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1. INTRODUCTION

There are many fascinating issues discussed in
this paper. Several concern parapsychology itself
and the interpretation of statistical methodology
therein. We are not experts in parapsychology, and
so have only one comment concerning such mat-
ters: In Section 3 we briefly discuss the need to
switch from P-values to Bayes factors in discussing
evidence concerning parapsychology.

A more general issue raised in the paper is that
of replication. It is quite illuminating to consider
the issue of replication from a Bayesian perspec-
tive, and this is done in Section 2 of our discussion.

2. REPLICATION

Many insightful observations concerning replica-
tion are given in the article, and these spurred us
to determine if they could be quantified within
Bayesian reasoning. Quantification requires clear
delineation of the possible purposes of replication,
and at least two are obvious. The first is simple
reduction of random error, achieved by obtaining
more observations from the replication. The second
purpose is to search for possible bias in the original
experiment. We use “bias” in a loose sense here, to
refer to any of the huge number of ways in which
the effects being measured by the experiment can
differ from the actual effects of interest. Thus a
clinical trial without a placebo can suffer a placebo
“bias”; a survey can suffer a “bias” due to the
sampling frame being unrepresentative of the
actual population; and possible sources of bias
in parapsychological experiments have been
extensively discussed.

Replication to Reduce Random Error

If the sole goal of replication of an experiment is
to reduce random error, matters are very straight-
forward. Reviewing the Bayesian way of studying
this issue is, however, useful and will be done
through the following simple example.

M. J. Bayarri is Titular Professor, Department of
Statistics and Operations Research, University of
Valencia, Avenida Dr. Moliner 50, 46100 Burjassot,
Valencia, Spain. James Berger is the Richard M.
Brumfield Distinguished Professor of Statistics,
Purdue University, West Lafayette, Indiana 47907.

[
s
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @%%

379

ExampLE 1. Consider the example from Tversky
and Kahnemann (1982), in which an experiment
results in a standardized test statistic of z; = 2.46.
(We will assume normality to keep computations
trivial.) The question is: What is the highest value
of z, in a second set of data that would be consid-
ered a failure to replicate? Two possible precise
versions of this question are: Question 1: What is
the probability of observing z, for which the null
hypothesis would be rejected in the replicated ex-
periment? Question 2: What value of 2z, would
leave one’s overall opinion about the null hypothe-
sis unchanged?

Consider the simple case where Z, ~ N(z,|6, 1)
and (independently) Z, ~ N(z,|8, 1), where 0 is
the mean and 1 is the standard deviation of the
normal distribution. Note that we are considering
the case in which no experimental bias is suspected
and so the means for each experiment are assumed
to be the same.

Suppose that it is desired to test H,: 6 < 0 versus
H,:6 > 0, and suppose that initial prior opinion
about 6 can be described by the noninformative
prior w(0) = 1. We consider the one-sided testing
problem with a constant prior in this section, be-
cause it is known that then the posterior probabil-
ity of H,, to be denoted by P(H, |data), equals the
P-value, allowing us to avoid complications arising
from differences between Bayesian and classical
answers.

After observing z; = 2.46, the posterior distribu-
tion of 6 is

7(0]2,) = N(6]2.46,1).

Question 1 then has the answer (using predictive
Bayesian reasoning)

P(rejecting at level «| z,)

o - 1
= / / NoT e~ 12z~ (0| 2,) db dz,
Ccy YV —oo ™

. q)(ca—2.46
- =

where ® is the standard normal cdf and c, is the
(one-sided) critical value corresponding to the level,
a, of the test. For instance, if o = 0.05, then this
probability equals 0.7178, demonstrating that there
is a quite substantial probability that the second
experiment will fail to reject. If « is chosen to be
the observed significance level from the first exper-
iment, so that ¢, = z,, then the probability that the
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second experiment will reject is just 1/2. This is
nothing but a statement of the well-known martin-
gale property of Bayesianism, that what you “ex-
pect” to see in the future is just what you know
today. In a sense, therefore, question 1 is exposed
as being uninteresting.

Question 2 more properly focuses on the fact that
the stated goal of replication here is simply to
reduce uncertainty in stated conclusions. The an-
swer to the question follows immediately from not-
ing that the posterior from the combined data

(29, 25) is
(0] 2, zy) = N(0 |(2; + 25)/2, 1/\/5),

so that
P(H,|data) = &(- (2, + 2,)/V2).

Setting this equal to P(H,| 2;) and solving for z,
yields z, = (V2 - 1)z; = 1.02. Any value of z,
greater than this will increase the total evidence
against H,, while any value smaller than 1.02 will
decrease the evidence.

Replication to Detect Bias

The aspirin example dramatically raises the is-
sue of bias detection as a motive for replication.
Professor Utts observes that replication 1 gives
results that are fully compatible with those of the
original study, which could be interpreted as sug-
gesting that there is no bias in the original study,
while replication 2 would raise serious concerns of
bias. We became very interested in the implicit
suggestion that replication 2 would thus lead to
less overall evidence against the null hypothesis
than would replication 1, even though in isolation
replication 2 was much more ‘“significant” than
was replication 1. In attempting to see if this is so,
we considered the Bayesian approach to study of
bias within the framework of the aspirin example.

, ExampPLE 2. For simplicity in the aspiring exam-
ple, we reduce consideration to

6 = true difference in heart attack rates between
aspirin and placebo populations multiplied by
1000;

Y = difference in observed heart attack rates be-
tween aspirin and placebo groups in original
study multiplied by 1000;

X; = difference in observed heart attack rates be-
tween aspirin and placebo groups in Replica-
tion i multiplied by 1000.

We assume that the replication studies are ex-
tremely well designed and implemented, so that

one is very confident that the X, have mean 6.
Using normal approximations for convenience, the
data can be summarized as

X, ~ N(x,]6,4.82), X,~ N(x,|0,3.63)

with actual observations x, =7.704 and x, =
13.07.

Consider now the bias issue. We assume that the
original experiment is somewhat suspect in this
regard, and we will model bias by defining the
mean of Y to be

n=10+8,

where (8 is the unknown bias. Then the data in the
original experiment can be summarized by

Y~ N(yl’?, 154),

with the actual observation being y = 7.707.

Bayesian analysis requires specification of a prior
distribution, (), for the suspected amount of bias.
Of particular interest then are the posterior distri-
bution of B, assuming replication i has been
performed, given by

7r(B|y, xi)
1 2
@ - gy 8- (=P

where "i2 is the variance (4.82 or 3.63) from repli-

cation i; and the posterior probability of H,,, given
by

P(Ho|y, xi)

=/°°<p

— 0o

(y-8)
-— y pa—
1.54/0? + 1.542

1.54 (8] ) s
xi ™ y, xi .
0,/ o2 + 1.542

Recall that our goal here was to see if Bayesian
analysis can reproduce the intuition that the origi-
nal experiment could be trusted if replication 1 had
been done, while it could not be trusted (in spite of
its much larger sample size) had replication 2 been
performed. Establishing this requires finding a
prior distribution =(B) for which #(8|y, x,) has
little effect on P(H, |y, x,), but #(8| y, x,) has a
large effect on P(H, |y, x,). To achieve the first
objective, w(8) must be tightly concentrated near
zero. To achieve the second, 7(8) must be such that
large | y — x5 |, which suggests presence of a large
bias, can result in a substantial shift of posterior
mass for 3 away from zero.
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A sensible candidate for the prior density = (B3)
is the Cauchy (0, V') density

mv(6) = AV[1+(0/ V)]

Flat-tailed densities, such as this, are well known
to have the property that when discordant data is
observed (e.g., when (| y — x,| is large), substan-
tial mass shifts away from the prior center towards
the likelihood center. It is easy to see that a normal
prior for B can not have the desired behavior.

Our first surprise in consideration of these priors
was how small V needed to be chosen in order for
P(H,|y, x,) to be unaffected by the bias. For
instance, even with V = 1.54/100 (recall that 1.54
was the standard deviation of Y from the original
experiment), computation yields P(H,|y, x;) =
4.3 x 1075, compared with the P-value (and poste-
rior probability from the original experiment as-
suming no bias) of 2.8 X 10~7. There is a clear
lesson here; even very small suspicions of bias can
drastically alter a small P-value. Note that replica-
tion 1 is very consistent with the presence of no
bias, and so the posterior distribution for the bias
remains tightly concentrated near zero; for in-
stance, the mean of the posterior for B is then
7.2 x 10~¢, and the standard deviation is 0.25.

When we turned attention to replication 2, we
found that it did not seriously change the prior
perceptions of bias. Examination quickly revealed
the reason; even the maximum likelihood estimate
of the bias is no more than 1.4 standard deviations
from zero, which is not enough to change strong
prior beliefs. We, therefore, considered a third
experiment, defined in Table 1. Transforming to
approximate normality, as before, yields

X3 -~ N(x3|0, 3.48),

with x5 = 22.72 being the actual observation. The
maximum likelihood estimate of bias is now 3.95
standard deviations from zero, so there is potential

* for a substantial change in opinion about the bias.
Sure enough, computation when V = 1.54/100
yields that E[8|y, x3]= —4.9 with (posterior)
standard deviation equal to 6.62, which is a dra-
matic shift from prior opinion (that 8 is Cauchy (0,

TaBLE 1
Frequency of heart attacks in replication 3

Yes No

Aspirin 5 2309
Placebo 54 2116

1.54/100)). The effect of this is to essentially ignore
the original experiment in overall assessments of
evidence. For instance, P(H,|y, x;) = 8.81 X
101, which is very close to P(H,| x5) = 3.29 X
10~ 11, Note that, if 8 were set equal to zero, the
overall posterior probability of H, (and P-value)
would be 2.62 x 10713,

Thus Bayesian reasoning can reproduce the intu-
ition that replication which indicates bias can cast
considerable doubt on the original experiment,
while replication which provides no evidence of
bias leaves evidence from the original experiment
intact. Such behavior seems only obtainable, how-
ever, with flat-tailed priors for bias (such as the
Cauchy) that are very concentrated (in comparison
with the experimental standard deviation) near
Zero.

3. P-VALUES OR BAYES FACTORS?

Parapsychology experiments usually consider
testing of H,: No parapsychological effect exists.
Such null hypotheses are often realistically repre-
sented as point nulls (see Berger and Delampady,
1987, for the reason that care must be taken in
such representation), in which case it is known that
there is a large difference between P-values and
posterior probabilities (see Berger and Delampady,
1987, for review). The article by dJefferys (1990)
dramatically illustrates this, showing that a very
small P-value can actually correspond to evidence
for H, when considered from a Bayesian perspec-
tive. (This is very related to the famous “Jeffreys”
paradox.) The argument in favor of the Bayesian
approach here is very strong, since it can be shown
that the conflict holds for virtually any sensible
prior distribution; a Bayesian answer can be wrong
if the prior information turns out to be inaccurate,
but a Bayesian answer that holds for all sensible
priors is unassailable.

Since P-values simply cannot be viewed as mean-
ingful in these situations, we found it of interest to
reconsider the example in Section 5 from a Bayes
factor perspective. We considered only analysis of
the overall totals, that is, x = 122 successes out of
n = 355 trials. Assuming a simple Bernoulli trial
model with success probability 6, the goal is to test
H,:0 = 1/4 versus H;:0 #+ 1/4.

To determine the Bayes factor here, one must
specify g(8), the conditional prior density on H,.
Consider choosing g to be uniform and symmetric,
that is,

1 1
Gr(0)= E;, forz—r5052+r,

0, otherwise.
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Crudely, r could be considered to be the maximum
change in success probability that one would expect
given that ESP exists. Also, these distributions are
the “extreme points” over the class of symmetric
unimodal conditional densities, so answers that hold
over this class are also representative of answers
over a much larger class. Note that here r < 0.25
(because 0 < 0 < 1); for the given data the § > 0.5
are essentially irrelevant, but if it were deemed
important to take them into account one could use
the more sophisticated binomial analysis in Berger
and Delampady (1987).

For g,, the Bayes factor of H; to H,, which is to
be interpreted as the relative odds for the hypothe-
ses provided by the data, is given by

(1/(2r)) 247 0122(1 — )22 gp
(1/4)122(1 _ 1/4)355—122

B(r) =

n

1
— (63.13
5 (63.13)

[ ( r— .0937)
| ———] + @
.0252
This is graphed in Figure 1.
The P-value for this problem was 0.00005, indi-
cating overwhelming evidence against H, from a
classical perspective. In contrast to the situation
studied by Jefferys (1990), the Bayes factor here
does not completely reverse the conclusion, show-
ing that there are very reasonable values of r for
which the evidence against H, is moderately
strong, for example 100/1 or 200/1. Of course, this
evidence is probably not of sufficient strength to
overcome strong prior opinions against H, (one

.0252

—(r+ .0937))].
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This paper offers readers interested in statistical
science multiple views of the controversial history
of parapsychology and how statistics has con-
tributed to its development. It first provides an
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Fic. 1. The Bayes factor of H, to H, as a function of r, the
maximum change in success probability that is expected given
that ESP exists, for the ganzfeld experiment.

obtains final posterior odds by multiplying prior
odds by the Bayes factor). To properly assess
strength of evidence, we feel that such Bayes factor
computations should become standard in parapsy-
chology.

As mentioned by Professor Utts, Bayesian meth-
ods have additional potential in situations such as
this, by allowing unrealistic models of iid trials to
be replaced by hierarchical models reflecting differ-
ing abilities among subjects.
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account of how both design and inferential aspects
of statistics have been pivotal issues in evaluating
the outcomes of experiments that study psi abili-
ties. It then emphasizes how the idea of science as
replication has been key in this field in which
results have not been conclusive or consistent and
thus meta-analysis has been at the heart of the
literature in parapsychology. The author not only
reviews past debate on how to interpret repeated
psi studies, but also provides very detailed informa-
tion on the Honorton-Hyman argument, a nice
illustration of the challenges of resolving such de-



