstream physics where this is not
practicable. A second type of application where prob-
abilistic considerations are sometimes claimed to be
unnecessary is in exploratory analysis of data. In many
situations, however, the classifications (confirmatory,
exploratory) and (probabilistic, descriptive) are quite
separate. Most applications are in any case somewhat
in between the confirmatory-exploratory extremes
and some notion, however approximate, of precision
seems highly desirable in the exploratory portions of
the analysis, if extremes of overinterpretation are to
be avoided. The attachment of standard errors, etc. to
the main features of an exploratory analysis, e.g., an

exploratory multiple regression, seems often enlight-
ening as indicating a minimum uncertainty.

Objectives of interpretation. Two counterargu-
ments to an emphasis on parameters are sometimes
put forward. One is that parameters are not of intrinsic
interest, but serve only to index possible probability
distributions. Another viewpoint is that the objective
of inference should be the prediction of future obser-
vations and that parameters are at most a tool toward
that end. On the first point, it does seem essential in
attempting to unravel relatively complicated problems
that individually meaningful features of the system
should be identified and interpreted, and parameters
seem a key tool in doing that. Especially in empirical
models, it is desirable that parameters (e.g., contrasts,
regression coefficients and the like) have an interpre-
tation largely independent of the secondary features
of the models used.

In particular, the precise choice of the most relevant
partial regression coefficients needs considerable care,
especially in a time series context.

As to prediction, it is surely true that this has been
underemphasized, but, at least for most of the appli-
cations with which I am familiar, analysis and under-
standing are the qualitative objectives, and these seem
best expressed via carefully chosen parameters. These
can often be reinterpreted via the properties of a large
number of hypothetical future observations, and in
this sense given a predictive character.

Randomness, determinism and chaos. There is
sometimes the question in formulating a model, es-
pecially an empirical model, as to whether particular
patterns of variation should be represented by system-
atic (nonrandom) effects or by random variables. In
some contexts it does not matter; for example in
normal theory balanced randomized block designs, it
is unimportant whether or not block effects are re-
garded as random. In other contexts, effects of some
direct interest should be represented as random vari-
ables only as a “last resort”; for example, an interac-
tion between treatment effects and intrinsic factors of
interest (e.g., “centres”) should be taken as random
only if they cannot be “explained” in some way. When
there are a large number of parameters of secondary
interest representing similar effects in an unbalanced
design, it will often be good to consider representing
them by random variables. This is partly because the
occurrence of a large number of nuisance parameters
means that unmodified maximum likelihood methods
may be inappropriate and partly because higher pre-
cision may be achieved by a representation in terms
of random variables with a well-behaved distribution.
Recovery of between-block information in unbalanced
designs is an example.

Finally, at a deeper level, there is the possibility
that superficially random variation can be relatively
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simply explained by a nonlinear chaotic process. Some
very challenging statistical problems arise in distin-
guishing empirically between a chaotic and a stochas-
tic system and in estimating the dimensionality and
structure of a chaotic system from data (for an intro-
duction, see, for example, Berge, Pomeau and Vidal,
1984, pages 150-160):

7. CONCLUSION

Successful use of statistical methods depends cru-
cially on problem formulation. Where probability
models are used, the choice of a family of possible
models is thus a key step. Distinctions between differ-
ent kinds of models have, of course, been discussed in
the past. I hope that the rather more detailed classi-
fication set out in this paper will be a help in clarifying
what to do in particular applications, although large
elements of subject-matter judgement and technical
statistical expertise are usually essential. Indeed, it is
precisely the need for this combination that makes
our subject such an interesting and demanding one.
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