344 LISP-STAT: BOOK REVIEWS

Comment
C. Weihs

The book describes a software system called
Lisp-Stat designed as a statistical software environ-
ment particularly for experimentation with new
paradigms in interactive statistical graphics. Since
other software systems well-known for supporting
dynamic graphics, like ISP (1988), SAS-INSIGHT
(1991), and (New) S-Plus (1990), suffer from the
drawback of not allowing changes in the imple-
mented graphical methods, there is a real need for
systems like Lisp-Stat. Indeed, restricting oneself
to an existing graphical framework, that is, sup-
pressing ideas for new graphical tools, sometimes
not only hinders creativity, but even prevents com-
plete realization of adequate data representations,
as we had to accept in our OMEGA-project (Online
Multivariate Exploratory Graphical Analysis, see
Weihs and Schmidli, 1990a, b). The OMEGA-
system is realized in ISP, preventing the implemen-
tation of some of our graphical concepts adequately
because of restrictions of ISP graphics. At the time
the OMEGA-project was started, the most complete
and flexible software environments for statistical
graphics were the Data Viewer (see Buja, Asimov,
Hurley and McDonald, 1988) and plot windows (see
Stuetzle, 1988). Both systems were, like Lisp-Stat,
based on Lisp, but both were only available on the
exotic and expensive Symbolics Lisp machines. The
hope that one could easily overcome all such re-
strictions with Lisp-Stat was the main motivation
for me to work through the book. This hope was
indeed fulfilled and itself made the book worth
reading. But before discussing Lisp-Stat realiza-
tions of graphical tools thus far not implementable
in OMEGA, I shall give a somewhat personal
overview of the contents of the book.

The book starts with a very stimulating tutorial
introducing Lisp-Stat’s whole range of possible ap-
plications in a form that motivates further reading.
The illustrated tools range from basic numerical
and graphical operations like summary measures
and histograms, boxplots and scatterplots, over the
generation and modification of data items like lists,
to standard dynamic graphics like spinning plots
and scatterplot matrices with plot interaction and
linking, and to a demonstration of how easy

C. Weihs is a member of the Mathematical Applica-
tions unit at CIBA-GEIGY Ltd., R-1008.Z2.22 CH-
4002 Basel, Switzerland.

dynamic simulations can be implemented. Addi-
tionally, linear and nonlinear regression, maxi-
mization, maximume-likelihood estimation and
approximate Bayesian computation are demon-
strated. Also, the ease of implementing new func-
tions and methods is concisely indicated.

After the tutorial, all chapters but the last de-
scribe the Lisp-Stat language by means of syntax
explanation, illustrative code and more extensive
examples, intended to be interesting in their own
right. Chapters 3-5 present all the basic tech-
niques and tools for programming with Lisp-Stat:
the definition and usage of variables and functions,
data types, data input and output, control struc-
tures, code-writing support, probability distribu-
tions and statistical and linear algebra functions.
The examples include Newton’s root finder, sym-
bolic differentiation, a projection operator and
robust regression.

So far, nothing special about Lisp-Stat. For ex-
ample, the notion of a function is realized very
similarly as in New S-Plus (1990), using functions
not only in place of subroutines or macros, but also
allowing functions to be handled as data, being
thus able to specify, for example, the mean function
of a nonlinear model very easily. Indeed, such
“nonstandard” data have always had to be handled
in statistical software allowing “real”’ nonlinear
relationships. For example, one of the early sys-
tems realizing special data elements for model
equations and model equation systems, the IAS-
System Bonn, originated at the end of the 1960s
(see Kirchen and Weihs, 1984), introduced such
elements because of the need of econometric multi-
equation models with nonlinearities in the vari-

ables as well as in the parameters to be estimated.

Chapter 6 describes something I had not really
looked into before: object-oriented programming.
The basic idea of object-oriented programming in
Lisp-Stat is to build new numerical and graphical
tools at the basis of certain prototypes. An object is
built from a prototype or from another object by
copying, by adding specific information like data in
locations called slots and possibly by changing the
methods to work on the data. Methods associated
with an object are activated by sending the object a
message identifying the method. Lisp-Stat contains
a number of built-in prototypes delivered to sup-
port, among others, regression and the building of
graphical windows, menus and dialogs. Nonlinear
regression, for example, is supported by the nreg-

&
; ng
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
Statistical Science. IINOIN ®

WWww.jstor.org

LISP-STAT: BOOK REVIEWS 345

model-proto, which is defined by means of the lin-
ear regression-model-proto, changing, for example,
the method for the computation of estimates, and
adding, among others, a slot for holding the model’s
mean function. Other methods are inherited, that
is, copied from the ancestor. For example, the
standard errors of the estimates, leverages and sim-
ilar quantities are calculated by linearizing the
nonlinear model around the estimated parameters.
This is realized by defining the x-matrix slot, rep-
resenting the values of the involved regressors in
the linear case, to comprise the Jacobian in the
estimated parameters in the nonlinear case, and
inheriting from linear regression the computation
of the above quantities using the x slot. Note that
here inheritance realizes the analogies between
nonlinear and linear regression analysis; in other
cases specialization is realized. In order to start a
nonlinear regression, one could build a new object,
called an instance, from the nreg-model-proto
adding the response data, mean-function, initial
parameter guesses, and stopping criteria in
corresponding slots, and then send the object the
compute, coef-estimates and coef-standard-errors
messages. However, calling instead the built-in
nreg-model function with the same arguments
would be more easy and more informative. Natu-
rally, the nreg-model function itself was built on
the basis of nreg-model-proto.

Chapters 7-10, that is, the rest of the book,
describe Lisp-Stat’s graphics system. To be more
specific, those prototypes are described that Lisp-
Stat offers to support the building of graphical
windows, menus and dialogs. It is really fasci-
nating to realize how easy window handling
can be by using an appropriate set of objects able to
respond to messages sent by some hardware spe-
cific window-system like the Macintosh Toolbox,
the Sun View or the X11 system, which are sup-
ported by Lisp-Stat. The window-system monitors
the user’s actions upon windows, for example, mov-
ing or resizing windows, popping up windows, etc.,
and sends corresponding messages to objects af-
fected by such events. This then initiates, for exam-
ple, (re-)drawing the contents of the window or
menu. Also, an object-oriented window-system can
easily provide a library of standard graphics ob-
jects, greatly reducing the number of new methods
to be defined when creating new graphical tools by
inheriting from the most suitable object in the
library. Moreover, new methods are only locally
valid for the object they are defined for, that
is, they do not influence other instances of the
same object. This helps considerably in avoiding
confusion.

Graphics windows and dialog windows share cer-
tain basic features concerning title, size, location
and temporary and permanent removal. The corre-
sponding methods are included in the window-proto.
Graphical menus are handled separately. Their
main properties are that menus are popped up by
mouse-clicking a menu button, that they are dis-
played only as long as the mouse button is not
released and that an action is executed correspond-
ing to that menu-item highlighted by pointing on it
by the cursor when the mouse button is released.
The action is realized by sending that object cor-
responding to the highlighted menu-item the do-
action message.

With dialog windows, the programmer can give
the user the chance to send instructions to a pro-
gram. There are two kinds of dialogs, one the user
has to respond before the program can proceed
(modal dialogs) and one the user can use very
much like a menu appearing in a different form
(modeless dialogs). Lisp-Stat is offering different
standard dialogs of both kinds. A typical modal
dialog is providing a message and is asking for OK,
or is asking for a choice between different items
provided. A typical modeless dialog provides a slider
constructed to control, for example, the animation
of a power transformation plot. If you want to build
a more elaborate dialog, Lisp-Stat offers a flexible
set of dialog items.

In order to judge the power of Lisp-Stat’s menus
and dialogs, let us discuss the construction of
OMEGA'’s user interface in Lisp-Stat. Mainly the
following tasks have to be practicable.

e The choice of one action or method out of a list,
for example, of the implemented multivariate
data analysis methods.

o The building of a subgroup from a list of vari-
ables or observations, for example, provided in
a dataset.

e Decisions, for example, whether to build an-
other subgroup or whether to store a result.

e Specifications of names, for example, of output
data sets for predictions.

In principle all these tasks can be carried out by
Lisp-Stat. However, there appear to be some diffi-
culties. At first sight, the first task is a candidate
for a menu, and the others are candidates for di-
alogs. However, OMEGA’s menus often include ex-
planations, that is, help texts, and Lisp-Stat’s
menus do not offer such a facility. But one can use
dialog windows instead or write the help text into
graphics windows and install a corresponding menu
associated to the window. An example for using a
modal dialog as a menu will be demonstrated in the

346 LISP-STAT: BOOK REVIEWS

following (see Figure 1 for the graphical dialog):

setf textl (send text-item-proto :new
” ANALYSIS SELECTION"))

(setf text2 (send text-item-proto :new
”CLASSIFICATION OF TECHNIQUES”))

(setf text3 (send text-item-proto :new
”Analysis |Pre-Information

(setf text4 (send text-item-proto :new

..)]

(setf text5 (send text-item-proto :new
”PCA-COV | -
(setf text6 (send text-item-proto :new
”PCA-COR| Scaling unimportant |data variation”))
(setf text7 (send text-item-proto :new
”CDA | Object Classification
(setf text8 (send text-item-proto :new
7)
(setf c-item (send choice-item-proto :new
(list "PCA-COV” "PCA-COR” ”CDA” ”’quit”) :value 0))
(defun collect-vals ()
(send c-item :value))
(setf ok (send modal-button-proto :new "OK”
:action # 'collect-vals))
(setf meth-dialog
(send modal-dialog-proto :new
(list
(list text1) (list text2) (list text3) (list text4)
(list text5) (list text6) (list text7)
(list text8) (list c-item) (list ok))))
(send meth-dialog :modal-dialog)

| Representation of "))

|data variation’’))

| class discrimination”))

After the definition of the help text (textl-text8),
the choice buttons (c-item) are defined representing
the analyses that can be carried out after the dia-
log. “Pressing” one of these buttons fixes the
method. “Pressing” the OK button calls a function
(collect-vals), the value of which is the index of the
analysis chosen. Afterwards the dialog is removed
from screen. The dialog itself (meth-dialog) is de-
fined by using one list of items per line, and send-
ing it the modal-dialog message.

Convincing though such a dialog may look, I am
not quite certain that a user interface relying on

ANALYSIS SELECTION

CLASSIFICATION OF TECHNIQUES

Analysis | Pre-Information | Representation of
PCA-COV | - | data variation
PCA-COR | Scaling unimportant | data variation

CDA | Object Classification | class discrimination
@ pPCA-COV

PCA-COR

CDA

quit

Fic. 1. Dialog for method choice.

menus and dialogs would really be an improvement
to the line-oriented menus used up to now for
OMEGA. For example, in OMEGA, subgroups of
variables and observations are often built to be
large connected parts of a big list so that many
marks in a row would be necessary to identify such
a group in a large Lisp-Stat dialog presenting one
toggle-item for each variable or observation. Would
it be not much easier to identify such subgroups by
index lists in a response line allowing a sequence
notation? Also, our menus asking the user to re-
spond to a question in the next input line do not
look that professional, but can also be run batch-like
predefining (a part of) the sequence of input lines
in a data set. This shortens some analyses consider-
ably and helps with documentation. Using Lisp-
Stat’s menus and dialogs batch mode appears to be
impossible.

Graphics windows inherit from graph-window-
proto. In such windows, images are drawn by
changing the color of the picture elements, the
pixels. Lisp-Stat supports three drawing and ani-
mation modes. In normal mode and XOR mode,
the image is constructed directly on the screen. In
normal mode, the effect of drawing on a pixel is
independent of its previous color. In XOR mode,
coloring reverses the pixel’s color. It is true that
this is only well-defined in black and white, but
even on color displays reversing the color twice in
XOR mode leads back to the original color. Thus, if
one wants to change the color only temporarily, one
does not have to save it when using XOR mode.
Lisp-Stat is using XOR mode for brushing and
writing point labels. Using double buffering mode,
flickering can be avoided in animation as long as
the copying process from a buffer to the screen is
sufficiently fast. With double buffering, the image
is first composed off screen and then copied to the
screen. This often results in a smoother and more
flicker-free motion than with XOR mode.

Drawing in graphics windows can be carried out
by sending messages to a window object by means
of the interpreter. On the other hand, graphics
windows are able to respond on mouse actions, key
events and menu actions. Mouse events comprise
motion events and click events. In the first case, an
object is tracked by the mouse as it moves; in the
second, the object is moved to the location of a
mouse-click. A combination of the two approaches
is dragging, that is, moving while holding down
the mouse button. Moreover, different cursor
symbols are available, like arrow, brush, hand
and finger. Also, new cursors can be defined. Move-
ment may also be realized by key events, that is,
by hitting predefined keys, or by the window-
associated menu. Among other things, such menus

LISP-STAT: BOOK REVIEWS 347

and mouse or key events can be used for starting or
stopping idle rotation or random walks. Idle ac-
tions are running continuously after starting, until
they are explicitly stopped.

Obviously, for statistical graphics some more ca-
pabilities are needed, for example, connecting points
by lines, choosing current variables, adding coordi-
nate axes, centering and scaling and the applica-
tion of linear transformations like translation and
rotation. All this is included in the prototype
graph-proto for displaying two-dimensional scatter-
plots in hA-dimensional space. Standard mouse
modes for statistical graphics are selecting and
brushing. Selecting highlights the points under a
rectangle by a mouse-click. Brushing highlights
the points under a rectangle, called brush, moved
with the mouse button down. In both cases, high-
lighting by default is transient, that is, it only lasts
until the next click or until the brush is moved
away from the point, correspondingly, but can be
made permanent also. Moreover, Lisp-Stat allows
the definition of new mouse modes, for example, for
labeling a point near the cursor by mouse-clicking.
Needless to say, different plots can be linked so
that an action in one plot leads to corresponding
actions in all linked plots. Default linkage is very
loose and based on point indices, that is, linking
causes the point states of observations with the
same index to be equal. Point states are invisible,
normal, hilited, selected. Other characteristics like
symbols and colors are not linked. Also, observa-
tion indices have to be the same in all plots for the
same objects. All these restrictions are overcome by
an alternative linking procedure in the very last
section of the book. This linking procedure relies on
an observation based data representation also al-
lowing linking for different sets of objects in differ-
ent linked scatterplots. Except the contents (points,
lines) of the plot, and the coordinate axes, graph
windows also provide margins to hold plot controls,
for example, buttons for fixing the rotation axis.
For the window associated menu many useful
standard menu items are offered.

Except for the basic 2D-scatterplot, prototypes
are offered for scatterplot matrices, rotating plots,
histograms and name lists providing a linkable list
of point labels. This concludes the description of
Lisp-Stat’s graphics facilities. The book ends with
very interesting examples of more involved applica-
tions of Lisp-Stat for developing graphical tools,
including the choice of power transformations, plot
interpolation, the choice of smoothing parameter,
hand rotation, rotation around coordinate axes
instead of screen axes, grand tours and parallel
coordinate plots.

Judging from the occurrence, in the above con-

tents overview, of so many of the terms central to
all discussions of modern statistical graphics, one
has the strong impression that Lisp-Stat offers ev-
erything we ever dreamt of. Even better, because of
the capabilities of the language, it appears to be
easy to start exploring new horizons. Let us see
whether we would be able to overcome the ISP
restrictions for the implementation of OMEGA:
Could we realize “lasting control,” nonstandard
“viewport transformations,” ‘“dynamic plot inter-
polation,” histograms linked to scatterplot matri-
ces, linked “parallel views” with partly different
sets of objects and “animated graphical testing”?

Lasting control initiates an action, for example, a
rotation, which lasts until it is explicitly stopped.
In Lisp-Stat this can simply be realized by sending
the idle-on message to a plot, having defined the
do-idle method correspondingly (see page 252).

The most important viewport transformations not
realizable in ISP concern interactive scaling differ-
ent in the two screen axes, for example, expanding
in one direction, shrinking in the other with the
same speed. In Lisp-Stat this can be realized
by installing a corresponding button at the mar-
gin of a scatterplot which can be “pressed” by
mouse-clicking (see page 286). Sending the while-
button-down message to the plot (see page 249),
mouse-clicking continuously activates the rescaling
as long as the mouse-button is pressed. The actual
scaling type has to be implemented in the adjust-
to-data method (see page 270).

Dynamic plot interpolation is essentially realized
in the book (see page 300), except that for OMEGA
we are more interested in ‘“convex’ interpolation
than in “trigonometric” interpolation. The changes
should be obvious.

The most general multidimensional ISP views
supporting dynamics and linking are rectangular
scatterplot matrices. Parallel views mean any com-
parable scatterplots possibly not representable in a

. matrix structure. In Lisp-Stat any plots can be

linked, thus also scatterplots with histograms (see
page 46), and parallel views, for example, for com-
paring projections or predictions from different
multivariate analyses.

OMEGA’s p%-resampling repetitively uses ran-
dom p% of the original sample for constructing
projections of this subsample and predictions of the
rest of the sample. Parallel views for comparing
projections from different repetitions, that is, for
studying the stability of the projections, thus in-
clude partly different sets of objects. In Lisp-Stat
p%-resampling can be realized using the sample
function (see page 31), and the alternative linking
strategy (see page 334) may be used to compare the
projections from different samples. A projection

348 LISP-STAT: BOOK REVIEWS

value may be stored in an observation object with
the index of the corresponding original observation
using a variable name reflecting the resampling
repetition number. If an observation is not in the
p%-sample of this repetition, its value for this vari-
able should be set to “missing.” A possible code for
“missing” is nil. Unfortunately, this code is not
accepted by Lisp-Stat’s plotting functions. A scat-
terplot of the projections thus has to be defined by

including only those observation objects defining"

the p%-sample. The linking between plots resulting
from different repetitions is guaranteed, since the
linking procedure is relying on observation objects
not on indices of observations in the different plots.
Let us finish with a small Lisp-Stat program
realizing an animated graphical test for independ-
ence of two variables. To this end the y-values of a
scatterplot are randomly permuted against the x-
values as long as the mouse button is held down:

(def vx (uniform-rand 50))
(def vy (normal-rand 50))
(def indplot (plot-points vx vy))
(defmeth indplot :do-click (x y m1 m2)
(flet ((permuty (x y)
(def wy (sample vy (length vy)))
(send self :clear :draw nil)
(send self :add-points (list vx wy))))
(send self :while-button-down # ‘permuty nil)))

The variables vx and vy comprise 50 uniform and
normal random numbers, respectively. After the
definition of the plot-object (indplot) for these vari-
ables, the method (do-click) is defined, which is
continuously activated with a mouse-click inside
the plot as long as the mouse button is pressed
(while-button-down).” The method ignores the loca-
tion of the mouse-click (x y), but permutes the
y-observations by drawing a sample (without re-
placement) of the same size as the original number
of observations (permuty). Just before redrawing

(add-points) the plot is cleared. Thus, if you press
any mouse button anywhere inside the plot, you
will see a sequence of permutations of the original
plot as long as the mouse button is not released.

Altogether, using Lisp-Stat we could indeed over-
come all the restrictions we had to accept up to now
in developing our OMEGA-pipeline at CIBA-
GEIGY. This is particularly true since Lisp-Stat is
available for our computer environment, Apollo
workstations equipped with the X11 window-
system. On the other hand, as a classically trained
programmer, being at home with Fortran and with
matrix languages like ISP, I have to confess that I
had difficulties in getting used to this object-
oriented language. Possibly it is the language it-
self, for example, the extensive use of bracketing,
or the style the book is written in, but I was never
quite happy reading the book and writing test pro-
grams. Reading the book I had particular problems
with the organization of the nontutorial chapters.
Indeed, the author always tries to be as complete as
possible in describing the language at the price of
sometimes losing a reader who impatiently wants
to learn about the next capability offered by Lisp-
Stat. For me it would have been much more ade-
quate if the book would have been divided into two
parts: an extensive tutorial, demonstrating the use
of all the main features of the language, possibly
with reference to useful extensions described in the
second part, a complete commented syntax refer-
ence, which would be much easier to use for a
professional than the partly hidden syntax descrip-
tions in the book and which could be avoided by
someone who is just interested in an overview.

Nevertheless, Lisp-Stat offers a fascinating envi-
ronment for statistical computing and particularly
for dynamic graphics. I really hope that we hear
about many new useful graphical tools developed
by means of Lisp-Stat.

