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ratios and analogous higher order moments leads to
greater efficiency than some other approach to estimat-
ing V.. As the authors point out, the proposed likeli-
hood estimator is a GEE estimator with a particular
choice of variance matrix to weight the residuals. If the
assumed variance matrix is close to the true variance
matrix, the estimator will be nearly efficient; the degree
of inefficiency is a simple function of the degree of
misweighting as detailed in the paper.

In Figure 1, FLR present the degree of inefficiency
that results from assuming the correlation is constant
across individuals when it is not. First note that the
conditional log odds ratio w ranges from 0 to 10 in
this illustration so that the odds ratios range between
1 and 22,026. Also, the third order term is fixed at
Kk = 38 so that the pairwise correlations are substantial
at every value of w. For example, the correlation be-
tween the first two observations p,2 ranges as a func-
tion of the x values between 0.43 and 0.55 when w =
0 and between 0.60 and 0.98 when w = 6. Note in
Figure 1 that assuming constant correlation with w =
0 (true correlations between 0.43 to 0.55) gives a nearly
efficient estimate. This is because the correlations do
not vary substantially and so the working variance
matrix is nearly correct. Assuming the correlations are
constant when they vary as a function of x between
0.6 and 0.98 (w = 6) leads to inefficient estimates. This
should be no surprise. When correlations are this high
and vary so dramatically with x, they must be modelled
as a function of x to get reasonably efficient inferences
as has been done in Liang, Zeger and Qaqish (1992)
and Carey, Zeger and Diggle (1993).

To produce the high degree of correlation and depen-
dence on x, we believe an unrealistic dependence struc-
ture has been assumed. FLR have set the third order
term x = 3. This means that when w = 0, OR(y;1, y:2 |
vis = 0) = 1 and OR(yu1, y2 | yi3 = 1) = exp(3) = 20.
Hence there is no association between the first two
observations if the third value is 0 but an enormous

Rejoinder

Garrett M. Fitzmaurice, Nan M. Laird and Andrea G.

We thank all of the discussants for their contribu-
tions. We will restrict most of our comments to four
issues.

MARGINAL REGRESSION MODELS WITH
STOCHASTIC TIME-VARYING COVARIATES

We are in complete agreement with the comments
on the role of marginal models made by Drum and
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positive association if the third value is 1. Is this
realistic?

The challenge given to the FLR estimator which
assumes constant conditional odds ratios is to assume
constant correlations that range from 0 to 0.45. Note
that the entire x-axis in Figure 2 corresponds to correla-
tions that are smaller than the left most point of Figure
1 (w = 0). To illustrate the potential inefficiency of the
FLR estimator, we must let the conditional odds ratios
vary with the xs and use an estimator that assumes
they are constant. An arbitrary degree of inefficiency
can be produced in this way.

To recap our comments on efficiency, the FLR likeli-
hood estimator is a special case of the GEE approach
where the variance matrix has been specified in terms
of conditional moments in such a way that the resulting
equation is the score equation for a log-linear model.
As a GEE estimator, it will be efficient when the assumed
covariance matrix is close to the truth and inefficient
when not. The same is true for any GEE estimator
regardless of the approach to specifying the weighting
matrix.

We once again congratulate FLR for their interesting
and important paper. We look forward to the opportu-
nity to use their methodology to analyze balanced data
sets in problems where the regression parameters are
the focus. Clinical trials is an area of application where
this approach can be particularly important. We also
concur with them that ignoring correlation when it is
substantial is problematic even if robust variances are
estimated. Their subsection 3.1 shows that grossly
misspecifying the weighting matrix when using GEE
can lead to inefficient estimates. We look forward to
additional efficiency studies based upon more realistic
data sets. Finally, while we have not addressed the
missing data issue, we are aware of interesting recent
work by one of the authors (Rotnitzky) and coworkers
on handling missing at random data in the general
GEE framework.

Rotnitzky

McCullagh. A related issue is the role of covariates in a
longitudinal study. Our paper focused on nonstochastic
covariates and the discussants’ comments relate to
settings where the covariates are time-stationary.
However, when the covariates are both time-varying
and stochastic, new issues arise regarding the interpre-
tation and the estimation of the parameters of marginal
models. These parameters may not have the implied
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causal interpretation even if the marginal models are
correctly specified. In addition, both the GEE and
mixed parameter model estimators of the parameters
of correctly specified marginal models may be inconsis-
tent, regardless of whether or not the parameters have
a causal interpretation.

To illustrate our points, consider the study described
by Drum and McCullagh, but suppose now that the
outcomes of interest are duration of pregnancy, Z, and
infant morbidity at the first month of life, Y. For
simplicity of exposition, we consider Z and Y to be
dichotomous indicators of premature birth and child
illness, respectively, and that the study was restricted
to women of the same age, so that X, is constant.
Suppose now that in addition to the smoking status
during pregnancy, Xi1, the study also collects informa-
tion on maternal smoking status during the first month
after childbirth, X;.. For simplicity, we assume X,
and X, are binary variables. As indicated by Drum
and McCullagh, a marginal regression model for the
dependence of Z on X;; and Y on X;; and X, is often
used to answer public-policy-related questions. Thus,
suppose that we have correctly assumed the logistic
regression models

(1) E(Z)X11) =1 + exp(—a1 — asX11)]™?
(2)  E(Y|X11,X12) =[1 + exp(—p1 — BeX11 — s X12)] 7L

The benefits of a maternal smoking reduction interven-
tion program are quantified by the causal effects of
maternal smoking on infant morbidity.

One approach to specifying causal effects in this
setting is through the use of counterfactual variables
(Rubin, 1978; Robins, 1989). Consider the, possibly coun-
terfactual, variable Y to be the health status of the
ith child at one month of age had his or her mother
never smoked since the start of pregnancy. Similarly,
define Y to be the ith child’s health status at one
month of age had his or her mother continuously
smoked since the start of pregnancy. The morbidity
rate at age one month had all mothers smoked continu-
ously since the beginning of pregnancy is given by
pV = E(YY"). Similarly, p® = E(YY) is the morbidity
rate in the absence of smoking. Robins (1989) suggests
specifying the causal effects of maternal smoking as
some function of p! and p'%, such as (p¥ — p") or the
log odds ratio (logit p'¥ — logit p"). Since Y\” and
Y are not simultaneously observed, p'® and p' are
not identified without additional assumptions. Robins
(1987, 1989) shows that p'© and p"*) are identified pro-
vided Xi; is independent of - Y and Y, and Xi; is
independent of Y and Y!" conditional on Xi; and Z.
Robins (1993) and Robins and Hu (1993) refer to this
as the assumption of no unmeasured confounders.

If duration of pregnancy is not a predictor of child
morbidity conditional on smoking history, that is,

@) E(Y|Z,X11, X12) = E(Y|X11, X12),

or duration of pregnancy is not a predictor of smoking
after pregnancy conditional on pregnancy smoking sta-
tus, that is,

(4) E(X12|Z, X11) = E(X12|X11),

then, as pointed out by Robins and Hu (1993), the
parameters (8, B2, B5) of the logistic regression model
(2) have a causal interpretation. The causal effect of con-
tinuous smoking exposure compared to the absence of
maternal smoking exposure is to increase the log odds
ratio, (logit p™ — logit p'%), by the amount 8; + fs.
When (4) holds, the time-dependent exposure Xi.
(t = 1,2) is said to be an external covariate process
(Kalbfleisch and Prentice, 1980). In this case, the GEE
estimators for the parameters of models (1) and (2) are
consistent. Furthermore, the mixed parameter model
estimators are consistent, when the likelihood which
explicitly assumes (4) is correctly specified. However,
when (4) is not true but (3) is true, Robins and Hu
(1993) showed that the GEE estimators of § are consis-
tent only when the working correlation structure is the
identity matrix, and in this case they are maximum
likelihood under an independence model. When both
(3) aud (4) are false, the parameters  do not have a
causal interpretation even when model (1) and (2) are
correctly specified, since duration of pregnancy is both
a predictor of exposure to maternal smoking and an
independent risk factor for child illness. When risk
factors for morbidity reduce subsequent exposure, ex-
posure-specific morbidity rates tend to underestimate
the true effect of exposure on the probability of illness.
For example, the observed proportion of sick children
of mothers who continuously smoked, that is, with
X1 = X3z = 1, will be an underestimate of p™ if
mothers of premature children tend to stop smoking
after birth and premature children have higher morbid-
ity rates than full-term children. Approaches to esti-
mating the causal effects of exposure, (p"! — p®), under
the assumption of no unmeasured confounders are de-

" scribed in Robins (1987, 1989, 1993) and Robins and

Hu (1993).

EFFICIENCY RESULTS

We completely agree with Zeger, Liang and Heag-
erty that the results in Section 3 illustrate how the
degree of efficiency of the GEE estimator is a function
of how close the assumed or “working” covariance is
to the true covariance between the responses. Zeger,
Liang and Heagerty criticize our choice of Q in Figure
1 as being unrealistic. While our choice of values was
very extreme, Figure 1 nevertheless provides a striking
illustration of the loss of efficiency for the GEE estima-
tor when the assumed covariance is substantially
different than the true covariance. Indeed, a more “rea-
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sonable” choice of values would yield correlations that
do not vary so substantially across individuals, and
estimators that assume constant correlation across
individuals will be nearly efficient in this case. Note,
however, that the “working independence” estimators
will still tend to be quite inefficient.

In Figure 2, results are presented for quite a narrow
range of constant correlations (0-0.45). This choice of
values was constrained by the means of the binary
responses. That is, the correlations were constrained
to this narrow range by the choice of marginal probabil-
ities. However, even with this restricted range of con-
stant correlations, the conditional odds ratios did vary
across individuals. For example, when p = 0.45 the
conditional odds ratio, OR(y:1y:2|y:s = 0), varied from
2.9 to 7.8. We agree with Zeger, Liang and Heagerty
that the challenge to the estimators that assume con-
stant conditional odds ratios is not quite as extreme
as that posed in Figure 1. We also agree that the
potential inefficiency of the estimators that assume
constant conditional odds ratios could be demonstrated
by allowing the conditional odds ratios to vary with
covariates. However, we want to emphasize that the
availability of likelihood-ratio tests for the association
parameters would minimize misspecification of this
kind in practice.

Finally, we wish to emphasize that the degree of
efficiency of the GEE estimator is both a function
of how close the assumed covariance is to the true
covariance and a function of the design matrix. For
many designs, there may be no discernible loss of
efficiency even when the assumed covariance structure
is independence between the responses. However, for
designs which include time-varying covariates, it ap-
pears to be much more important to obtain a close
approximation to the true covariance in order to obtain
high efficiency.

PARAMETER INTERPRETATION

Prentice and Mancl raise concerns about the mixed
parameter model because of the lack of reproducibility
of its association parameters. Their point is an im-
portant one when modelling data from clusters of un-
equal size. In that setting, we agree that one would
not want to use the mixed parameter model. Because
the association parameters have interpretation in
terms of conditional probabilities, their interpretation
rests on there being the same number of responses
available to each experimental unit. However, the ap-
proach outlined in our paper is presented in the context
of longitudinal studies where the number of responses
for each individual is the same. In this setting, both the
mixed parameter model and the quadratic exponential
model are potentially useful models and the choice
between them ought to be determined in part by the

scientific question one wants to answer. If the focus
is on answering questions concerning the association
among the repeated outcomes, then we agree that the
mixed parameter model should not be used, although
it is not evident to us that the quadratic exponential
model is best for this case. However, if the goal is to
estimate the marginal means of the repeated outcomes,
as was the focus of our paper, then one is concerned
with two issues: robustness of estimation to misspeci-
fication of second and higher order moments and asso-
ciations, and the efficiency of the estimators.

As we argued in our paper, the MLE of the mean
parameters under the mixed parameter model is consis-
tent even when the model for the second and higher
order associations is misspecified. In contrast, the solu-
tion of (2) (here and throughout this section, equation
numbers refer to those in the Prentice and Mancl dis-
cussion) will fail to converge in probability to the true
mean parameters when the model for the second mo-
ments is incorrect. If the focus is on efficiency in the
estimation of the mean parameters, then the MLE
under the mixed parameter model will be fully efficient
of course if the model is correctly specified. If the
investigator firmly believes that the quadratic expo-
nential model is true and that the model for the vari-
ance-covariance parameters is correct, then equation
(2) should be used for estimating the marginal mean
parameters, since the resulting estimator will exploit
all the information about the mean parameters in the
second moment parameters.

Instead, Prentice and Mancl recommend using the
estimating equation given by (3) arguing that based
on a simulation study little loss of efficiency was found.
We believe that these findings heavily depend on the
choice of design matrix and parameter values. A closer
look at (3) reveals that the estimator of the mean
parameters is solely obtained from the first estimating
equation which in turn is identical to the score equation
for the mean parameters under the mixed parameter
model. The difference now is how the unknown parame-

. ters in the true variance-covariance matrix are esti-

mated. The investigator who uses the model that better
approximates the true variance-covariance matrix will
obtain the most efficient estimator of the mean parame-
ters. Prentice and Mancl use the estimator of the vari-
ance-covariance parameters resulting from the second
set of equations in (3). This estimator will be consistent,
and the resulting estimator of the mean parameters
can be more efficient than the mixed parameter model
estimator, only when the assumed model for the second
moments is correctly specified. As was demonstrated
in our paper (Figure 1), this estimator can be highly
inefficient when the mixed parameter model holds in-
stead.

Finally, Prentice and Mancl argue that our method
does not provide an attractive approach to covariance
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model building. It is true that models for the associa-
tion parameters as functions of covariates will not in
general translate into easily interpretable models for
the covariance parameters. However, we emphasize
that the focus of our approach is on obtaining efficient
estimates of the mean parameters, while the associa-
tion parameters are regarded as nuisance characteris-
tics of the data.

MISSING DATA

We would like to respond to Prentice and Mancl on
the problem of inference with missing data by ad-
dressing two issues raised by these authors. The first
concerns the advantage of using the mixed parameter
model as opposed to the quadratic exponential model
with regards to protection against misspecification
bias. The answer here is simple. With repeated binary
data the latter is a special case of the former. Thus,
for example, model (1) with cx(y:) = 0 is the same as
model (4) with ci(y:, A) = wrd and A = 0. Thus, model
(4) is preferable since misspecification of model (4) im-
plies that model (1) is misspecified but the opposite is
not true.

Our second point concerns the comments Prentice
and Mancl made regarding the need to use parametric
likelihood procedures when the data is missing at ran-
dom. In recent work, Robins and Rotnitzky (1992,
1993) and Robins, Rotnitzky and Zhao (1993) describe
a new class of semiparametric estimators that are con-
sistent for estimating the mean parameters when the
data is missing at random. Their estimators are based
on inverse probability weighted estimating equations
and can be viewed as an extension of the GEE estima-
tors of Liang and Zegér (1986). In contrast to a likeli-
hood approach, with their method one does not need
to specify the complete data likelihood. However, their
approach requires correct specification of the probabil-
ity of response given the observed data. Thus, their
method will be particularly appealing for analysing
repeated binary data in settings where there is little
knowledge about the model linking the second and
higher order associations or moment parameters, but a
model for the nonresponse process can be satisfactorily
posed.

MISCELLANEOUS COMMENTS

In response to Prentice and Mancl, we do believe
that many of the issues discussed in our paper are tied
specifically to binary data and are not directly relevant
to the general continuous case. Although, in principle,

we can specify likelihoods following the mixed parame-
ter representation, when the data are binary, the prob-
lem has a number of unique features:

1. The covariance parameters are functions of the
marginal means, and hence the regression param-
eters; this introduces dependencies in the parame-
ter space which are not necessarily present with
continuous outcomes.

2. The A parameters have interpretation in terms of
conditional log odds-ratios.

3. The multinomial distribution can be fully speci-
fied with only a finite number of A parameters.

4. The iterative proportional fitting algorithm pro-
vides a convenient computational tool.

Finally, in passing, we note that A is not assumed
constant but can depend on individual-level covariates.
In conclusion, we thank, once again, all of the discus-
sants for their thoughtful and constructive comments.
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