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Comment

Katherine Campbell

It has been a pleasure to read about the long
history of Best Linear Unbiased Prediction, and
especially about its uses in traditional statistical
areas of application such as agriculture. My own
experience with BLUP is in the context of ill-posed
inverse problems, and I would like to discuss this
paper from this point of view, where the random
effects are generated by hypothesized superpopula-
tions, in contrast with the identifiable populations
considered by Robinson.

MODEL-BASED ESTIMATION FOR ILL-POSED
INVERSE PROBLEMS

The author mentions two examples of superpopu-
lation approaches to estimation: image restoration
and geostatistics. The same ideas are also used in
model-based estimation for finite populations, func-
tion approximation and many other inference prob-
lems. These problems concern inference about a
reality that is in principle completely determined,
but whose observation is limited by the number
and/or resolution of the feasible measurements, as
well as by noise. In geophysics, x-ray imaging and
many other areas of science and engineering these
are known as inverse problems (O’Sullivan, 1986;
Tarantola, 1987). g

The unknown reality we may consider to be a
function m defined on some domain T. The data
typically consist of noisy observations on a finite
number n of functionals of m. We can write the
data vector y in terms of a transformation L map-
ping m into an n-dimensional vector:

y=Lm + e.
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In the sequel, we will assume that L is a linear
transformation, i.e., that the observed functionals
are linear. In particular, if the cardinality |T | of T
is finite, L can be represented by an n x |T|
matrix.

BLUP arises when we embed this problem in a
superpopulation model, under which m is one real-
ization (albeit the only one of interest) of a stochas-
tic process M indexed by T. This superpopulation
model has two components, corresponding to the
“fixed” and “random” effects in Robinson’s discus-
sion. The fixed effects define the mean of the super-
population, which is here assumed to lie in a finite-
dimensional subspace of functions on T. We denote
this subspace by R(F), the range of the linear
operator F that maps a p-vector b into the function

Fb =Y bf,.

where {f,,...,f,} is a basis for the subspace.

Any realization of M can then be written as a
sum F@ + u, where 8 is an unknown vector of p
fixed effects and u is a realization of a stochastic
“random effects” process with mean zero and co-
variance P. As we are interested in the realized m,
we need to estimate both the fixed and random
effects. Among estimates that are linear functions
of the data vector

(1) y=LFB + Lu + e,

the BLUP 1 = F +  is the optimal choice: under
the assumed superpopulation model 1 is unbiased
in the sense of Section 7.2 (i.e., Efa = Em) and it
minimizes the variance of any linear functional of
m - m. (To make the correspondence between
equation 1 and Robinson’s equation (1.1) explicit,
X=LF, Z=L, G=LPL”, and e is a realization
of a random n-vector with mean zero and covari-
ance R. 8 and @ are then provided by the BLUP
formulas.)
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The following examples make the preceding dis-
cussion more concrete.

1. The term ‘“‘superpopulation model” is associ-
ated with model-based inference in finite popula-
tions. A general discussion and many references
are found in Cassel, Sarndal and Wretman (1977).
T is here the finite set of population unit labels. F3
is a linear model for the mean of the outcome
variable m as a function of p auxiliary variables f;
that are known in advance for each population
unit. L is the n X |T | sampling matrix whose ith
row contains a one in the #th column if the ith
sampled unit is the ¢th population unit, and zeros
elsewhere. Commonly P is modeled as a function of
the auxiliary variables f with some parameters
that are estimated from the data. Very often it is
assumed that the outcome variable m, can be mea-
sured without error once the tth unit is sampled,
andso R = 0.

2. In image analysis, T indexes the pixels. Fre-
quently the only fixed effect is a constant, i.e.,
p=1andf; = 1. L is generally convolution with a
known or assumed point-spread function, followed
by exhaustive sampling. Although there may be
| T | observations, the effective dimension of R(L) is
much less than |T | because of the limited resolu-
tion of the point-spread function, and the problem
is ill-conditioned. Generally, in addition, R is not
zero. With large numbers of observations at their
disposal, image analysts have been quite adventur-
ous in their modeling of the random effects. A
popular choice for the probabilistic structure of u in
the recent literature is a Markov random field (see
Marroquin, Mitter and Poggio, 1987).

3. The parallels between kriging and BLUP have
been described by Cressie (1990). In geostatistical
applications, T indexes a subset of two- or three-di-
mensional Euclidean space, and the functions f; are
low-order monomials in the spatial coordinates. L
is again a sampling operator. R includes analytical
error. Sampling error, resulting from imperfect sur-
veying, small sample volumes and/or local hetero-
geneity, can be assigned to R or to a discontinuous
component of P called the ‘“nugget effect.” The
continuous part of P is estimated as a function of
the spatial coordinates.

4. The use of superpopulation models and BLUP
for approximating the output of large computer
codes as a function of many input parameters is
discussed by Sacks, Welch, Mitchell and Wynn
(1989). Their use in function approximation is illus-
trated by Blight and Ott (1975) and O’Hagan (1978).
In these applications, T indexes a collection of r-
vectors X, = (%, 1,..., X; ;). The components of x,
are r input parameters for a computer code, or the

r independent variables in the case of function
approximation. Again the functions f; are fre-
quently monomials in these r variables, and L is a
sampling operator. For computer codes R is zero,
while curve-fitting applications may or may not
include measurement error. The almost universal
choice for P is a product of the form

r
Ps,t = Hl exp(—pi| Xg i~ xt,i|0i)‘
i=

The choice of parameter values reflects assump-
tions about the continuity and differentiability of
realizations of M but is seldom the result of estima-
tion based on the data. Spline interpolation implies
another choice, namely a generalized covariance
(see below) of the form

K,,=p|x,— xt|2 log(0 |x, — xt')
(see Dubrule, 1983).

COVARIANCE MODELS

The greatest difficulty in practical application of
BLUP is the specification of G. (Specification of R
is seldom problematic.) The brief discussion of Sec-
tion 5.4 suggests some of the difficulties encoun-
tered; estimation of covariances is notoriously a
more difficult problem than estimation of means.
The covariance matrices G = LPL? required by su-
perpopulation models are nontrivial. Many areas,
notably geostatistics, have developed their own
methods, some rather ad hoc, to estimate this pa-
rameter.

A geostatistical innovation in this area arises
from the observation that M need not possess a
covariance for the BLUP to exist. Recall that in a
vector-space approach to multivariate analysis,
CovM = P means that

(2) Cov{(\,M), (v, M)} = (N, P»)
for all vectors N and ». (Eaton, 1983, treats the

- case where |T| is finite, for which functions de-

fined on T are just vectors in R!T!, which can be
supplied with an inner product (-, - ) in the usual
manner. Equation (2) in an appropriate Hilbert
space of functions serves as a rigorous definition of
CovM when |T| is infinite.) In geostatistics, the
BLUP is usually computed using a “generalized”
covariance K, for which it is sufficient that

Cov{(\, M), (v, M)} = (\, K»)

for all N and » orthogonal to R(F). This enlarges
somewhat the set of models available for this com-
ponent of the superpopulation model, and moreover
K, unlike P, can be estimated without correcting
for the unknown fixed effects 3. A popular choice
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for K, when the fixed effects include an unknown
constant, is based on the “semivariogram” function

1
v(5,2) = S E(M, - M),

In practice, the BLUP is fairly robust to most
aspects of the choice of G. However, a critical pa-
rameter is the relative size of G and R. If G is of
the form o’T, the resulting BLUP is moderately
insensitive to the choice of T' but very sensitive to
the parameter «, which controls the degree of
smoothing or “shrinkage” in @ (Section 7.2).
Cross-validation is the most common data-based
method for estimating this parameter; see O’Sulli-
van (1986) and Woodbury (1989).

SUPERPOPULATIONS AND RANDOM EFFECTS

The reader may feel that the introduction of
superpopulation models takes us quite far from the
spirit of Robinson’s paper, wherein pains have been
taken to use only the classical interpretation of
probability as a description of ontological variabil-
ity. In the paper, the superpopulation generating
the random effects is a real population (e.g., the
population of potential sires), while in the context
of ill-posed inverse problems it appears that a su-
perpopulation is introduced merely as a mechanism
for imposing additional constraints on the problem
so that a unique solution can be defined. In this
connection several observations are in order.

First of all, whether or not the superpopulation is
real does not appear to be a central philosophical
problem in the acceptance of random effect estima-
tion by the classical school. Although another real-
ization of a real superpopulation is feasible (we
could repeat the experiment with another set of
sires), BLUP estimates only that realization (the
set of four sires) that was actually represented in
the given data. In the case of inverse problems,
nature, rather than an animal breeder, provides
the realization that was observed. The sticking

* point with respect to BLUP seems to be that, de-
spite the fact that the realization is now fixed, we
continue to model its effects as random, with differ-
ent numerical results, as Robinson’s introductory
example shows, than if we were to treat them as
fixed.

What the superpopulation (real or imaginary)
point of view makes clear is that the difference
between a fixed effect and a random effect is that
one belongs to the mean of the statistical model,

while the other is a deviation from the mean, i.e.,
is described by the variance component of the sta-
tistical model. Classical statistics has no problem
with this distinction in ordinary regression models,
where (as in Section 4.3) such deviations are called
“residuals” and may be individually estimated for
diagnostic purposes, among others. No one would
propose that therefore residuals should be treated
as fixed effects! Similarly, BLUP preserves the dis-
tinction throughout the analysis, even after the
realization of the real or implied superpopulation
has been fixed and the data collected.

As used in the solution of ill-posed problems,
superpopulation models often attempt, perhaps un-
helpfully, to blur the distinction between the epis-
temological (Bayesian) and ontological (Classical)
interpretations of probability. (In spirit, and also in
form, superpopulation models thus come close to
empirical Bayes ideas, although formal empirical
Bayes techniques remain largely unexploited.) In
particular, the empirical approach to the estima-
tion of P adopted in many superpopulation applica-
tions implies that this parameter reflects ontologi-
cal variability, not subjective uncertainty. Empiri-
cal superpopulations for geostatistics are the sub-
ject of “deterministic geostatistics” (cf. Isaaks and
Srivastava, 1988).

INVERSE PROBLEMS AND STATISTICS

Although ill-posed inverse problems are certainly
inference problems, this area has been neglected by
Classical statisticians, apparently because proba-
bility in this context is generally thought to de-
scribe uncertainty rather than variability. Never-
theless, probabilistic regularization methods are
widely used, have excellent track records and can
often be given empirical interpretations. Statisti-
cians ignore these developments at the risk of be-
ing found irrelevant by many of their colleagues in
the physical sciences, where inverse problems are
ubiquitous.

In particular, linear regularization methods for
ill-posed inverse problems can be interpreted as
BLUP under appropriate superpopulation models. I
therefore welcome Robinson’s article, not only for
its wide-ranging survey of BLUP history and appli-
cations, but also for its examination of the philo-
sophical questions raised by the estimation of ran-
dom effects. Better understanding of these philo-
sophical problems may induce statisticians to
reevaluate this important class of problems as an
appropriate subject for statistical research.



