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The Philosophy of Multiple Comparisons

John W. Tukey

*Abstract. This paper is based on the 1989 Miller Memorial Lecture at
Stanford University. The topic was chosen because of Rupert Miller’s
long involvement and significant contributions to multiple comparison
procedures and theory. Our emphasis will be on the major questions
that have received relatively little attention—on what one wants multi-
ple comparisons to do, on why one wants to do that, and on how one can
communicate the results. Very little attention will be given to how the
results can be calculated—after all, there are books about that (e.g.,
Miller, 1966, 1981; Hochberg and Tamhane, 1987).
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ESSENTIAL BACKGROUND
Significance

Statisticians classically asked the wrong ques-
tion—and were willing to answer with a lie, one
that was often a downright lie. They asked “Are
the effects of A and B different?”’ and they were
willing to answer “no.”

All we know about the world teaches us that the
effects of A and B are always different—in some
decimal place—for any A and B. Thus asking “Are
the effects different?”’ is foolish.

What we should be answering first is “Can we
tell the direction in which the effects of A differ
from the effects of B?”’ In other words, can we be
confident about the direction from A to B? Is it
“up,” “down” or ‘“‘uncertain”?

The third answer to this first question is that we
are “uncertain about the direction” —it is not, and
never should be, that we “accept the null hypothe-
sis.”

The follow-up question is about how much—about
what we are confident of concerning the numerical
difference

effect of A MINUS effect of B

which we shall abbreviate as A — B. If the first
question was answered ‘‘direction uncertain,” then
the larger part of the answer to the follow-up ques-
tion is how big might (A — B) be—what is the
larger of the absolute values of the two ends of the
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confidence interval for A — B. The smaller part
adds to this: “that’s true in one direction, in the
other (A — B) cannot be even that big, only so-and-
so large!”

If the first question was answered “A — B posi-
tive,” then the larger part of the answer to the
follow-up question answers, usually: “What is the
minimum size of A — B?”’. The smaller part, usu-
ally, answers: “What is the maximum size of A —
B?” (Sometimes, but only rarely, these two are
interchanged.)

If the first question was answered “A — B nega-
tive” since this is the same as “B — A positive,” we
have only to exchange the roles of A and B in what
was just said.

We have to accept explicit uncertainty—initially
about whether we are confident about direction,
ultimately about the exact value of A — B.

Words, Thoughts and Actions

What of the analyst, who may even be a statisti-
cian, who says “This is all about words—I may use
the bad words, but I do always think the proper
thoughts, and always act in the proper way!”

We must reject such a claim as quite inadequate.

Unless we learn to keep what we say, what we
think, and what we do all matching one another,
and matching a reasonable picture of the world, we
will never find our way safely through the thickets
of multiple comparisons—and we will not serve
ourselves, our friends, and our clients adequately.

Black and White—A Dangerous Dream

The worst, i.e., most dangerous, feature of
“accepting the null hypothesis” is the giving up of
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explicit uncertainty: the attempt to paint with only
the black of perfect equality and the white of
demonstrated direction of inequality. Mathematics
can sometimes be put in such black-and-white
terms, but our knowledge or belief about the exter-
nal world never can.

The black of “accept the null hypothesis” is far
too black. It treats ‘“between —101 and +1,” “be-
tween —101 and +101,” and “between —1 ard
+1” all alike, when their practical meanings are
often very, very different.

The white of demonstrated direction of inequality
is too white. On its face, it treats “between +1 and
+101,” “between +1 and +3,” and ‘“between +99
and +101” as if they were the same, when their
practical meaning is quite different.

All too often, it is misused further when an
observed difference of 50.1 is said to be highly sig-
nificant, and this latter statement is, perhaps
tacitly, interpreted as “believe all three digits of
50.1!” An observed value of 50.1 can be highly
significant because we have tied the answer down
between 20 and 80, or between 45 and 55, or
between 49.8 and 50.4—tremendously different
possibilities.

Black or white is dangerous, misleading, gener-
ally unsatisfactory. “Confident direction?” is the
first question; something like a confidence interval
—perhaps only the most relevant of that interval’s
two parts—is the badly needed answer to the fol-
low-up question.

Knowledge or Belief, How Bought?

With what coin do we buy knowledge or belief?
At least three different kinds of payment are al-
ways important: (1) The care and insight with which
the data collection, or the experiments, were
planned and performed. (2) The effort involved in
collecting enough data. (3) The formal error rate
that we are willing to accept for our conclusions.

The first two modes of payment are typically the
responsibilities of our friends or clients, though we
may be able to help with one or both. The third
mode of payment needs to be a joint responsibility
of investigator and analyst-statistician, who may
be two people, or two roles for the same person. A
clear understanding, both by the investigator and
by the readers of the reports, of what has been
spent is important—and a special responsibility of
the analyst-statistician.

A 50% confidence interval will be shorter than a
95% or 99% confidence interval. If we are willing to
spend a 50% chance of error, we can claim tighter
knowledge than if we are willing to spend only a
5% or 1% chance of error. That extra “knowledge”

—some would want to say, instead, that extra “be-
lief”’—was bought by accepting a greater error rate.

In the face of variable results (and when did we
last have an instance when they were not variable)
we can say little, if anything, without some chance
of error. We must pay some chance of error to
extract knowledge—or belief—from data. A crucial
task is to expend this chance wisely, and to see that
how it was spent, as well as how much was spent, is
clearly recognizable.

Long ago, Fisher (1926, foot of page 504) recog-
nized that truly solid knowledge did not come from
analyzing a single experiment—even when that
gave a confident direction with a very, very small
error rate, like one in a million—but rather that
solid knowledge came from a demonstrated ability
to repeat experiments, each of which showed confi-
dent direction at a reasonable error rate, like 5%.
This is unhappy for the investigator who would like
to settle things once and for all, but consistent with
the best accounts we have of the scientific method,
which emphasize repetition, preferably under var-
ied circumstances.

We do not dare work at very high error rates. We
should not try to work at very low ones. We need to
work in the range where error rates make an ap-
preciable contribution to the “fuzz” that is always
involved in our knowledge or belief. Just backing
off from a single value to an interval, though very
important, is not enough. We need to keep in mind
the uncertainties that remain in the interval —some
of them well measured by the corresponding error
rate (or diffidence, where diffidence = 100% —
confidence). :

Our uncertainties are always possible: the data
collection or experiment could have been mis-
conceived, there may have been unrecognized
incursion of other factors, and so on. Even if it were
statistically sensible to analyze the data to give
results with sharp edges, which it is not, doing this
would be dangerously likely to distract our atten-
tion from such additional uncertainties.

Empirical knowledge is always fuzzy! And theo-
retical knowledge, like all the laws of physics, as of
today’s date, is always wrong—in detail, though
possibly providing some very good approximations
indeed.

An essential of what some call “the information
revolution” is learning to live with—and made good
use of—both fuzzy facts and theories that will be
different later. As Kuhn (1970) has pointed out,
such incomplete theories are a key tool in the
conduct of science and its applications. The precise
logic of mathematics serves statistician and data
analyst in derivations—in theoretical structures
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which do help us in thinking about the world. But
how we think about the world needs to be suitably
imprecise. We dare not limit ourselves to such
formal precision.

Why Confidence Intervals?

We can all understand the importance of confi-
dent directions. Knowing which is more and which
less—or which is higher and which lower—is clearly
important. But why is interval knowledge impor-
tant?

Four reasons seem to summarize the need for
confidence intervals. In order of decreasing impor-
tance, they are: (1) the need for directions after
pricing (or other adjustment); (2) the need to judge
the compatibility of two or more studies of the same
versions; (3) the need for rough indication of pre-
cision; and (4) the need to be able to adjust
diffidence. A word about each is appropriate.

First, though we often tend to forget the fact,
knowledge is gained, not only for its own sake, but
for use. In use it has to be tempered.

It is not enough to know that 500 pounds per acre
of a fertilizer will increase the yield of some crop.
We want to go at least as far as “how much will it
cost to buy and apply that amount of fertilizer?”
and “how much will the extra yield return?”’ (We
can hope that the value of the change in the condi-
tion of the soil remaining after the crop is lifted is
also considered!)

For a given pricing scheme—a given set of prices
for fertilizer, application, harvesting and storage,
sale of crop—there will be a break-even increase in
yield (for the given fertilizer application). What we
would like to be confident about is how the increase
in yield relates to this break-even point, which
surely will vary from year to year, as prices and
wages vary.

Indeed, for whatever year is next, we will not
know crop prices in advance, and we may need to
ask about confident directions as seen from two,
three, or more possible break-even points, corre-
sponding to two, three, or even more pricing
schemes.

A confidence interval offers us answers about
confident direction assessed from any, or all,
break-even points. Nothing simpler can do this.

Many of us are familiar with deriving a confi-
dence interval from an infinite array of tests of
significance, one for each potential null hypothesis.
Fewer of us, perhaps, have thought of the use of a
confidence interval as the reverse process. This is
the most important reason for a confidence inter-
val, and developing such an interval demands as
much care as procedures to study confident direc-
tion can provide.

Second, though possibly more important than (1),
is the need to compare the results of two (or more)
studies involving (some of) the same versions, ask-
ing whether the results are compatible. Knowing
that a comparison had the same confident direction
in two studies does not ensure that the results are
compatible (as far as that comparison goes); they
may be compatible, or they may not. Knowing that
a comparison was of uncertain direction in one
study, but of confident direction in another, does
not ensure that the two studies are incompatible;
they may be compatible, or they may not. Confi-
dent direction is not enough. We need confidence
intervals.

Third, as we have already implied by contrasting
(1,101) knowledge with (99, 101) knowledge, we do
need to know at least roughly what kind of preci-
sion is involved in our knowledge or belief. It is
often hard to separate, in our minds, this need from
the first need. We tend to think of standard errors,
for instance, as being there to construct intervals.
But, if we try hard, we can distinguish the third
use, and find that, for that use, rather rough values
will ordinarily meet our needs. (This is fortunate,
for we rarely know precision other than roughly.)

Some would say this third use is more important
than the second. For those concerned with tech-
niques of statistics and data analysis, this is proba-
bly so. For those concerned with the real world, it
seems doubtful.

Fourth, there is a more technical reason. If the
95% confidence interval goes from 70 to 130, a 99%
interval will be wider, but probably not much out-
side 60 to 140, whereas a 50% interval will be
narrower, going roughly from 90 to 110. At least
roughly, a confidence interval for one error rate
tells us about confidence intervals for other error
rates.

Nothing like this works for confident direction. If
we are confident that A > B at 5% error rate, we
have no idea whether the same inequality holds for
a 1% error rate or not. If we are uncertain of the
direction of A — B at 5% error rate, we have no
idea whether we would be confident of the direction
at 50% error rate or not.

It should now be clear (a) that confidence inter-
vals are irreplaceable and (b) why they are needed.

Confident Conclusions versus Interesting Hints

We have stressed the fuzzy character of our
knowledge and the roles of confident direction and
confidence intervals. We have emphasized the vari-
ety of “direction uncertain”: how (—101,1), (-1,1),
and (-100, 101) differ greatly, even if they are all
for the same error rate. Clearly, then, it would be a
mistake to say nothing more about all the compar-
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isons for which, at our chosen error rate, we have to
say “direction uncertain.”

Some deserve nothing more, others need “al-
though imprecisely measured” or ‘“even though
quite precisely measured,” and still others deserve
recognition as hints. Thus (-1, 101), for instance,
is likely to deserve something like ‘“‘direction un-
certain, but plausibly positive.”

We have not thought enough about hints, either
informally or formally. Catherine Marsh and I are
trying, from time to time, to make progress here.
Never taking any notice at all of hints, however, is
clearly very nearly the worst thing we could do.

SIMPLE MULTIPLE COMPARISONS
The Challenge

A man or woman who sits and deals out a deck of
cards repeatedly will eventually get a very unusual
set of hands. A report of unusualness would be
taken quite differently if we knew it was the only
deal ever made, or one of a thousand deals, or one
of a million deals, etc.

Someone who raises 1415 strains of some variety
of corn and measures the yield or each can make
slightly more than a million comparisons of the
yield of one strain with that another. Surely the
largest of these will tend to be larger than the
largest comparison found when only 46 strains were
measured, so that only a few more than one thou-
sand comparisons could be made.

We clearly need to think, and think hard, about
how to handle such questions of multiplicity. And
we cannot expect unique answers. For what we
think has to depend on how the results are accessed
or analyzed.

At one extreme, the 1415 results may be just
stored away, available, like birth certificates, for a
small fee. If only an occasional pair of gamblers
pays the fee, so they can settle a bet on which of
two strains yielded higher, the essential multiplic-
ity will be somewhere between “one” (if we think
of one pair of purchasers at a time) and the number
of purchasing pairs—surely far less than a million.

At the other extreme, where an analyst puts the
1415 results in his or her PC and uses lots of data
analysis software, we can be sure that the most
unusual of the million comparisons will be found
and, if at all unusual, reported upon. Explora-
tion—which some might term “data dredging”—is
quite different from ‘“exogenous selection of a few
comparisons.” Both have their place. We need to be
prepared to deal with either.

One of the easy ways to deal with either is to be
careful about the definition of error rate. As a rate,
an error rate has a numerator (a number of

“errors”) and a denominator (a number of “trials”).
For one exogenously selected comparison:

“error” = getting that particular comparison
(I) wrong |
“trial” = repeating data collection for those
two treatments,

while for exploration of the million comparisons,
followed by emphasis on the largest of all (done
properly, good science—in fact essential to good
science), either

“error” = getting one or more of the million
(F) comparisons wrong

“trial” = repetition of data collection for all
1415 “treatments”

or
. ‘“error” = count one for each comparison
( B) wrong
“trial” = repetition of data collection for all
1415 treatments.

If we apply a conventional procedure, with a
single-application error rate of 5%, we will obtain
different error rates for the 3 definitions, namely

(I) errorrate = 5%
(F) error rate = 99.9%
(B) error rate = 5,000,000%
(an average of 50,000 errors/trial).

If either of (F) or (B) is appfopriate, we must do
something. We could go in either of two ways:

e reduce the individual (I) error rate to make the
family-wise (F) error rate or the Bonferroni (B)
—or per family—error rate tolerable,

e compare the total number of unusual compar-
isons found with the 50,000 expected by pure
chance.

In the present—very extreme—case, we may rightly
wince at working to extreme at an individual error
rate as 0.000005%. Is there any hope that our
conventional statistical procedures will provide
useful confidence intervals (or tests of significance)
corresponding to such extreme error rates? Who
knows? But, if we were to use simple robust statis-
tical procedures, such as the biweight-based analog
of Student’s ¢, the results of Kafadar (1982) indi-
cate that we could do all right down to error rates
at least as small as 0.001%.

One-stage experimentation or data collection with
fourteen-hundred-odd candidate treatments may
well be silly; there may be no substitute for picking
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out the 50 or 100 apparently most extreme candi-
dates and repeating an independent data collection
for this smaller collection. But for more reasonable
numbers of candidate treatments, we can do quite
well with making the individual error rates appro-
priately small.

The other approach, sometimes called ‘““the higher
criticism,” is insufficiently rewarding. Suppose we
find ourselves individually confident about the di-
rections of 60,000 of the comparisons. Pure chance
would give 50,000 + (something like 218) of these.
Clearly there is a significant excess; indeed, rather
more than 15% of the 60,000 observed did not arise
by chance. But which 15%? Individual knowledge,
which is what we are likely to need, is prominent
by its absence.

Thus, in the situation considered, we need to
follow the first approach, making more conserva-
tive statements about each of the comparisons.

So far we would appear to have acted as if the
different comparisons were wuncorrelated, even
stochastically independent. For the first approach,
this is only an appearance. Error rates arise by
adding up things, and the average value of a sum is
the sum of the average values, no matter how
things are correlated.

When we allow for correlation in the second ap-
proach, the correct number in “+ something like
218” will differ from 218 by a small or moderate
factor. Once we calculate this factor, it is trivial to
revise the example.

Less Extreme Cases

Comparisons build multiplicity fast. Even though
we do not expect the million comparisons of our
somewhat fanciful example, it is easy to get enough
comparisons to matter, as Table 1 shows.

Directions or Intervals

Again, we must return to the choice between
directions and intervals. Which do we need?

For pure intellectual curiousity—and perhaps for
writing treatises for the intellectually curious—it
may be that confident directions (up, uncertain, or
down) can suffice. It would be good to understand
why many psychologists, for example, seem to be
content with only confident directions. Is this a
desire for abstract knowledge? Or a sign of inabil-
ity to make use of more quantitative results? Or an
unwillingness to price (or a lack of experience in
pricing) comparisons as a basis for real-world ac-
tions? Or a belief that qualitative knowledge is all
that psychologists can hope for? Or what?

We need to understand the lure of confident-
direction multiple comparisons; and we must be

TaBLE 1
Multiplicity for simple comparisons

Number Number
of candidates  of comparisons  Corresponding change®
4 6 5% — 1%
5 10 5% — 0.5%
Tor8 21 or 28 5% — 0.2%
10or11 45 or 55 5% — 0.1%
15 105 5% — 0.05%
23 253 5% — 0.02%
32 496 5% — 0.01%
45 990 5% — 0.005%

“From simultaneous error rate to approximate corresponding
individual error rate.

prepared, in the interim, to see an industry contin-
uing to develop such procedures (an industry to
which I have contributed).

For the four abilities discussed above—direction
after pricing, compatibility of parallel studies,
rough indication of precision, adjustment of error
rates—confidence-interval multiple comparisons
seem essential, if the results of the analysis are
intended to guide practical actions.

Split-Multiplicity

In many situations we could look at any or all of
many things, and would if the amount of available
data were not severely restricted. One of these is
clinical trials—of drugs or therapies—where both
ethical and financial considerations limit the size of
the trials. In such situations, it is often essential to
focus sharply on only one or two primary questions,
questions that deserve analysis in terms of confi-
dent directions (and which often may as well be
analyzed in terms of confidence intervals). We can
then spend all (if there is one question) or half (if
there are two) of our permissible error rate, often
5% overall, on the single primary question, or on
the two primary questions.

Once we have spent this error rate, it is gone.
And what we say about the remaining questions
has to have many of the properties of hints, even if
we work at, say, an individual error rate of 5%.
Keeping the different strength with which we be-
lieve primary and auxiliary answers—especially
when these answers appear to use the same statis-
tics (e.g., Student’s ¢) in the same way—is a very
serious and important challenge.

The message has to be that it can be wise and
necessary to focus on a very few prespecified ques-
tions, prespecified before data collection, whenever
we cannot enjoy the luxury of enough data to work
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with either familywise (F) or Bonferroni (B) error
rates.

The Extremes

We can thus specify a small number of relatively
extreme situations for which we need to be pre-
pared. :

(1) The data bank, exogenously used, where only
a few of the many values will ever be looked
at, and the relevant multiplicity is the few
that are looked at.

(2) The clinical trial, focused, but not exclusively,
where a very few prespecified comparisons
will be allowed to eat up the available error
rate, and the remaining comparisons have
the logical status of hints, no matter what
statistical techniques may be used to study
them.

(3) The full exploration, where we may, for in-
stance, look at all simple comparisons,
shrinking our per comparison error rate
enough to keep our simultaneous error rate,
whether (F) or (B), at the desired value.

The Studentized Range

If we desire to be ready to assess direction after
any possible pricing scheme has been applied, then
exchangeability is a reasonable approach. This is
so because, looking at all possible pricings, for
whatever set of 2, 2,,..., 2, you have in mind,
perhaps as a standard, there will be prices ¢, such
that the observed y,, referred to the prices, give

21=)01—¢
25 =Yy — Cg

2pn=¥n —Cp

and the same will be true for any permutation of
the 2’s. Thus, for all possible uses of direction after
pricing, one pattern of candidate values is like any
other pattern. Until we know the prices, we do not
know which pairs of candidates are close together,
and which are far apart. .

If #,%5,...,n, are the longrun values that
¥Y1> Y25 - -, ¥, are estimating, the largest “error’ of
a comparison is

ntla}xl(yz -n) = (yj - ﬂj)l
= m?x(yi - ) - m}n(yj = ;)
= range of the (.yj - ).

If we can have a bound for this range, say of the
form range < gs, where q is a tabulated critical

value of the Studentized range and s is an appro-
priate estimate of error, we can express this bound
range < gs in the form

(vi-y)—as=sn—n=<(y-y)+as,

which holds simultaneously for every pair (i, j), for
every one of the n(n — 1)/2 comparisons.

Thus what is probably the most natural way of
setting confidence intervals for all (simple) compar-
isons leads to the use of the Studentized range.

At the other extreme, we would like to ask
whether we believe that any comparison has been
shown to differ from zero. This means, probably,
asking whether the comparison that seems the
largest—the difference between the lowest ob-
served y and the highest observed y—has been
shown not to be zero. (This is essentially a question
about direction with all prices at zero!)

Again, the simplest answer, and probably the
best one, uses the Studentized range. Thus the
innocent may be pardoned for thinking that, if the
two extreme situations shout “Studentized range,
huzzah!” this approach ought to serve as well for
all intermediate cases. But this does not seem to be
the case.

Just why this is so is not yet crystal clear to me.
It may well be that “any and all pricing systems”
for which the confidence intervals work is so differ-
ent from “all prices zero” that almost nothing lies
in between.

As the discussion of the close of the paper indi-
cates, we should think of the Studentized range as
an example of a technique, rather than as some-
thing inevitable.

The Confident-Directions Industry

We have admitted that we must anticipate such
an industry (a cottage industry?) to continue pro-
ducing new confident-directions procedures. We
need to ask: How are the various confident-direc-
tions products differentiated? Why is there a place

" for more than one?

Essentially the fit into different stages in the
fineness of resolution of measurement in a field. At
an early stage, we are happy to find even one pair
of treatments whose results differ in a definite
direction! Later, we expect to find several pairs,
and we want to increase, at least somewhat, the
numbers that we find. Eventually, we want to find
all the pairs different and want to focus our effort
on separating the most difficult pairs. For different
stages along this path we can use different confi-
dent-directions procedures.

Thus it seems reasonable to use: (1) the studen-
tized range (or a Studentized maximum absolute
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deviate) near the beginning: (2) Roy Welsch’s (1977)
gap-and-stretch techniques toward the middle;
and (3) such procedures as those of Peritz (1970),
Ramsay (1981), and even the more recent addition
by Braun and Tukey (1983), at a quite late stage.

Other Contrasts

Very early in multiple-comparisons history,
Scheffé (1953) pointed out that using F instead of
the Studentized range would have confidence inter-
vals for every contrast (for every Y c;y; with Xc; =
0) with the property that

o for every contrast the simultaneous interval as
the same multiple of the individual interval.

A decorative property, which some found morally
appropriate or even ethically required.

However, (a) doing this widened the confidence
intervals for simple comparisons; (b) it was often
hard to find contrasts—other than comparisons—in
which there was much interest; (c) most of those
found were comparisons of subgroup means, for
which the s% for simple comparisons was usually
NOT an appropriate error term; and (d) limits on
all simple comparisons, when the Studentized range
was used, rather than F, implied, indirectly, limits
on all contrasts (weaker for general contrasts than
those coming from F).

As a result, the F-approach has been quietly laid
to rest, leaving other contrasts to the weaker indi-
rect consequences of the Studentized range. Today,
we might let the pendulum swing back very
slightly, and qualify the relegation to (d) by “un-
less a specific contrast—or each of very few specific
contrasts—is either prespecified or exogenously
identified, when it can be treated on a par with the
simple comparisons.”

GRAPHICS FOR THE SIMPLE CASE

Determinations: Single Arrows and Extensions

It seems natural to show a single confidence
interval with either a double-ended arrow or an
aperture, either by the presence of a short black
mark or by the absence of a middle section of a long
black mark. If we want to show 2 distinct confi-
dence intervals, ordinarily one inside the other, we
can combine the double-ended arrow for the shorter
interval with extensions of some sort to delineate
the longer interval.

The simplest settings in which to illustrate this
involve multiple determinations, where each result
is compared with an external or fitted reference,
rather than multiple comparisons, where results

exogenous lin;? .

confidence
interval
based
upon
measured
amount

individual C# } simultaneous

95% confidence intervals

v »>
nominal amount

Fic. 1. Hypothetical calibration data (individual and simulta-
neous confidence intervals).

are compared in pairs. Figure 1 shows a hypotheti-
cal example, where 25 confidence intervals
(individual and simultaneous) are compared with
a fitted line.

In this example 24 of the 25 individual confi-
dence intervals, each shown by a pair of arrow-
heads and the vertical line segment joining them,
cover the line (if they were 95% intervais and the
line were perfect, we would expect an average of
23.75 coverages—95% of 25). All the simultaneous
intervals, each shown by extended line segments,
cover the line (if they were 95% simultaneous inter-
vals, this ought to happen an average of 19 times in
20 complete repetitions, each with 25 simultaneous
confidence intervals).

If we work with intervals shown by apertures, as
openings between long bars (or segments of bars),
we can easily show more kinds of confidence inter-
vals in one picture.

Using apertures is a particularly truthful ap-
proach, because the emphasis on bars (or termini of
bars) stresses the potential values that have been
ruled out, those that we know most about, because
we are ruling them out! (Most of the values in the
confidence interval are incorrect, but we preserve
them all, because we do not know which one is
correct! Thus the in-interval values are always an
unknown mixture of “yes” and “no.”
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) ’ & —— — — 95% simultancous
) « —=— - - 50% simultaneous
& — - - - S%simultaneous
& — — - = 5% simultancous
& — —- 50% simultaneous
€ — — = 95% simultaneous

Fic. 2. Simultaneous (confidence) aperture plots at three levels
(alternative diaglypt).

Multilevel Simultaneous

If we take simultaneous confidence intervals very
seriously, we will find use for more than one choice
of simultaneous error rate. Having 5% error rate,
as in 95% simultaneous intervals, need not be
enough.

We would also like to know when the fit is too
good, as when all 5% simultaneous intervals (with
a 95% simultaneous error rate) cover the reference.

And there can be interest in whether the fit is
“worse than average” or “better than average,” so
that 50% simultaneous intervals can be helpful.

Figure 2 shows what a piece of such a
95% /50% /5% simultaneous display might look like.

Comparisons: Notches; Underlaps versus Overlaps

When we come to comparisons, we need to pause
and take stock. If we are to compare n candidates,

there will be n(n —1)/2 = (’2') comparisons. No
one wants to look at a picture with that many
things in it. How can we boil things down better?
If the intervals have a common length, we can
assign half this length to each candidate, in such a
way that the whole length is formed by combining
each of the two candidates’ halves. This calls for
attaching + v2 SE (where SE is a standard error
for individual candidates’ results) to the observed
value for each candidate and thinking of differ-
ences corresponding to all four combinations of +
for one with + for the other. The two extreme of
the four differences, gotten by combining one +
with one —, will then provide the ends of a confi-
dence interval, located at +2v2SE = +2 (SE of
difference) from the observed difference. This will
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Fi16. 8. The fundamentals of the notch approach.

be close to a 95% interval, and we can adjust the
factor of 2 to whatever we need.

In Figure 3, the + V2 SE intervals are shown as
smooth hollow notches. The exhibit illustrates the
construction of the three confidence intervals.

If our concern is only for confident direction, then
everything is quite simple. (1) If two notches over-
lap, then we are not confident about the direction
from the value for the first candidate to the value
for the second. (2) If the two notches do not overlap
—if they underlap—we are confident about the
direction from one candidate’s value to the other.

Supplementary Comparison with a Scale

It is easy to verify that the notches we want for
comparisons are only 0.7071 as long as the inter-
vals we would want for determinations. (The
looseness of a comparison corresponds to twice such
a length, hence to 1.4142 times that for a determi-
nation, as it should.)

If we want to also use our notches as determina-
tions, comparing individual observed results with
numerical values, then we need to give those nu-
merical values some looseness of its own. How
much? Clearly

+2(1.0000 — .7071)SE = + .586SE.

(We leave designing the picture as a challenge.)
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Fic. 4. Semigraphical display of directional information.

Semigraphical n? Displays (for not too large n)

Suppose, again, that we have n candidates to
compare. Can we show the same sort of information
more explicitly? What would be a good format?
Figure 4 shows a rotated two-way table, one candi-
date versus the other, for seven candidates, where
each cell contains

(@) “>> " if we are strongly confident that first

> second,
(b) “> ” if we are confident that first > second,
(c) “ ” if we are not confident about direction,
(d) “= " if the two candidates are the same,
(e) “< ” if we are confident that first < second,
and
(f) “< < ” if we are strongly confident that first
< second.

Clearly such a picture does quite well in expressing
directional information.

Figure 5 uses another form of the 45° approach
to show confidence intervals for all differences of
pairs of 5 candidates, using size and boldness of
numbers to (a) stress the inner ends of the interval
and (b) give a “blackness only” display of direc-
tional information.

More Complex Schemes

More complex schemes, some easy to improve,
are in use in some subject-matter areas, but dis-
cussing them would take us too far from our main
threads: (a) that simple graphic displays of multi-
ple comparison results are not too hard to find and
use: and (b) that looking frequently at such dis-

Fic. 5. Semigraphical display of confidence intervals for differ-
ences (comparisons) stressing inner ends.

plays is likely to improve our insight into—and the
general usefulness of —multiple-comparison proce-
dures.

ANALYSIS OF VARIANCE, POSSIBLY
COMPLEX

Alternative Purposes

Analysis of variance (we will confine ourselves
here to data in a balanced factorial pattern) began
as an implicit breakdown of the data, as reflected
explicitly by only mean squares, one for each
“source of variation” considered. Computation was
expensive, and incomplete breakdowns (e.g., leav-
ing a variety of higher-order interactions in the
“error’’) were frequent.

Today computation is cheap, and a complete
breakdown—into common, main effects, two-factor
interactions, three-factor interactions, and so on—is
easily affordable. To each possible mean square,
then, will correspond a table of values. If we make
enough copies of such a table to cover, when placed
side-by-side, the initial data pattern, we obtain what
is conveniently called an overlay. If we think of
first laying these overlays on top of one another,
and then adding up the entries that lie above one
another, we regain the original data. Thus the
overlays define a value-splitting of the original data.
Ease of computation has made it feasible to en-
hance the mean squares with detailed breakdowns
that are likely to be much more informative. Even
25 years ago, of course, it was common to criticize
papers that claimed significance for the main ef-
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fects of some factor without quoting the means for
the different versions of the factor in question. (A
quantitative-valued factor has levels, but it is mis-
leading to use “levels” for such things as sex,
variety, or operator. So we use version as the gen-
eral term for the {‘value” of a factor.)

Initially, one breakdown (often incomplete) was
made implicitly, and summarized by mean squares.
Complete breakdowns are now easy, exposited by
tables and still summarized by mean squares. A
modern approach, which we shall mention only
generally, involves recombining overlays where, for
instance, a main-effect table seems to consist mainly
of summarized interactions. Such combinations
would be regarded as forced when the analysis is
essentially exploratory, and only the recombined
tables would be discussed.

Recombination also arises at the opposite ex-
treme. If, for instance, differences of main effects
for some factor are clear as to direction, our next
step could be to ask whether this is also the case
conditional on some version of another factor. The
relevant table of values induces recombining, for a
further analysis only, the main effects of the first
factor with the interactions of the two factors.

Structure

Among uses the analysis of variance, different
applications vary widely, some extremes being:

o Prespecified comparisons, which call for more
or less complete splitting of each data value
into parts, one part for each line in the pre-
scribed analysis (the resulting subtables are
conveniently called overlays).

o Full exploration, which calls for, first, a very
complete value-splitting, followed by a selec-
tive recombination (guided, not by apparent
significance, but by whether a sufficiently large
fraction of the overlay in question seems to be
noise).

Whatever approach may be appropriate in a partic-
~ular situation, the character of the (intermediate)
results is the same:

e Some one-way tables, and a standard error
appropriate for comparisons.

o Usually, one or more two-way tables, and stan-
dard errors appropriate for comparisons within
them (within rows, within columns, possibly
crosswise). .

o Often, one or more three-way tables, with ap-
propriate standard errors.

e Sometimes, one or more four- or more-way ta-
bles, etc.

The one-way case is simple multiple comparisons,
as discussed above. The two-way case will be dis-
cussed next, leaving the three- and more-way cases
for other times and places.

Each one-way table started as a table of sum-
maries, each entry summarizing all the values
where a particular factor appears in a particular
version. (Summarization classically by arithmetic
means.) Subtraction of the common term then
makes main summaries into main effects, which we
study in terms of main comparisons differences of
pairs of main effects, which we are also differences
of main summaries.

Each two-way table also started as a table of
summaries, each entry summarizing all the values
where a particular pair of factors appear in a
particular pair of versions. (Summarization also
classically by arithmetic means.) Subtraction of
both main effects, and of the common term, con-
verts two-way summarizes into two-way interac-
tions. For a specific purpose, we may need to
analyze the table of two-way summaries, or per-
chance the table of two-way interactions, or some
intermediate table, say one conditional on one of
the factors.

How to Describe What We Calculate

The description of alternative extremes just given
will not seem familiar, even to those who feel ac-
customed to work with the analysis of variance.
One reason for this goes back to the early decades
of analysis of variance, when computing was effort-
ful and expensive; when saving arithmetic was vi-
tal, when we could just barely afford to calculate
mean squares. What could one do with mean
squares? Form F-ratios and announce the results of
significance tests seemed the only answers, but
somehow people made better use of analysis of
variance than these answers—and the formaliza-
tions they spawned—could support.

Today we are still actively learning about how to
describe analysis of variance as a flexible tool for
understanding data. Although the process may still
be far from complete, we have progressed far enough
to make a very different description worthwhile.

So let us consider a two-way table {y,} of re-
sponses, and think about a decomposition

{9} = {ei;} + {ai;} + {b;} + {di;},

where c;; = ¢, a;; = a;, and b;; = b;, which splits up
the numerical value of each y;; into four parts
according to

yU = cij + aij + bU + dij’
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The raw table

Bl B2 B3 B4 B5

Al 19 5 11 14 11

Ayl 5 2 4 3 1 data
Azl-12 -7 -9 -8 -9

The row and column summaries (here means)

12 A*
3 main
-9 summaries
4 0 2 3 1 B* main summaries
The main effects
10 A
1 main
-11 effects
2 -2 0 1 -1 2 B main effects common
The classical splitting : ‘
5 -5 -1 1 0 10 . A
0 1 1 -1 -1|]| 1 _ AxB main
5 4 0 0 NI 1interaction effects
2 -2 0 1 -1 2 B main effects common
Common, A and A x B recombined
17 7 11 13 12 A@B
3 4 4 2 2 conditional effects
-14 -5 -9 -9 -8 (by column)
2 -2 0 1 -1 B main effects

Fic. 6. An illustrative two-way table, part 1. (Numbers to the left, identification to the right.) Note that recombination was not forced
on us and that we are not forgetting about the main effect of A. Rather we are recombining so that we may supplement our attention
already given to that main effect with attention to the corresponding conditional effects.
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which can also be written
yij=c+a,+b+d;,
a value-splitting often made unique by requiring
Z a;=0 Z bj=0
X 7
>.d;=0
i

zdij=0
J

for all j
for all i.

The conventional language now calls {a,} and {b;}
sets of main effects (for factors A and B, respec-
tively) and {d;;} a set of interactions (for the
interaction A X B). We shall go further, not only
thinking of the jth column of d;; as A x B;,—as the
supplement to the main effects of A that applies to
version j of factor B—but also focusing on

{c + a’i + d"J} = {cij + aij + d".l}

as made up of the conditional main effects of A.
The jth column of this last two-way table, whose
entries are

cta; +d;

for some fixed j, tell us about the behavior of the
response as a function of i, conditional upon factor
B being in version j. It is natural to label this
column as A @ B,. It follows that

A@B;=AXxB;+ A +common = A X B; + A%,

where A* = A + common is a vector of main sum-
maries.

Before turning to the multiple-comparisons ques-
tions which this sort of structure generates, a
numerical example can help to fix the ideas.

Two-Way Tables lllustrated

Figure 6 shows a 3 x 5 table of responses, the
two one-way tables and one two-way table into

which this 3 x 5 table is classically split, and the

result of recombining one of the one-way tables
with the two-way table. (We have chosen to recom-
bine A as an illustration of how conditional
comparisons relate to unconditional ones. In the
sort of situation illustrated we would begin by
looking at the main effects of A, not by eliminating
them by recombination.) Figure 7 shows each over-
lay as a two-way array, and how they add up.
Figure 8 continues this example with a variety of
vertical-column-of-3 tables and subtables, and two
versions of the same double difference or bicompari-
son (explanations below).

In Figure 8 the vertical-3’s have been equipped

with standard errors, the one for A being calculated
from the A X B interaction and those for the subta-
bles of the two-way tables being supposed—on the
basis of other evidence not shown—to be small.

One of the first questions about such a data set
will be: For which main comparisons—which
comparisons among the main effects of A—are we
confident of direction? (In our illustrative example,
where all such differences are more than four times
their standard error, we will be confident of the
direction of all three main comparisons among main
effects of A.)

Once we have dealt with the one-way tables (=
the sets of main effects), it is time to look at the
two-way table. We shall begin by looking at
columns. Four columns-of-3 are relevant to the first
column of the A X B interaction. They are interre-
lated, as shown in exhibit 8, by

A@B; common A A x B,
17 2 10 5
3| = (2| + 1|+ 0
-14 2 -11 -5

We have already dealt with the main effect of A,
and we usually don’t look at the common. We
ought to ask, “Which of the other two deserves our
attention next?”

We can answer this on grounds of simplicity and
purity. The left-hand column above—the effects of
A at B;, which we may write A @ B;— depends
only upon what was observed at B,. However,
whenever there is a real A x B interaction, the
main effects of A will depend upon which other
versions of B, beyond B,, are present. Accordingly,
the supplementary effects of A at B, will depend
upon what was observed at By, at B, ... . Clarity
and simplicity thus favor looking first and foremost
at “the conditional effects of A at B,”!

Moreover, if we ask which kind of column is of
the greater practical importance, we are led to the
same answer. It can be highly important to know
in direction (or in both direction and amount) what
changing A will do when B = B,.

Real data examples show that it can be interest-
ing to know about direction, etc., for the additional
effect attributable to A when B = B,, as compared
with when averaged over all 5 versions of B. Some-
times, it seems reasonable to expect, these
directions may prove important, and not just
interesting.

After we have looked at all the conditional effects
of A—the effects of A at B,, at B,,..., and at
B,—we may want to go further, and ask about
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The full overlays, splitting each of 15 Yy into parts

19 5 11 14 11
s 2 4 3 1 by}
-12 -7 -9 -8 -9

2 2 2 2 2 {cy}

10 10 10 10 10
1 1 1 1 1 {ay)
-11 -11 -11 -11 -11

-2 0 1 -1 &)

+ +

s -5 -1 1 0
(] 1 1 -1 -1 {d;}
-5 4 0 0 1

Fic. 7. An illustrative two-way table, part 2.

comparisons within the columns of A x B—but this
will be a secondary set of comparisons.

Preferred Questions about Two-Way Tables

Far too little attention has been given to the
nature of appropriate and detailed analysis of two-
way tables. The same sort of care (and emphasis on
interpretability) that leads to split-multiplicity in
clinical trials and comparison-focused analysis of
one-way tables leads here to focusing on two or
three kinds of comparisons and to allowing many
simple comparisons to fall to second- or third-class
status—unless rescued by prespecification or exoge-
nous identification.

Knowing the direction from “version 2 of factor
A with version 4 of factor B” to “version 3 of factor
A with version 1 of factor B” is clearly not easily to
interpret. Such a comparison does not deserve
first-class, or even second-class status, unless atten-
tion has been called to it in some exogenous way
that also provides an interpretation for results
about it.

In studying two-way tables, first-class status goes
automatically to:

® comparisons within a column (or within a row),
naturally called conditional comparisons; their
interpretations parallel those of the corre-

sponding main comparisons, with averaging
over the second factor (and other factors) re-
placed by conditioning on a version of the sec-
ond factor (and still averaging over the others),
and

® crossed comparisons (bicomparisons), which il-
lustrate interactions with the same sort of
specificity and relative simplicity that main
comparisons provide for main effects (crossed
comparisons are the same for tables of sum-
maries as for tables of interactions, or for any-
thing between),

with second-class status for:

e comparisons within a column (or within a row)
of the 2-way table of interactions—these are
naturally called supplementary comparisons,
and their interpretation is ordinarily as the
changes from main comparisons to the corre-
sponding conditional comparisons (accordingly
they are usually of less interest).

More general simple comparisons—and all other
contrasts except crossed comparisons—deserve at
best third-class status. Since any comparison,
and hence any contrast, among summaries can be
written as a linear combination of conditional
comparisons, any set of confidence intervals for
all conditional comparisons impllies, as logical con-
sequences, confidence intervals for comparisons and
all contrasts. These intervals give rather weak an-
swers, but what more do third-class questions
deserve?

»

Error Rate Issues

We could easily ask for any one of quite a
number of error rate behaviors, to apply to our
comparisons within conditional effects of A. We
need to think carefully and experiment broadly
with different choices. Here, I shall illustrate just
one choice: 5% simultaneous for all conditional ef-
fects of A combined. With 5 columns (A @ B,, A @
B,,...,A @ B;) we can afford (2 1a Bonferroni) an
error rate of 1% for each column. The easy way to
spend this is to use, in each column separately, the
1% point of the Studentized range of 3.

If we want to also include some attention to the
columns of A x B, we have even more choices. One
(of many) that maintains 5% simultaneous over all
5 + 5 columns-of-3 would use the 3/4% point of the
Studentized range of 3 for each column of A @ B
(thus spending 3/4 of 5% on the conditional effects
of A) and the 1/4% point of the Studentized range
of 3 for each of the columns of A x B (thus spend-
ing the remaining 1/4 of 5% on the supplementary
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Some vertical columns of 3: (standard errors of individual entries at foot)

common A AxB, A xB,
2 10 5 -5
2 1 0 1
2 -11 -5 4
+1.72 + small + small
Some relationships among columns of 3:
common A AXB; A @B,
2 10 5 17
2 + 1 + 0 = 3
2 -1 -5 -14

A @B, A @B,
17 5
3 2
-14 -7
+ small + small
common A AXB, A @B,
2 10 -5 7
2 + 11+ 1 = 4
2 -11 4 -5

One crossed comparison = one double difference = one bicomparison:

19 5 11 14 n
5 2 4 3 1
-12 -7 -9 -8 -9

A = main effects of A

(5)-(=5)-(=5+@) =19

(19)=(5)-(-12)+(=7) = 19, also!

(based on interaction)

(based on data)

A X B, = interaction of A and B at B, = supplementary effects of A at B,
“ (supplementary to the main effects of A)
A @ B, = effects of A at B,=(B,) conditional effects of A

Fic. 8. An illustrative two-way table, part 3.

effects of A). (Often other splits than 3/4, 1 /4
would be reasonable.)

Crossed Comparisons, Double Differences

The elementary form of an interaction is a crossed
‘comparison (a double difference, a bicomparison)
that is not zero. This may be either an appearance
that

Yij = Yib = Yaj + Yap # 0
or an underlying fact that
Mij — Mip — ﬂaj."‘ Nap # 0,
where we must have
i#a and j#b

(else the double diﬁ'ereﬁces vanish identically).

The interaction character of these # 0’s is clear

from their two equivalent forms: first

Yij = Yib ¥ Yaj — Yab
or

Nij = Nip F Ngj — Nabs
which says that the net effect of changing the 2nd
factor from j to b is different when the 1st factor is
at i than when it is at a; and second

Yij = Yaj FYib — Yab

Mij = Naj F Mib — Nab>
which says that the net effect of changing the 1st
factor from i to a is different when the 2nd factor is

at j than when it is at b.
If we want to focus on direction-type information
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about interactions, we are likely to do well with
crossed comparisons—almost certainly better than
with columns of the interaction, if for no other
reason than clarity and focus of interpretation.

The simplest—and, presumably, most reasonable
—way to proceed is to define

birange = max (¥;; — ¥iv ~ Yaj + Yas)
i, j,a,b

(which equals the maximum of the absolute value
of the crossed comparisons) and to learn about,
and use, the critical values of the Studentized
birange. Just as for simple comparisons with the
Studentized range, such a procedure will give, at a
simultaneous error rate, a confidence interval for
the underlying value of each and every bicompari-
son (crossed comparison).

Even together, conditional comparisons (for A
and for B) and crossed comparisons (for A and B) do
not directly address all contrasts, or even all com-
parisons, among the entries of A X B. But this need
not worry us any more than the fact that, in a
one-way table, the Studentized range does not di-
rectly address all the contrasts among the entries.
Here, as well, it should suffice to restrict direct
consideration, beyond conditional comparisons and
crossed comparisons, to prespecified or exogenously
selected comparisons or contrasts. And to include,
indirectly, all logical consequences of the compar-
isons that are directly considered.

Multiplicity at a Higher Level, Still

We have so far been specific—at least by pointing
toward alternatives—about multiplicity within A
x B at three, or perhaps four, levels: (a) within a
column of conditional effects; (b) among columns;
and, perhaps, (c) between all within-column
conditional comparisons and all nonconditional
comparisons; and also, perhaps, (d) between all
conditional comparisons and all crossed compar-
isons. :

We need to think also about multiplicity at a still
higher level. If we have six factors, so that there
can be ’

6 main effects (A,B,C,...),

2
(AxB,AXxC,BxC,...),

15 = (6 ) two-factor interactions

20 = (g ) three-factor interactions

(AxBxC,AxBxD,...)
and so on,
it is most unlikely that we will wish to spend 5%

error rate on each main effect (total 30%), 5% on
each two-factor interaction (total 75%), and so on.
Some more sensible budgeting of error rate is quite
likely to be needed.

Since we are discussing philosophy, and not pro-
cedure, it seems enough here to point this out.

DIVERSE EXTENSIONS

We now turn briefly to each of a selected set of
diverse extensions.

Unequal Variances

Some attention has been paid to multiple
comparisons where we have—either a priori or
internally estimated—unequal variances for the
candidates being compared. The hard questions
seem to be: When do we know enough to use differ-
ent estimated variances? And granted that we want
to control some form of simultaneous error rate, do
we want to: (a) keep individual error rates for
comparisons of different precision the same, or (b)
keep confidence intervals for comparisons of differ-
ent precision of equal length? It may be that the
preferred answer will be (b) for small or moderate
unbalance, but (a) for large unbalance.

Largest Difference, No Larger Than

To set an outer bound on the largest underlying
difference (the largest of a list of underlying com-
parisons) is essentially a fixed-price (e.g., null-price)
problem and thus, like the confident-directions-only
problem, it may have answers somewhat tighter
than those that come from a bound provided by
using the Studentized range. How much there is to
gain here does not seem to be understood. At a
different level, it does not seem clear how useful
such a technology would be.

Smallest Difference, No Less Than

Similar remarks; greater uncertainty.
The Canyon Problem

If we have y,, y,,..., ¥,, but have no estimate
of a relevant s2, what can we sensibly do about
keeping the {y;} together or separating them into
groups? Can we find a reasonable facsimile of a
canyon separating two mountains? Hoang and
Tukey (1989) have made some progress on this

problem.

DIFFERENCE FROM ‘‘THE BULK”’

Cornfield and co-workers (Halperin, Greenhouse,
Cornfield and Zalokar, 1955) introduced a multiple
comparison procedure involving the differences be-
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tween each individual result and a summary of all
results. When these differences are called devia-
tions, we are led to rely on the distribution of the
Studentized maximum absolute deviation, conve-
niently “maxad” as a shorter label. When we think
hard, and look at, messy examples, we realize that
we need to take both range-based and maxad-based
approaches seriously.

Definiteness versus Specificity

The words ‘“definiteness” and “specificity”
seem quite similar, especially when applied to test
statistics. But they can, and should, be given inter-
pretations different enough to distinguish maxad-
like and rangelike test statistics. Consider a collec-
tion of y’s, estimating »’s, which may as well have
been measured with known variance. To ask
whether we can specify, or be definite about, differ-
ences among the 5’s has two interpretations: (a)
Can we pick out a particular y; whose 7, appears to
be different (in a particular direction) from the
“bulk” of the 5’s? (Here ‘“maxad” is responsive.)
(b) Can we pick out two y’s, say y; and y,, such
that the sign of n; — 7, appears to be settled? (Here
the Studentized range is responsive.) The first of
these is more specific, because it focuses on (the
“bulk” of differences involving) a single 7;; the
second is more definite, because it focuses on one
difference, #; — 7,. In such a simple situation, we
shall distinguish “definite” and “specific”’ in this
way. In more general situations we would make
analogous distinctions.

It is good to be definite. It is also good to be
specific. In such a situation, we cannot have maxi-
mum efficiency for each while doing both.

In either case, we will usually want to list as
many individual i’s, or as many (j, k) pairs, as we
can for which we are sure about sign—sure about
direction. (Saying that there is one, without saying
which, gets us almost nowhere, especially if we
start from the well-founded position that all pairs
of #’s are different in some decimal place.) Giving a

, single illustration when we could give several is
clearly wasteful.

At this point, the number of versions takes on
great importance. If there are only 3 ¢’s, it is
probably better to know about 7, — 5, than about
n; — (bulk). Definiteness can outweigh specificity in
this case, especially since “bulk” is so unclear when
there are only three versions in all.

If there are 300 versions, many of which are
detectably different, matters are far from being the
same. Even if one tenth of the y, — (bulk) have
confident directions, this is onl(r a list with 30

entries. But if one tenth of the 330) = 44,850 dif-

ferent y; — y, have confident directions, this is a
list of 4485 comparisons, which can hardly convey
any useful information to us.

There needs to be a crossover point between the
use of the Studentized range and the use of a
maxad procedure. Perhaps six versions of i is some-

where near crossover. Fifteen = (g) (i, j) pairs

seems a lot more than six i-values, so perhaps we
should agree to use maxadlike test stiatistics for 6
or more versions and rangelike test statistics for
five or fewer. The choice of six is not very firm, but
four seems too few, and ten seems too many.

Circumstances may indeed alter cases here, but
we have not thought things through adequately; we
do not even understand what kinds of circum-
stances would matter.

Which “Bulk’’?

Once we are pledged to construct a list of those
y; — (bulk) that are of confident sign, we have to
deal with a problem of confusion. We dare not take
“bulk” to be the mean of the y’s, since situations
like

-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,
0,1,2,1000, 14,050

with a mean ¥ of 1000, would give, for any reason-
able standard error (say, between 2 and 200), 13
negative and apparently significant y; — ¥, 1 zero,
and 1 very positive. A conclusion that all but the
1000 are different from the “bulk’ would be at best
useless and almost certainly misleading.

We may dare to take the median of the y’s as the
“bulk,” though situations where 40% of the y’s are
obviously high, but none are obviously low, leave
us somewhat worried about using the 50% point of
the original collection to describe a bulk ranging
from 0% to only 60%. Using a (one-step) biweight
instead of the median may, however, be an ade-
quate bandage for such a small wound.

A more careful procedure would begin by defin-
ing subgroups by applying only the gap portion of
one of Welsch’s (1977) procedures involving gaps
and stretches and would then continued with a
maxad approach using subgroup medians within
each subgroup for the “bulk” and P-values based
on Bonferroni and the number of subgroups. Though
the overall P-value of this procedure deserves study,
it does not seem likely to be far enough above
nominal for us to worry.

Notice that, in the absence of large gaps, when
using the median is most reasonable, this proce-
dure will reduce to maxad using “y, — median.”
Further, if there are detectable gaps, its results
will combined specificity and definiteness by telling
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us, clearly and firmly, about confident directions
between whole subgroups.

An Historical Note

Besides the early, unfollowed-up remarks of
Hotelling (1931), there were at least three indepen-
dent and nearly simultaneous incursions into the
thicket of multiple comparisons procedures.
Scheffé’s explication of the F test (Scheffé 1953)
was compatible with inadequately founded ideas of
equal justice, but it proved far too wasteful for
simple comparisons, the contrasts of greatest inter-
est and importance.

The Studentized-range approach, arising from a
request (from the Baltimore Section of ASQC, prob-
ably in the fall of 1951) to the author for a talk on
“Industrial uses of the range,” focused its attention
on simple comparisons, had a simple theory, and
used available tables.

The work of Cornfield and co-workers (Halperin,
Greenhouse, Cornfield and Zalokar, 1955) initiated
the maxad approach, which now seems to be—or to
be part of—the preferred approach, once we face
more than a few (or perhaps more than several)
versions. It did not receive as much attention at the
time, for which some or all of the following may
have been important reasons:

(a) Tabulation of the critical values of the test
statistic was not easy; the original paper of-
fered bounds rather than values.

(b) Coming from statisticians at the National In-
stitutes of Health, it may have been regarded
as suited to. rather special problems, like
identifying a few apparently effective drugs
in a drug-screening program. (The selection
literature did—and still does—favor two- or
more-stage experiments, where the initial
stage will not reach significance!)

(¢c) Techniques and ideas such as those men-

tioned above—use of medians or biweights

instead of means, combination with Welsch’s

subgrouping techniques—were either not fa-
, miliar or not available.

(d) Except in special fields, experiments with
many versions were not common, and exten-
sions to two-way tables had not been dreamed
of.

() We did not stop to think hard enough (in
part, perhaps, because of the distraction of
Duncan’s proposals (e.g., 1955, 1965), which
amounted to “talking 5%’ while using more
than 5% simultaneous).

Times have changed, and we should be prepared to
change our ideas with them.
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