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Kolmogorov as | Remember Him

David G. Kendall

1. 'EARLY YEARS

Andrei Nikolaevitch Kolmogorov was born in
1903 during a journey from the Crimea to his
mother’s home. He was the son of parents not
formally married. His mother, Mariya Yakovlevna
Kolmogorova, died in childbirth, and her son was
adopted and brought up in the village of Tunoshna
(near to Yaroslavl on the river Volga) by her sister,
Vera Yakovlevna Kolmogorova. To her nephew
Vera Yakovlevna gave the love of a mother, and
Andrei Nikolaevitch responded with the love of a
son. It is warming to be able to record that she
lived until 1950, and so was able to witness some of
his greatest achievements.

Andrei Nikolaevitch is always known to us by
the family name of his maternal grandfather Yakov
Stepanovitch Kolmogorov, and it was in the
Kolmogorov family home at Tunoshna that he spent
his earliest years. During his childhood the family
home housed a clandestine printing press, and fam-
ily traditions record that compromising documents
were sometimes hidden under his cradle.

Of Kolmogorov’s father, Nikolai Kataev, we know
that he became a professionally trained agricultur-
alist, that he was exiled to Yaroslavl, that after
the Revolution he became a department head in
the Agriculture Ministry and that he perished on
the southern front during the offensive by Denikin
in 1919. )

Kolmogorov went to Moscow in 1920 as a student
of mathematics, but he also attended lectures in
metallurgy. In addition to this he took part in a
seminar on Russian history, where he presented
the results of his first piece of research, on “Land-
holding in Novgorod in the 15th and 16th
centuries.”

- We are told how this was received by his profes-
sor: “You have supplied one proof of your thesis,
and in mathematics this would perhaps suffice, but
we historians prefer to have ten proofs.” This anec-
dote is usually told as a joke, but to those who
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know something about the limitations of such
archives it will seem a fair comment. However, it is
also on record that an expedition to the region later
confirmed Kolmogorov’s conjecture about the way
in which the upper Pinega was settled.

A number of mathematicians stimulated
Kolmogorov’s earliest mathematical research, but
perhaps his principal teacher was Stepanov. In 1922
Kolmogorov produced a synthesis of the French and
Russian work on the descriptive theory of sets of
points, and at about the same time he was intro-
duced to Fourier series in Stepanov’s seminar. This
was when he made his first mathematical discovery
—that there is no such thing as a slowest possible
rate of convergence to zero for the Fourier cosine
coefficients of an integrable function.

Nearly 30 years ago I gave a lecture in Thilisi in
which I proved that in the transient aperiodic case
the diagonal Markov transition probabilities p{
for fixed i always form a sequence of Fourier cosine
coefficients, and I remarked that it would be inter-
esting to see what one could deduce from this fact
concerning the rate of convergence to zero as n
tends to infinity. Kolmogorov made a comment
that I did not understand at the time because of
language difficulties. It occurs to me now that he
must have thinking of an application of his own
first paper in this new context. Thus one can ask
whether the sequence of such diagonal Markov
transition probabilities also has no slowest rate of
convergence to zero. I do not know the answer to
that question.

Figure 1 shows Kolmogorov (wearing spectacles
and leaning over to his left) at the Thilisi meeting.
Also in the picture are Dynkin and Gnedenko (to

"Kolmogorov’s right) and many other well-known

probabilists. As I don’t myself appear in this photo-
graph of the audience, I like to think that it may
have been my lecture they were listening to! Re-
cently I attended a lecture by Professor Gell-Mann
in which he showed a slide of himself lecturing to
an audience that included Dirac, fast asleep in the
front row. So I hope you will notice that in this
picture Kolmogorov is still awake—if slightly
worried.

Also in 1922 Kolmogorov constructed the first
example of an integrable function whose Fourier
series diverges almost everywhere. He was only 19
years old at the time, and suddenly he had become
an international celebrity—the more so after he
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Fic. 1. Kolmogorov at the Tbilisi meeting, 1963.

sharpened that result from almost everywhere to
everywhere.

Three years later Kolmogorov wrote his first pa-
per on probability, jointly with Khinchin. It con-
tained a proof of the “three series” theorem, and
the Kolmogorov inequality involving the maxima
of partial sums of independent random variables
(whence, ultimately, the martingale inequalities
and the whole of the stochastic calculus).

Kolmogorov then became a doctoral student su-
pervised by Luzin, and he emerged from this period
of training with 18 mathematical papers to his
credit. These contained the strong law of large
numbers, the law of the iterated logarithm, some
generalizations of the operations of differentiation
and integration, and a contribution to intuitionistic
logic. I am told that his two papers on this last
topic are still regarded with awe by specialists in
the field.

Four years later he began his lifelong friendship
with Aleksandrov, marked by an expedition from
Yaroslavl by boat down the river Volga and then
on by way of Samara and the Caucasus (Figure 2)
to Lake Sevan in Armenia. On the shores of the
lake, Aleksandrov worked at his joint book on
topology with Hopf, while Kolmogorov brooded over
what was to be his 1931 paper on ‘“Markov Proc-
esses with Continuous States in Continuous Time.”
Modern diffusion theory dates from that work, al-
though it is analytical, and sample paths do not
appear in it.

What was startling about the diffusion paper at
the time of its appearance was the link with the
theory of linear partial differential equations. To-
day, of course, the theory of parabolic and elliptic
linear partial differential equations has merged

FiG. 2. Kblmogorov in the Caucasus, about 1929.

with the theory of Markov processes, with each
discipline lending strength to the other.

A little before this Kolmogorov had published his
first attempt at a foundational paper on probability
itself. This was based on measure theory and intro-
duced elementary events, random events as meas-
urable sets of elementary events and random
variables as measurable functions, but there were
no sigma-algebras, no conditional expectations and
no stochastic processes.

These omissions were however filled by
Kolmogorov’s famous monograph Grundbegriffe der
Wahrscheinlichkeitsrechnung. This was written in
the forest on the banks of a small river and first
published in the German language. In the foreword
he explained that his intention was to create an
axiomatic foundation for probability theory, and he
remarked that without Lebesgue measure and inte-
gration this task would have been hopeless. He
stressed that it is necessary first to strip away from
the Lebesgue theory all those elements that tie it
too closely to euclidean geometry, and he acknowl-
edged the role that Fréchet played in bringing that
about.

He directed the reader to three novel develop-
ments presented in the book: the treatment of
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probability distributions in infinite dimensional
spaces, the introduction of rules for integrating or
differentiating “under the expectation sign” and
the construction of a mathematical theory of condi-
tional probabilities and expectations. The first and
third of these topics are methodologically closely
allied, as was later made explicit by the Romanian
mathematician Ionescu Tulcea. Kolmogorov was
careful to stress that the vital tool in the theory of
conditioning is the generalization by Nikodym of
an earlier theorem proved in a more classical set-
ting by Radon. Another early treatment of infinite
dimensional distribution theory is to be found in
the papers of P. J. Daniell, but these seem to have
attracted little notice until much later. However
the historically important point is that the proper
development of stochastic process theory had to wait
for a general treatment of conditioning, and this
Kolmogorov was the first to give. As he said,
it would have been impossible without Nikodym’s
result.

In Kolmogorov’s book the conditioning is with
respect to a g-algebra defined in terms of a family
of conditioning random variables. Filtrations of o-
algebras necessarily occur implicitly in his treat-
ment of infinite-dimensional probability spaces, but
it does not appear that the purely information-
theoretic (i.e., nonprobabilistic) view of random
events, random variables and o-algebras had yet
surfaced. This was to happen later, and it only
became fully explicit in Doob’s book on stochastic
processes that appeared in 1953.

I like to recall a remark made by Kolmogorov
during the International Congress of Mathemati-
cians held in Amsterdam in 1954. A lunch for
probabilists (held, perhaps appropriately, in the
Zoo) had been organized by Jerzy Neyman, and a
few apprentices like Harry Reuter and myself were
invited to represent the younger generation. Dur-
ing the meal Kolmogorov leaned over and said to
Doob, “The whole of the theory of stochastic proc-
esses will from now on be based on your work.” I
enjoyed watching Doob’s pleasure, unsuccessfully
concealed by embarrassment.

Some other anecdotes concerning Kolmogorov’s
respect for other mathematicians can suitably be
related here. I have already mentioned his admira-
tion for Fréchet. Fréchet himself said to me, “How
curious it is; Lévy’s principal colleague among the
Russian probabilists is Khinchin, whereas for me it
is always Kolmogorov—indeed we once spent a va-
cation together on the Mediterranean coast.” Years
later I referred to this when talking to Kolmogorov,
and he said, “Pas exactement un collégue, plutot
mon mditre.”

On another occasion, in 1967, Hermann Dinges
and I organized a meeting at Oberwolfach on the
analytical theory of branching processes. We in-
vited Kolmogorov, and to our delight he accepted
and brought several other Soviet mathematicians
with him. At first he explained that he only wanted
to be a listener, but at the end of several highly
mathematical talks he looked rather uncomfort-
able, and eventually told us that he would after all
give a talk that would perhaps remind people of the
biological background to the subject. Inevitably he
referred to The Genetical Theory of Natural Selec-
tion—‘““das wundervolle Buch von R. A. Fisher.”
Two U.S. mathematicians whose identity I will not
reveal were sitting near to me, and at this point I
overheard one of them whisper to the other, “Well,
it can’t be the R. A. Fisher we know.”

There is another half to that story. William Feller
used to say, in his Princeton lectures, that if
Kolmogorov had not written his 1931 paper, then
the whole of stochastic diffusion theory would even-
tually have been pieced together starting with the
ideas in Fisher’s book on genetics.

The “backwards” and “forwards” partial differ-
ential equations in the 1931 paper can be thought
of as differentiated versions of what is now called
the Chapman-Kolmogorov equation encapsulating
the semigroup property characteristic of all marko-
vian situations. I once asked Sydney Chapman
about the origin of the phrase ‘“Chapman-
Kolmogorov’ and was surprised to be told that he
did not know of this terminology. Of course physi-
cists have their own names for such things. The
original Chapman reference seems to be his 1928
paper in the Royal Society’s Proceedings concerned
with the thermal diffusion of grains suspended in a
nonuniform fluid.

It was in 1931 that Kolmogorov became a Profes-
sor in Moscow University. Just before this he and
Aleksandrov made a long scientific trip through
Germany (Berlin, Goéttingen and Munich) and
France (Paris and the Mediterranean). In Paris
there were talks with Lévy, while (as already men-
tioned) a long time by the sea was spent with
Fréchet. Many years later Fréchet told me an
amusing anecdote. They stayed in a lodging house
whose proprietor had recently installed modern
plumbing—unique in that small township. Thus
the two mathematicians found themselves invited
to a splendid party for the whole community, to
celebrate—with champagne—the first flush.

In the 1930s Kolmogorov’s work began to ramify.
What we think of as classical probability theory
still occupied much of his time—this was the period
during which the stable laws, the infinitely
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divisible laws and the theories relating to these
were being studied by a now growing school of
colleagues and pupils—but it also saw Kolmogorov’s
independent development of cohomology theory, his
theory of the structure and limiting behaviour of
homogeneous countable Markov chains, his theory
of statistical reversibility, his introduction of the
characteristic functional (with a view to applica-
tions in nonlinear quantum mechanics), his
inequalities for the absolute suprema of high
derivatives (linked to the theory of quasi-analytic
functions), his work with Gel’fand on rings of con-
tinuous functions on topological spaces and much
else.

The “much else” included contributions to
queueing theory, to branching process, to the
stochastic geometry of the crystallization process
(and of the growth of vegetation), as well as (with
Piskunov and Petrovskii) the analysis of the soli-
tary waves associated with the spreading of the
range of an advantageous gene in a linear commu-
nity. This last was written within a year of a
similar but independent study by Fisher. Both pa-
pers reported that the range inhabited by the ge-
netically favored individuals would expand with an
asymptotically constant velocity, but Kolmogorov
and his two colleagues showed that in fact there is
a half-infinite interval of possible speeds with each
of which there is associated a corresponding travel-
ing wave. This is now a subject in its own right
called reaction-diffusion theory. The application to
genetics with which the subject originated has since
been joined by applications to the spreading of
epidemics, to the spreading of cultural innovations,
to the dynamics of advertising, to the spreading of
rumors and to numerous other physical, chemical
and biological problems.

Kolmogorov’s immensely influential work on the
smoothing and prediction of stochastic processes
with stationary ordinates (or increments) started as
early as 1938 with a paper written against a back-
ground provided by Khinchin and Slutskii. These
topics proved later to be of very great military
importance, and so it is scarcely surprising that
another attack on the problem was mounted by
Norbert Wiener in the United States. Such investi-
gations were eventually to be covered by a cloak of
secrecy during World War II, and only a privileged
few were allowed to know about them. No one in
the West seemed to be aware that the basic ideas
had already been openly published by Kolmogorov.

It can now be seen that the two approaches fol-
lowed respectively by Kolmogorov and Wiener com-
plemented one another in an interesting way, and
this has been analyzed by Peter Whittle in a recent
survey. Insofar as priority in such a confused situa-

tion is important, there seems to be no doubt that it
was Kolmogorov who was first in the field.

This work eventually brought about a profound
change in the relationship between probabilists and
statisticians on the one hand and physicists and
engineers on the other. No longer could statistics
be described (or dismissed) as ‘“‘the arithmetic of
the social sciences.” Indeed a whole new branch of
engineering technology had been created that now
affects almost every aspect of our lives.

On the personal side a very important event in
his life at this time was his marriage in 1942 to
Anna Dmitrievna Egorova.

From stationary stochastic processes to station-
ary stochastic fields and thence to the study of
turbulence is a natural progression. Kolmogorov’s
interest in turbulence dated from the late thirties,
and it was to lead to one of his greatest discoveries.
In 1940 he wrote a famous paper on the local
structure of turbulence, and this was later supple-
mented by what is now called his “two-thirds” law.
He remained much concerned with this subject over
a long period. In 1946 he became Head of the
Turbulence Laboratory in the Academy Institute of
Theoretical Geophysics, and in 1970-1972 he sailed
around the world with the scientific research ship,
the Dmitrii Mendeleev, as Scientific Supervisor of a
study of oceanic turbulence (Figures 3 and 4). This
allows us to think of Kolmogorov as in some sense
a colleague of Edmund Halley and James Cook.

In the immediate post-war period we find
Kolmogorov writing on mathematical geology, in-
ferential statistics and branching processes, and at
the same time contributing 88 articles to the Soviet
encyclopedia, as well as working with Gnedenko on
their book The Limit Distributions for the Sums of
Independent Random Variables, which was to be-
come another classic.

Most of Kolmogorov’s papers on probability the-
ory announced and proved major theorems that
immediately took their place as foundation stones
of the subject, but one on continuous-time Markov
chains written in 1951 was quite different. That
revealed by way of examples certain bizarre phe-
nomena (originally called “pathological’’) and asked
for their investigation. This paper appeared at
about the same time as a complementary one by
Lévy, and the two papers together have generated
a huge literature. Harry Reuter and I immediately
set about trying to understand Kolmogorov’s exam-
ples, spurred on in this task by Kai-lai Chung. This
was for us the beginning of a very enjoyable collab-
oration that is something we personally owe to
Kolmogorov.

This work led eventually to the follow-
ing unsolved problem. Let p(#) and p*(#) be two
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matrices of standard Markov transition functions,
and suppose it is known that p;(t) = pfi(t)
throughout a nondege;nerate time interval [0, T; j]
for all values of i and j. Does it then follow that the
two matrices of Markov transition functions are
identical?

Substantial progress has been made with this
question (confirming the truth of the conjecture in
a number of special cases) by Di San-min, Hou
Zhen-ting and Yu Yao-qi, and the implications of
their work have been summarized in a recent
review by Reuter, but we still do not know the
answer in general.

More recently Sofia Kalpazidou has launched a
spirited attack on the problem within the context of
“cycle theory.” Yet another possibility might be to
reformulate the problem in the language of non-
standard analysis. Of course one’s hope is that, if
the conjecture is generally true, then one might be
able to reformulate the infinitesimal generator of
the process in terms of the “germs” of the functions
p;;att=0.

2. KOLMOGOROV AND THE HILBERT
PROBLEMS
One of the most famous of Kolmogorov’s achieve-

ments outside the field of probability theory was
his proof that every continuous real function

Fic. 3. Kolmogorov on the Dmitrii Mendeleev southwest of the English Channel, 1971.

f(x4, %9,...,x,) can be expressed in the ‘“slide-

rule” form

2n+1 n

Z gj( ) ¢i,j(xi))’

Jj=1 i=1

where the functions g; and ¢, ; are continuous
and only the g-functions depend on f. However my
reference to slide-rules is not really legitimate, be-
cause for that to be appropriate we would need all
the ¢’s and g’s to be (at least piecewise) smooth
and monotone.

1

Fic. 4. Kolmogorov on the Dmitrii Mendeleev in the Atlantic,
west of Gibraltar, 1971.
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This result solved one of the famous Hilbert prob-
lems, as did also Kolmogorov’s definitive formula-
tion of probability theory in 1933. Indeed, as the
reader will see below, there is a sense in which
Kolmogorov solved the latter problem twice!

3. FROM PROBABILITY TO COMPLEXITY

From the 1950s onwards Kolmogorov’s most im-
portant scientific work revolved around the quartet
of ideas: probability, dynamics, information and
complexity. Of all his work this is perhaps the most
difficult and the most important. I will therefore
try to sketch some of its more interesting features,
without approaching anything like logical com-
pleteness. It is important to stress that these
investigations were indissolubly linked with
Kolmogorov’s profound contributions to dynamics,
so that his enquiries were at one and the same time
concerned with how we perceive our environment,
and how that environment works.

4. A NEW ENVIRONMENT FOR PROBABILITY

When one re-reads Kolmogorov’s Grundbegriffe
of 1933, with proper attention to the footnotes, one
is much struck by what he does not say. (Those
familiar with the memoirs of Mr. Sherlock Holmes
will at once recall the curious incident of the dog in
the night-time.) Kolmogorov makes many interest-
ing comments, but he seems in that book to shy
away from any detailed explanation of the relation-
ship between his axioms and empirical practice,
referring the reader to von Mises for that.

A careful study of the chronology suggests that
his questing mind was already wrestling with the
deep philosophical problems associated with the
notion of randomness, and I now believe that this
must have been one of the main topics of his long
sea-side discussions with Fréchet, especially as
the books by Hostinsky and von Mises had just
appeared. In particular Hostinksy’s revival of
Poincaré’s “‘explanation” of randomness in terms of
the discrete (if fantastically fine) partitioning
of dynamical phase space must have been a source
of much of Kolmogorov’s later thinking.

In the end these influences led to a re-formula-
tion of probability theory and information theory
that is almost a cultural revolution, turning each of
these subjects inside out, and reversing the order in
which they are normally considered.

There are philosophical (and indeed practical)
aspects of this work with which we must all become
familiar, because it is clear that the new point of
view is likely to percolate throughout the whole of
science. For a detailed presentation I have to refer
you to his own all too few written accounts and to

the very important related work by others. My own
account is merely one written by an onlooker, but
possibly such an informal review may prove to be
useful, at least to some other onlookers.

The first thing to realize is that the theory is
based on the consideration of finite objects and
finite algorithmic operations on them. Its spirit is
summed up in a quotation from Kolmogorov’s 1963
article in the Indian statistical journal Sankhya.

I have already expressed the view that the
basis for the applicability of the results of the
mathematical theory of probability to real ran-
dom phenomena must depend on some form of
the frequency concept of probability, the un-
avoidable nature of which has been established
by von Mises in a spirited manner. However,
for a long time I had the following views.

(1) The frequency concept based on the no-
tion of limiting frequency as the number of
trials increases to infinity does not contribute
anything to substantiate the applicability of
the results of probability theory to real practi-
cal problems, where we always have to deal
with a finite number of trials.

(2) The frequency concept applied to a large
but finite number of trials does not admit a
rigorous formal exposition within the frame-
work of pure mathematics.

I still maintain the first of the two theses
mentioned above. As regards the second, how-
ever, I have come to realise that the concept of
random distribution of a property in a large
finite population can have a strict formal expo-
sition. In fact, we can show that in sufficiently
large populations the distribution of the prop-
erty may be such that the frequency of its
occurrence will be almost the same for all suffi-
ciently large sub-populations, when the law of
choosing these is sufficiently simple. Such a
conception in its full development requires the
introduction of a measure of the complexity of
an algorithm. I propose to discuss this question
in another article. In the present article, how-
ever, I shall use the fact that there cannot be a
very large number of simple algorithms.

Six years later Kolmogorov wrote:

(1) The fundamental concepts of information
theory can, and maust, be substantiated with-
out recourse to probability theory, and in such
a way that the concepts of entropy and quan-
tity of information are applicable to individual
objects;

(2) the concepts of information theory thus
introduced may be the basis for a new concep-
tion of the notion “random” corresponding to
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the natural assumption that randomness is the
absence of regularity.

To these it is necessary to add another of
Kolmogorov’s remarks:

The applications of probability theory can be
put on a uniform basis. It is always a matter of
consequences of hypotheses about the impossi-
bility of reducing in one way or another the
complexity of the description of the objects in
question. Naturally, this approach to the mat-
ter does not prevent the development of proba-
bility theory as a branch of mathematics being
a special case of the general measure theory.

So now let us try to catch at least the gist of
this new approach, viewed here for the sake
of simplicity in a typical ‘“context,” that of
Lebesgue measure on the Borel subsets of the
set of all (0, 1)-sequences. (In the language of the
Grundbegriffe we could equivalently say that we
have in mind an infinite sequence of Bernoulli
trials with individual chance p = 3. In fact it is
characteristic of the new theory, just as it was of
the old, that we have to indicate what we are trying
to model by referring to a specific triple (Q, #, u)
with u(Q) = 1 in the usual way, and in what fol-
lows reference to the model will be indicated by a
mention of “the context.””)

I will rely heavily on a survey by Kolmogorov
and Uspensky that was presented by the latter at
the First World Congress of the Bernoulli Society,
and on a subsequent paper by Vovk, and I will
quote freely from each of these papers.

The first step is to introduce four sets of infinite
(0, 1)-sequences w = (w;, wy, - - .), to be called T, C,
KS and CS. The “definitions” given here are infor-
mal only, and omit essential detail far beyond our
present scope.

A given infinite (0, 1)-sequence w = (wg, w1, .. .)
will be a member of T (and then called typical) if
and only if it belongs to every set of (0, 1) sequences
that effectively has measure 1. It is a theorem of
Martin-Lof that T defined in this way effectively
has itself measure 1, so that it is the smallest such
subset. Here “effective” refers to the explicit algo-
rithmic basis of the whole approach. So when w
belongs to T then “it belongs to every reasonable
majority.”

A given sequence w will be a member of C (and
then called chaotic) if and only if its initial n-seg-
ments w" = (wg, Wy, - - -, W,_1) have a “complexity”
(or “entropy”) K(w™) that grows as n increases at
the fastest possible rate. So membership of C means
that there is no simpler way of describing the
alternation of 0’s and 1’s.

This last definition assumes that we have al-
ready defined Kolmogorov’s so-called ‘‘optimal
monotone complexity” K(6) for each fixed finite
object 6, as always relative to the context. Here
again we omit the details. The basic idea is that
the complexity is essentially the length of the short-
est possible description.

To elaborate a little, I remark that we can sup-
pose the length of the description of the finite object
(wy, wg,...,w,) to be no greater than n, and
“growing at the fastest possible rate” can be taken
to mean that K(w") never falls short of n by less
than some c(w) that is independent of n. A funda-
mental theorem guarantees that if we choose a
different optimal monotone complexity then the
result is not essentially altered.

A theorem of Levin and Schnorr now tells us
that, for a given context, the sets T and C are the
same. That is, a given infinite (0, 1)-sequence w is
either (1) typical and chaotic, or (2) nontypical and
nonchaotic.

Accordingly what we shall call R (for “random”’)
=T = C can be taken to be the natural home of
those 0-1 sequences that form the basis of probabil-
ity theory. To justify this, however, we must also
bring in two other sets CS and KS of infinite
(0, 1)-sequences. (Here S stands for ‘“‘stochas-
tic.”) These are formulated in language similar to
that used by von Mises when describing his
“collectives.”

The first version, CS (C for Church), consists of
those 0-1 sequences for which the frequency-ratio
converges to p (here 1) in every effectively selected
subsequence.

The set KS (K for Kolmogorov) is defined simi-
larly, but here we now require convergence to p in
all the subsequences that can be built up when at
each stage one is allowed to select any symbol in
the sequence that has not already been chosen—i.e.,
one is allowed (effectively) to “dodge about” when
selecting new terms.

There is then a generalization of the Levin-
Schnorr theorem asserting that

T =C c KS C CS,

and work by Loveland tells us that the last inclu-
sion is strict, so that CS can be ignored in what
follows.

Accordingly we can use C(= T = R) to provide
an environment in which to do classical probability
with a new—an entropic—motivation.

Of course it is natural to ask if the first inclusion,
C Cc KS, is an equality. In one of his publications
Kolmogorov announced that KS is strictly larger
than C, but his proof of that assertion has been
lost. However a letter from Razborov tells me that
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a proof has now been supplied by Shen, so we know
that KS really is strictly larger than C.

There are still some unsolved problems relating
to KS. Leaving these on one side, we can regard
the statement C C KS as a theorem assuring us
that a strong form of the von Mises ‘“‘stochastic”
property holds in"C.

Thus the class C of chaotic 0-1 sequences be-
comes a natural environment in which to do proba-
bility calculations.

Perhaps we will have to think of KS as a techni-
cal enlargement of C facilitating certain calcula-
tions, just as the class of Lebesgue sets affords a
technical enlargement of the more comprehensible
class of Borel sets.

To practical probabilists many other questions
spring to mind, and it is too early to expect conclu-
sive answers to all of them. The time is, I suppose,
not yet ripe for an entropy-theoretic reworking of
the Grundbegriffe, but we may perhaps hope to see
that done in the near future.

One can now proceed to rebuild probability the-
ory starting with the infinite (0, 1)-sequences in C,
and so using entropic instead of probabilistic meth-
ods. Kolmogorov was convinced that this was possi-
ble, and indeed he knew that to some extent it had
been carried out. It is therefore especially fitting
that when the last of Kolmogorov’s papers (written
jointly with Uspensky) was published in Teoriya,
it was immediately followed by a remarkable
paper by Vovk that exemplifies in a triumphant
manner the success of this part of the Kolmogorov
programme.

5. VOVK’S THEOREMS

Vovk gives us nothing less than an entropic proof
of the classical law of the iterated logarithm for an
arbitrary fixed and suitably nearly chaotic infinite
(0, 1)-sequence w. As that theorem first emerged in
the context of number theory, this is natural
enough, but one wonders what G. H. Hardy would
have thought of it.

Figure 5 is a diagram that may elucidate the

, situation. It indicates the locations of a number of
famous theorems on the complexity scale.

The convention is that complexity increases from
the bottom to the top of the picture. At the top we
have C, the regime of maximal entropy and com-
plexity. This we can think of as a home for the iid
(0, 1)-sequences of classical probability theory.

At the bottom of the picture we have the “boring”
sequences of zero entropy and zero complexity.

In between we have sequences in which K(w™)
lags behind the maximum value n by some func-
tion f(n, w) that is of smaller order than n itself.

—Maximum complexity—

LIL : f(n,w) = o(loglogn)
REC: f(n,w) = (3 —€)o(logy n)

SLLN: f(n,w) = o(n)

—Minimum complexity—
Fic. 5. The scale of complexity.

In the picture we have three such levels, the first
(a very high one) with

f(n, w) = o(loglog n),
the second (an intermediate one) with
f(n,w) = (3 — €)o(log, n) (¢ > 0)
and the third (a very low one) with

f(n,w) = o(n).

Vovk has shown that the strong law of large
numbers holds at and above the lower of these three
levels, that the recurrence property for equal num-
bers of 0’s and 1’s holds at and above the intermedi-
ate level (for every choice of ¢) and that the law
of the iterated logarithm holds at and above the
highest of the three levels.

Volk’s paper contains much more information
than this, but what I have extracted from it will
suffice for our present purposes—and is indeed as
far as my own knowledge goes. Now doubt the
subject will develop rapidly after this fine start,
and what is reported here may well already be out
of date.

To sum up: We can now assert analogs of the
classical probability limit theorems for suitably
nearly chaotic individual infinite (0, 1)-sequences,
and also we can begin to classify such theorems
according to the degree of complexity required.

This last aspect of Vovk’s work reminds one of
the concept of “depth” in number theory, not to
mention the “Infinitéarkalkiil” of du Bois-Reymond.
G. H. Hardy would indeed have been interested!

For the three examples located in the picture the
degrees of complexity are simply ordered, and it is
natural to ask whether this will always be so. I do
not know the answer to that question, but expect it
to be “No.”
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Fic. 6. Kolmogorov teaching in his school, 198.

6. KOLMOGOROV AS A TEACHER

At all stages of his career Kolmogorov seems to
have been busy simultaneously on a multiplicity of
fronts, and this was especially so towards the end of
his life. Thus during the decade of ‘“complexity” he
was also occupied with his growing interest in
mathematical education, taking very heavy respon-
sibilities in connection with one of the special
schools for gifted children sponsored by the Moscow
State University. To this school he devoted a major
portion of his time over many years, planning syl-
labuses, writing textbooks, spending a large num-
ber of teaching hours with the children themselves,
introducing them to literature and music, joining
in their recreations and taking them on hikes,
excursions and expeditions. Kolmogorov (Figure 6)
sought for these children a broad and natural de-
velopment of the whole personality. It did not worry
him if they did not become mathematicians. What-
ever profession they ultimately followed, he was

Fic. 8. Kolmogorov and the seal (Galapagos Islands, 1971).

_

Fic. 7.  Kolmogorov talking to school children.

content if their outlook remained broad and their
curiosity unstifled. Indeed it must have been won-
derful to belong to this extended family of Andrei
Nikolaevitch. See him talking to some members of
it (Figure 7).

In a moving last message to his research pupils,
quoted in the splendid memoir by Shiryaev, he laid
upon them the responsibility of continuing his work
for the better education of young children. It is
clear that we all have much to learn from his
example.

7. CONCLUSION

We can only guess how Kolmogorov will be re-
garded by future generations. Which will then seem
the most significant: his massive combinatorial
power, or his penetrating insight? Or should these
be regarded as two aspects of a single gift?

Fic. 9‘, Kolmogorov in the Crimea (Simferopol, 1970).
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In conclusion I wish to acknowlege how much of
this essay is based on the recollections of others. I
am very grateful to those who have given me per-
mission to quote from their writings, and also to
those (Albert Shiryaev and Igor Zhurbenko) who
have generously made available to me the splendid
photographs. Perhaps Figure 8, showing Kol-
mogorov swimming with a seal, is the one you will
enjoy the most. (Kolmogorov is on the right.) And
here is a final glimpse of Kolmogorov (Figure 9).
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