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monitoring techniques, which, as pointed out by Dr.
Geyer, have to be theoretically based. However, I re-
main quite worried after reading the two papers. There
is no guarantee of the properties of the various esti-
mates of the Monte Carlo variance. They just appear
to work most the time. The apparent convergence of
multiseries also offers no guarantee for convergence.

The difficulties one faces in finding initial values remain
quite open. Methods and guidelines for reparameteriza-
tion to improve the mixing of the chain are still lacking.
It looks like it would take some time and effort before
one can automate sampling methods for use by other
scientists.

Comment: One Long Run with Diagnostics:
Implementation Strategies for Markov Chain

Monte Carlo

Adrian E. Raftery and Steven M. Lewis

1. SUMMARY

We congratulate Andrew Gelman, Don Rubin and
Charlie Geyer on a pair of articles that together summa-
rize many of the important issues in the implementation
of Markov chain Monte Carlo (MCMC) algorithms. They
both make important and valid points. We do not
agree fully with the recommendations in either article,
however. We recommend that inference ultimately be
based on a single long run, but that this be monitored
using carefully chosen diagnostics, and that starting
values and the exact form of the algorithm be chosen
on the basis of experimentation. More complex and
expensive methods such as those of Gelman and Rubin
seem rarely to be necessary in standard statistical
models.

Theory suggests that Markov chain Monte Carlo
(MCMC) inference be based on a single long run. Gel-
man and Rubin, by contrast, argue that the uncer-
tainty associated with the choice of starting value
should be taken into account by using several runs with
different starting values. However; this uncertainty
seems to be small in most statistical problems, given
a realistically large number of MCMC iterations.

Nevertheless, a bad starting value can lead to slow
convergence. This can be diagnosed from one run and
rectified by changing the starting value. Diagnostics
should monitor all the key features of the model, such
as hyperparameters in hierarchical models, as well as

Adrian E. Raftery is Professor of Statistics and Sociol-
ogy and Steven M. Lewis is a Ph.D. candidate. Both
at the Department of Statistics, GN-22, University of
Washington, Seattle, Washington 98195.

a selection of less essential features such as random
effects. If only the quantities of interest are monitored,
lack of convergence can be missed.

By the same token, Geyer’s time-series variance esti-
mation methods can give misleading results in the
absence of diagnostics. There seems to be no reason to
abandon standard spectral analysis methods in favor
of Geyer’s initial sequence estimators. Many Bayesian
statistical problems boil down to the calculation of
quantiles of marginal posterior distributions of quanti-
ties of interest, and then there are simpler methods
that do not have the problem of sensitivity to a spectral
window width. Methods based on quantiles also yield
simple and effective diagnostics.

2. MULTISTART OR ONE LONG RUN?

Gelman and Rubin advocate multistart and describe
a way of choosing the starting values that uses some

" combination of numerical optimization, EM, iterative

ECM, numerical second derivatives, importance resam-
pling and simulation from a mixture of multivariate
t-distributions—all before even starting the MCMC
algorithm proper. Is this feasible? And is it really
necessary? The main argument for multistart is that
BV/(BV + WV) can be large, where BV is the between-
run component of the variance of the estimate of a
functional of the posterior distribution and WV is the
within-run component. In our observation, this is
rarely the case for standard statistical models with a
realistically large number of MCMC iterations, and we
would like to see at least one convincing example. As
Geyer shows, a single long run works well in Gelman
and Rubin’s own example. (We use the term “standard
statistical model” loosely but broadly; it includes, at
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least, heirarchical models where, at each level of the
hierarchy, parameters or observations are (condition-
ally) independently distributed with standard distribu-
tions such as normal, t, gamma, Poisson or binomial.
It certainly includes the Gelman and Rubin example.
It probably excludes some models with strong depen-
dence that arise in spatial statistics, expert systems
and genetic pedigree analysis.)

One long run is not always good enough, however.
A poorly chosen starting value may well lead to slow
convergence, and diagnostics based on a single run
usually show this clearly (see Section 4). Changing the
starting value can solve this; in our experience, simple
trial and error has worked fine. One example is given
in Section 4. Another example is the Ising model,
analyzed by Gelman and Rubin (1992). There a poor
starting value leads to slow convergence, but diagnos-
tics for a single run based on Raftery and Lewis (1992)
show this clearly, and the problem is easily solved by
taking another starting value. Thus restart seems to
work as well as multistart and is much easier to imple-
ment.

Many complex statistical models can be analyzed
using MCMC if they are recast as hierarchical models,
and there the starting value problem can be acute. If
the starting value for the random effects variance or
equivalent parameter (6% in the Gelman and Rubin
example) is close to zero, then componentwise MCMC
(such as the Gibbs sampler) can get stuck for a long
time close to the starting value. Single-run diagnostics
for the random effects variance will reveal this immedi-
ately, but the series for other quantities such as the
random effects themselves (a; in the Gelman and Rubin
example) can be almost uncorrelated and give no hint
of trouble. Thus, diagnostics that look only at the
quantities of primary interest may miss lack of conver-
gence.

Since the starting value can have an important effect
on the performance of a MCMC algorithm, there is
certainly advantage to a systematic search for good
starting values, and the Gelman and Rubin method
achieves this for many models. Our point is simply
that the Gelman and Rubin method is demanding and
may not even be feasible and that much simpler ad
hoc methods based on single-run diagnostics seem in
practice to work quite well. An insistence that the
Gelman and Rubin methods be used would impose a
big extra burden on users and discourage the use of
MCMC; the evidence so far does not seem to justify
such an insistence. :

Some of the hardest situations are when a discrete
distribution is being simulated using a nearly reducible
Markov chain in areas such as genetic pedigree analy-
sis (Sheehan and Thomas, 1992) and expert systems
(Spiegelhalter, 1988). However, the Gelman and Rubin
approach is designed for continuous distributions, and

we find it hard to see how it would be applied, for
example, to the genetics problem of Sheehan and
Thomas (1992).

3. OUTPUT ANALYSIS AND DIAGNOSTICS

Geyer suggests time-series variance estimation
methods. In the absence of diagnostics, his methods
can dramatically underestimate the variance, in spite
of the asymptotic result in his Theorem 3.2; see Section
4 for an example. The variance is equal to the spectrum
at zero, and Geyer uses the truncated periodogram
spectral estimator. This is generally agreed to be a
poor spectral estimator (Priestley, 1981, Section 7.5),
and it can lead the variance estimate to be quite sensi-
tive to the choice of window “width”; see, for example,
Section 4.

One good spectral estimator is based on the Tukey-
Hanning lag window, which leads to w,(t) = (1/2)-
{(1 + cos(nt/K)} for |t| < K and 0 otherwise in Geyer’s
Equation (3.2). One may choose K so that 9,; ~ 0 for
[t| > K (Priestley, 1981, p. 539). While this sounds a
little vague, the estimated variance seems to be fairly
insensitive to the precise value used.

It can be argued that many Bayesian estimation
problems reduce to finding posterior quantiles of quan-
tiles of interest. In that case, the output analysis prob-
lem is simpler because we have to deal only with binary
sequences. Raftery and Lewis (1992) proposed a way
of finding the number of iterations needed to achieve
a given precision in this case, based on an initial run.
(A Fortran program to implement this method can be
obtained by sending an e-mail message to statlib@stat.
cmu.edu consisting of the single line “send gibbsit
from general.”) This avoids the window width selection
problem. The method finds the number of iterations
needed to estimate P[U< u | data] to within *r with
probability s when the correct answer is q, where U is
a quantity of interest. It returns the number, M, of

-initial iterations to be discarded, the number, N, of

additional iterations required, and %, where every kth
iterate is used.

This method also yields diagnostics. One can deter-
mine in advance the minimum number of iterations
needed, Nmin, and so I = (M + N)/Npui, measures the
increase in the number of iterations due to dependence
in the sequence. Values of I much greater than 1 indi-
cate a high level of dependence. Our limited experience
to date suggests that values of I greater than about
5 often indicate problems that can be alleviated by
changing the implementation. Such dependence can be
due to a bad starting value (in which case other starting
values should be tried), to high posterior correlations
(which can be remedied by crude correlation-removing
transformations) or to “stickiness” in the Markov chain
(sometimes removable by changing the MCMC algo-
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rithm). It may seem surprising that a bad starting
value can lead to high values of N as well as M. This
happens because progress away from a bad starting
value tends to be slow and gradual, leading to a highly
autocorrelated sequence and high values of N.

The method should be applied to extreme (e.g., .025
and .975 or .05 and .95) posterior quantiles of quantities
of interest and also to other key parameters such as
hyperparameters in hierarchical models. The overall
maximum value of N should be used if the starting
value or the MCMC algrithm is not changed.

4. EXAMPLE

We illustrate these ideas with an example from the
analysis of longitudinal World Fertility Survey data
(Raftery, Lewis and Aghajanian, 1992; Lewis, 1992).
The data are complete birth histories for about 5,000
Iranian women, and here we focus on the estimation
of unobserved heterogeneity. Let 7;; be the probability
that woman i had a child in calendar year t. Then a
simplified version of the model used is

log(ﬂit/(]. - ﬂit)) =ﬁ+ a;,

a; ~ N(0,0?), a; areiid.

1)

49

The prior on the hyperparameters is p(f, ¢?) « o~ %

The a/s are random effects representing unobserved
sources of heterogeneity in fertility such as fecundabil-
ity and coital frequency. There are also measured covar-
iates in the model, but these are omitted here for ease
of exposition.

Figure 1 shows a run of a MCMC algorithm starting
with a value of ¢? close to zero, namely ¢ = 1075, and
with values of the a/s randomly generated from N(0,
107%). (In Figures 1 and 2, the starting value has been
omitted for reasons of scaling, and § has been kept
constant at a value estimated from the model without
random effects.) The o2 series seems highly autocorre-
lated and the Raftery and Lewis (1992) method con-
firms this. With ¢ = 0.025, r = 0.0125 and s = 0.95,
we obtain N=4,178, =2 and M = 34. Here
Nomin = 600, so that I = 7.0. The high value of I and
the trendlike appearance of Figure la suggest that
there is a starting value problem. By contrast, the
values of ase;; in the same run are much less correlated
(Figure 1b) with I = 2.4, so that diagnostics based on
that series alone would mislead.

Figure 2 shows three other series of ¢? from different
starting values, illustrating a simple trial-and-error ap-
proach to the choice of an adequate starting value.
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Fic. 1. MCMC output for the model in (1) for the Iranian World Fertility Survey data starting with a® = 107°: (a) series of o values;
(b) series of values of ase, the random effect for woman 3911 in the survey.
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1; (c) o2 = 0.25.

Figure 2a starts with ¢> = 0.1, and the method of
Raftery and Lewis (1992) yields I = 5.5, which is still
unsatisfactory. The plot suggests that the starting
value is too low. Figure 2b starts with ¢* = 1.0 and
has I = 5.6; clearly the starting value is now too high.
Figure 2c starts with ¢ = 0.256 and has I = 2.1; the
results of this trajectory all seem quite satisfactory.
This example also sheds some light on time-series
variance estimation. Figure 8 shows the autocorrela-
tion functions of the o series in Figure la (the bad
starting value) and Figure 2c (the “good” starting
value). For Figure 1a, all the initial sequence variance

300

T T T

400 500 600

©
F16. 2. Values of o° for three runs of the same MCMC algorithm as in Figure 1, with different starting values: (a) a?=0.1;()ad’=

estimates are about 2.2 X 107%, while the Tukey-
Hanning estimate with K = 43 is 0.5 X 1078 One
would expect the series in Figure la eventually to
converge to something like Figure 2c. For the latter,
the initial positive sequence estimate is 5.9 X 1073,
the initial monotone sequence estimate is 3.8 X 1073
and the Tukey-Hanning estimate with K = 27 is
1.9 X 1073,

Thus, variance estimation based on Figure 1a would
underestimate the variance by a factor of over 10,000!
This shows the dangers of relying on stationary time-
series theory without diagnostics. Of course, diagnos-
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Fic. 3. Autocorrelation functions for the o? series starting at (a) 107° (Figure 1a); (b) 0.25 (Figure 2c).

tics would immediately show that a bad starting value
had been chosen. Also, the initial sequence estimators
~ can be quite different from one another; this is because

the truncated periodogram variance estimator is quite
sensitive to the choice of window width. There seems
to be no need to abandon the standard methods of
spectral analysis, which would indicate using the
Tukey-Hanning window or something similar. In this
example, the initial positive sequence estimator was
bigger than the Tukey-Hanning estimator by a factor
of at least three. .

This example bears out our main points. It is im-
portant to monitor the MCMC run for all the key
parameters and to start again with different starting
values when the diagnostics suggest doing this. We
have not yet come across examples that convince us
that complicated ways of finding starting values are

necessary; simple trial and error has worked fine in
almost all the cases that we are aware of, and in the
cases where it has not (e.g., Sheehan and Thomas,
1992), the Gelman and Rubin method seems unlikely
to help either, and special methods must be devised.
For most statistical problems there seems to be little
need to take account formally of uncertainty about
the starting value. Output analysis methods based on
quantiles yield diagnostics that seem to work well. In
the absence of diagnostics, time-series variance estima-
tion methods can be quite misleading.
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