Comment

R. A. Bailey

I congratulate Dr. Chatfield on having the sense and persistence to publish this paper. Its overall message is one of the most important that we should convey to new statisticians. Yet the statistical profession customarily plays down these pitfalls. Why? Of course, any real experiment has too many idiosyncrasies and pitfalls to be reported in full when it is used only as an example. Nonetheless, I have tried to include instructive pitfalls in my published work. As Chatfield mentions in Section 4, such practicalities and pitfalls are always removed from my papers on the insistence of the editor or the referee, on the grounds that they are uninteresting, irrelevant or uninformative, or that they show what an incompetent statistician I am. Perhaps I am, but if we are not allowed to share experiences of our mistakes how can any of us improve?

Although IDA is important, I would not go so far as to let my final analysis be completely dictated by the IDA. In a well-designed study, data are gathered on the basis of certain questions to be answered and certain models to be assumed. The proposed method of analysis should therefore form part of the protocol, even if it has to be modified later. Indeed, without a proposed method of analysis, how can the statistician advise on data collection?

I agree with the six guidelines in Section 5 and should like to comment on each in turn.

(a) I tell my students that 90% of a statistician's consulting work is asking questions, including questions whose answers seem obvious. The students think that I am exaggerating—until they accompany me to a consultation. I do not think that scientists actively try to mislead us; rather, they try to spare us details which they think will confuse us rather than help. Why do they have this attitude? Why are statistics seen as divorced from context?

(b) In experimental science, the importance of good design of investigations, of adequate procedures for recording data and of verification procedures that allow for human fallibility is generally

known, even if all too often ignored. How can the statistician ensure that good data are collected—where I mean "good" rather than "bad," and "collected" rather than "accumulated"—in other situations, especially if her involvement is as a citizen rather than as a professional? I am concerned about administrative decisions, often with large financial consequences, that are taken after examination of data that can best be described as "windfall" rather than "collected."

(c) Checking data quality was one of the first things that Dr. Preece taught me when I began work at Rothamsted. Soon afterwards I had to analyse data from a calf-feeding trial. Checking through variables such as birth weight, birth date, weight at eight weeks and amount eaten in certain weeks, I found several inconsistencies in the data and so telephoned the scientist in charge of the trial for elucidation. He told me airily that the data sheets had been filled in, after the end of the trial, by a student who was working for him for a few weeks; he did not seem to think that errors and inconsistencies in his data were any cause for concern. How widespread is his attitude?

(d) When I visited D. Saville and D. Baird at the Biometrics Unit of MAF New Zealand in Canterbury, they took me on some consulting visits and showed me how they refused to analyse any data that the scientist has not already examined graphically. This seems to me an admirable use of IDA, but there are still pitfalls, related to points (a)–(c).

For example, some plant pathologists once showed me six points on an x-y graph and asked me if the points could be said to lie on a straight line. The data came from an experiment on barley. The x values were percentage of tillers infected by leafstripe disease; the y values were mean yield in tonnes/ha. The points did indeed appear to lie roughly on a line, but I enquired whether there had been no replication. The reply was that there had indeed been six replications of each dose of infection and that each plotted point represented the mean x-value and the mean y-value for that dose. The plot of all 36 points revealed a very convincing straight line, but with one point lying a long way above the line. At last I asked to see the field note-books. Then I discovered that each x-value was the average of the estimated percentage infection in 10 sampled subareas of the plot. The average was calculated by the field worker, either by

R. A. Bailey is Professor of Mathematical Sciences at Goldsmiths' College in the University of London, New Cross, London SE14 6NW, United Kingdom.
hand or with a hand calculator. On the rogue plot, nine of the samples had zero infection. There was clearly no need for a calculator: the field worker had simply recorded the single non-zero value as the average value. Once this was corrected, the rogue point jumped magically onto the straight line and the relationship between y and x was evident. Subsequent sophistications in the “statistical” analysis seemed to me somewhat less important than the IDA phase, as regards the aim of finding out from the raw data the answer to the plant pathologists’ question.

(e) I never trust any published formula, no matter how eminent the author. Here is another problem with the publication policies of statistical journals. Several editors take the view that proofs are only for mathematicians, and so they decree that results may be published but their proofs should not be. Without the proofs, how can we check the results? Moreover, as Chatfield notes in Example 7(c), proofs do tend to go hand in hand with clearly defined notation and clearly stated assumptions, both of which are too often dismissed from statistical journals as being no use to practical people.

(f) Knowing whom to ask for help and advice can be more of an asset than knowing all the techniques. A corollary is: don’t be afraid to show that you have made a mistake or do not know what to do.

Comment

Murray K. Clayton and Erik V. Nordheim

It is a pleasure for us to have the opportunity to comment on this timely article. As Dr. Chatfield properly points out, there are many facets of a successful statistical investigation that are not taught in most books or in most courses. Although a solid grounding in statistical methods and theory is necessary for success in solving real-world problems, it is not sufficient. An understanding of the potential pitfalls and strategies for avoiding them is a clear requirement for achieving this success.

Chatfield provides suggestions on a wide range of topics related to statistical consulting and provides a very useful bibliography. In addition to those references cited by Dr. Chatfield, we would add the volume of Boen and Zahn (1982). We find ourselves in strong agreement with virtually all of Chatfield’s suggestions. We would like to point out some additional areas where our experience has shown the need for particular attention.

1. INTERACTING WITH THE INVESTIGATOR

It should be recognized that the active involvement of the investigator is essential in a successful statistical investigation. Too often the view is taken that once the statistician gets the data from the investigator, then the “real statistics” begins and the investigator’s role is diminished. (This attitude may be reflected in the silence of the delegates in Chatfield’s Example 5.) A critical reason for investigator involvement is that he/she holds the key to much information that is essential to the conduct of the analysis and that cannot be determined solely by looking at the data. We address two aspects of this involvement.

(a) As articulated by Chatfield, a clear statement of the objective of an investigation is necessary in order to carry out a useful statistical analysis. However, it is our experience that obtaining a clear statement is often quite difficult. If you ask the investigator early in a consulting session, “What are your objectives in this study?”, you can receive a variety of responses, many of which are only of marginal use. Sometimes the investigator will attempt to abstract a statistical problem, as he/she perceives it, in order to get “right to the matter quickly.” On other occasions, you will be given a superficial description of the problem to “spare you all the experimental details.” In still other situations, the investigator has not thought that far. It is our experience that it is often ineffective to ask the investigator for a statement of the objective at the very beginning of a consulting session.

We find it useful to pursue two major lines of questioning early in our meetings. One line is to find out about the background of the project. We try to ask questions like, “What do you anticipate to learn from this study?”, “How will you use the

Murray K. Clayton is Associate Professor of Statistics and Plant Pathology, and Erik V. Nordheim is Professor of Statistics and Forestry, Department of Statistics, University of Wisconsin-Madison, 1210 W. Dayton Street, Madison, Wisconsin 53706.