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erties that will terminate as a result of F; from those
that will persist despite of acting F;. Such a model of
persistence was invoked in (Pearl, 1993b); there, it was
assumed that only those properties should persist that
are not under any causal influence to terminate. This
assumption yields formulas for the effect of conditional
interventions (conditioned on the observation C) which,
again, given I', can be estimated from nonexperimental
data.

A more ambitious task has been explored by Spirtes,
Glymour and Scheines, (1993) —estimation of the effect
of intervention when the structure of I is not available
and must also be inferred from the data. Recent devel-
opments in graphical models (Pearl and Verma, 1991;
Spirtes, Glymour and Scheines, 1993) have produced
methods that, under certain conditions, permit us to
infer plausible causal structures from nonexperimental
data, albeit with a weaker set of guarantees than those
obtained through controlled randomized experiments.
These guarantees fall into two categories: minimality
and stability (Pearl and Verma, 1991). Minimality guar-
antees that any other structure compatible with the
data is necessarily more redundant, and hence less
trustworthy, than the one(s) inferred. Stability ensures
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It is a pleasure to discuss these excellent papers.
Spiegelhalter, Dawid, Lauritzen and Cowell nicely put
together a number of themes, demonstrating, in a Bayes-
ian context, the utility of graphical modelling in the
construction of probabilistic expert systems. The au-
thors show how graphs can be used heuristically to
solicit expert opinion, and in Section 6, how the theory
of conditional independence graphs can be used to
make tractable (while maintaining reasonable substan-
tive assumptions) the calculation of probabilistic fea-
tures of the system (monitors). For example, the authors
want to apply to the directed independence graph of
their Figure 2 the decomposability theorem for undi-
rected conditional independence graphs, which permits
a full factorization of the probability distribution. To
do so, they associate the graph of Figure 2 with its
moral graph (an undirected conditional independence
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that any alternative structure compatible with the data
must be less stable than the one(s) inferred; namely,
slight fluctuations in the distributions of the distur-
bances ¢; (2) will render that structure no longer com-
patible with the data.

When the structure of I' is to be inferred under
these guarantees, the formulas governing the effects
of interventions and the conditions required for esti-
mating these effects become rather complex (Spirtes,
Glymour and Scheines, 1993). Alternatively, one can
produce bounds on the effect of interventions by taking
representative samples of inferred structures and esti-
mating P(x;) according to (10) for each such sample.

In summary, I hope my comments convince the
reader that DAGs can be used not only for specifying
assumptions of conditional independence but also as a
formal language for organizing claims about external
interventions and their interactions. I hope to have
demonstrated as well that DAGs can serve as an ana-
lytical tool for predicting, from nonexperimental data,
the effect of actions (given substantive causal knowl-
edge), for specifying and testing conditions under
which randomized experiments are not necessary and
for aiding experimental design and model selection.

graph) and use the fact that the separation properties
of the moral graph apply to the directed independence
graph. They then embed the moral graph into a triangu-
lated graph, enabling use of the desired theorem; fur-
ther simplications come from organizing the cliques of
the triangulated graph into junction trees.

. My vantage point is that of a social statistician: as
such, there is more for me to say about the paper by
Cox and Wermuth. In particular, I want to expand on
and further tie several themes in this paper to research
in the social and behavioral sciences. Thus, discussion
focuses primarily on this paper; I shall often freely
borrow notation from there.

TYPES OF INDEPENDENCE GRAPHS

Cox and Wermuth nicely characterize various types
of dependencies among random variables. Prior work
has focused attention on two types of independence
graphs. If no ordering is imposed on the variables,
undirected graphs are used; here, the absence of an
edge between two vertices denotes conditional indepen-
dence of the variables associated with the vertices,
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given all the remaining variables. In a normal theory
context, this corresponds to a 0 in the concentration
matrix of the variables; thus, Cox and Wermuth call
this a concentration graph. If some variables are taken
as ordered with respect to others, for example, a set
of variables viewed as independent is temporally prior
to a set viewed as dependent, a different type of theory
is useful. For this case, vertices can be placed within
blocks and blocks arrayed from left to right; there is
no ordering within blocks, but given a vertex and its
associated random variable, vertices in blocks to the
right denote prior (temporally or otherwise) random
variables. By virtue of this ordering, we are not typi-
cally interested in the distribution of a variable X in
a block, conditioning on all other variables, but in the
distribution of X, conditioning on variables in blocks
to the right (prior variables), or conditioning on prior
variables and other variables in the same block. The
latter case has received a great deal of attention. Here,
edges between variables within a block are undirected,
and edges between variables in different blocks, de-
noted by arrows pointing to the left, are directed. The
absence of an arrow (or undirected edge if / = m below)
from vertex i in block I to vertex j in block m denotes
conditional independence of X; and X, conditioning on
all remaining variables in blocks 1, ... m; one might
think of the conditioning set as containing prior and
“present” variables. When X is viewed as dependent,
it's relationship to X; is measured by the partial regres-
sion coefficient f.;.;.zr, Where R denotes all remaining
vertices in blocks 1, ..., m; the regression is called a
block regression.

Cox and Wermuth also take up the case where the
conditioning set consists of prior variables, using dashed
edges in their graphs to distinguish this case from that
above (where edges are full). With the same block
structure and variables as above, the absence of a dashed
arrow (dashed undirected edge if [ = m) from i to j
denotes independence of X; and Xj, conditional on all
remaining variables in blocks 1, ..., m — 1;if l = m,
the X; — X, relationship can be measured by the par-
tial correlation, given the variables in blocks 1, ...,
m — 1; otherwise, with X; dependent, this relation-
‘ship is measured by the partial regression coefficient
Byixj-xp+, Where R* denotes all remaining vertices in
blocks 1,...,m — 1; the regression is called a multivar-
iate regression.

The authors use the three types of independence
graphs to illustrate the large number of ways in which
the dependence structure of a set of random variables
might be characterized. For. example, their Figure 1
shows six different probabilistically equivalent ways
of specifying a saturated model for just three variables.
Subsequently, they exposit eight different types of
dependence structures for four variables, using empiri-
cal examples to illustrate many of these. In each exam-

ple, both substantive considerations and statistical
evidence are used to select a model, but the data are
not allowed to override substantive knowledge and/or
interests. Example 2 features this nicely; the correla-
tions and concentrations in Table 2 initially suggest a
different model than that ultimately selected.

I look forward to seeing further developments in the
theory of dashed independence graphs employed by
Cox and Wermuth. This important case, apparently
neglected in earlier work, is relevant to decision makers
and planners, whose predictions depend on past infor-
mation, not also on information contemporaneous with
the time to which the prediction refers, and it is at
least as relevant to social and behavioral scientists as
the cases above. For example, multiple versions of
the response are sometimes recorded in experiments
(Winer, 1971). Here, a researcher typically wants to
know the relationship between the response and the
experimental variable, perhaps conditioning on a covar-
iate vector, but certainly not also conditioning on the
remaining versions of the response. Alternatively, in
many studies, both experimental and nonexperimental,
one measures a set of responses that are theoretically
connected to a set of prior variables, but the responses
are not so connected. For example, if interest centers
on the educational attainments of siblings (or husbands
and wives), one wants to know the partial regression
coefficients relating the responses to family background
variables. One might also want to know the relation-
ship between the educational attainments, as measured
by the partial correlation coefficient, conditioning on
background variables. Again, the partial regression
coefficients that also condition on the educational at-
tainments of other siblings (or other spouse) are typi-
cally not of interest.

SIMULTANEOUS EQUATION MODELS

Cox and Wermuth have reservations about the use
of simultaneous equation models featuring (see their
Figure 4) coefficients ., and y,. between “jointly deter-
mined” variables X and Y. For the model depicted in
Figure 4, the authors point out that missing edges in
the path diagram (graphical representation of the
model) do not typically correspond to conditional inde-
pendencies, and they argue that the interpretation of
model parameters is problematic. (Note that their re-
marks would also hold if only one of the foregoing
coefficients was nonzero and the errors were corre-
lated.) They conclude that meaningful interpretations
of the parameters of simultaneous equation models,
when these exist, have to be developed on a case-by-
case basis, a conclusion that challenges the conven-
tional wisdom (in the social and behavioral sciences)
on how such parameters are to be interpreted. Further
examination of the conventional wisdom therefore
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seems worthwhile: the following look, while very brief,
adds weight to Cox and Wermuth’s conclusion.

In sociology and psychology (and also in some econo-
metric work and papers on graphical models), it is not
unusual to see the argument that y., and y,. capture
reciprocal causation. Becaue the concept of causation
is asymmetrical, this does not make sense.

A more standard interpretation in economics is that
structural parameters capture fundamental aspects of
" the behavior of economic agents. These parameters are
preferred to the reduced form parameters; a single
change in a structural parameter can change many re-
duced form parameters. Some economists, however, do
not find this view compelling. For further criticism, as
well as review of relevant literature, see Sobel (1994).

Another interpretation, due essentially to Strotz and
Wold (1960), used in econometrics (e.g., Fisher, 1970)
and psychometrics (Sobel, 1990), is that the underlying
model is recursive:

Y, = )’yvV + Pyxitt—1 + €y,

1)
Xt = ywa + ynyt—l + Ex .

This is a linear dynamical system in discrete time with
fixed coefficients; under suitable conditions Y+, and
X.+r converge, as r gets large, to values Y and X
respectively. Under this interpretation, both y,. and
¥xy are regression coefficients in (1). However, note the
errors are constant over time, which seems substan-
tively unreasonable.

The foregoing supports Cox and Wermuth’s view
that despite frequent use, parameters of simultaneous
equation models tend to elude meaningful interpreta-
tion. To balance the discussion a bit, without denying
the general point, I ¢an think of occasional examples
where one would clearly want to use such a model to
get the right interpretation. Let

Y =9y, V+ pX*+ 8,
X =y, ,W+ yny* + &,

with (V, W, X* Y*) 1l (§,&), and |l denotes inde-
pendence. To fix ideas, suppose that (V, W, X* Y*)
. are temporally prior to (X,Y), and X* and Y* are
anticipated (and unfortunately unobserved) values of
X and Y, respectively. Thus, the researcher considers:

Y=y,V+9.X+e¢,
X =W + Y + &,

()

@)

where &, = &, — Pya0x, 0x = X — X* & = & — Vxy0y,
dy = Y — Y*. Suppose that (V, W, X* Y*) I (Jx, Jy).
Under the setup above, X is correlated with ¢,, Y is
correlated with &, and block regression gives incon-
sistent estimates for the parameters of (2); an excep-
tion is the case where anticipations are perfect, that
is, X = X* Y = Y* Consistent estimates of the

regression coefficients can be obtained by using W and
V as instruments in the first and second equations of
(3), respectively. In this example, note that simultane-
ity arises from measurement error and simultaneous
equation methods are needed to estimate the parame-
ters of the relevant conditional expectation.

Given the problems above, it is useful to recall that
a simultaneous equation model specifies a conditional
distribution f(xs|x:); from this it is evident that the
dependencies can be characterized either by a multi-
variate regression (called the reduced form in economet-
rics) or, if an ordering is imposed on the dependent
variables, by means of a sequence of univariate recur-
sive regressions (called the recursive form in economet-
rics). Following Wold, Cox and Wermuth emphasize
the value of this recursive form.

GRAPHICAL MODELS AND SOCIAL SCIENCE
RESEARCH

Graphical models could be useful in the social sci-
ences, but I am not sure social scientists will pay them
much attention; certainly the review article by Kiiveri
and Speed (1982) in Sociological Methodology went
unnoticed. There are probably several reasons for this.
First, social scientists do not typically think in terms
of probabilistic dependence and independence, condi-
tional or otherwise. In statistical modeling, the social
scientist’s goal is to test hypotheses and arrive at
quantitative estimates of relationships; if a model in
use permits an interpretation in terms of the foregoing
probabilistic concepts, for example, the univariate re-
cursive regressions, that is well and nice, but second-
ary. In many cases, comparisons across groups are
sought; here one typically wants to compare estimates
of various quantities, and knowledge that within group
conditional independence structures are identical (or
not) across groups does not fully answer the primary
questions. Second, following the lead of econometri-
cians, quantitative social scientists argue that they are
modeling processes and testing theories, as opposed
to exploring data structures, and that tools appropriate
for the latter are inappropriate for the former. In that
vein, while Cox and Wermuth demonstrate, via their
examples, the value of using graphical models espe-
cially in exploratory work, quantitative social scien-
tists, who actually do a fair amount of exploratory
work before hitting upon the desired confirmatory
model, often do not acknowledge this exploratory pro-
cess.

Having given a few reasons for doubting that social
scientists will pay much attention to graphical model-
ing, I nevertheless give several examples of how such
models can be useful. First, in many areas of social
science, not that much is known, and it is often useful
to start with an exploratory analysis. Researchers who
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take advantage of graphical models could be led to
systematically explore dependence structures that
they would not otherwise have considered. This may
lead to a model which attempts to pin down the rela-
tionships of interest more precisely. Consideration of
these models could also be useful in so-called confirma-
tory work; the following examination of a typical mod-
eling exercise in covariance structure analysis should
illustrate the point. A researcher begins with a model
of interest. (The case where a nested sequence of mod-
els of interest is entertained at the outset is similar
and thus will not be exposited separately.) One aim of
the analysis is to select a preferred model. Perhaps the
initial model fits the data adequately, using conven-
tional statistical criteria (e.g., the likelihood ratio). In
this case, the analysis is terminated. But now suppose,
as often happens, that this model does not fit the data.
In that event, a researcher who nevertheless prefers
this initial model may shop around for a goodness-of-fit
index (there are many) that suggests the fit is really
good enough after all. If such an index cannot be found
or if the researcher did not look for one, the initial
model is rejected, and typically a search for a better
fitting model begins. There are many ways to conduct
such a search, but typically modification indices, which
tell the user the constrained parameters in the analysis
to free up, are used. After a sequence of such modifica-
tions, an unsaturated model that fits the data by con-
ventional criteria is found, or one of the many possible
versions of the saturated model is obtained. Now of
course this search procedure is nothing but exploratory
analysis, and when used poorly, it leads to a model
that is at best not to be taken seriously. Instead of
looking around for goodness-of-fit indices and modifi-
cation indices (or at least in addition to), a natural
alternative at this stage is to ask whether it is reason-
able to widen the class of searches, and if so, whether
it is reasonable to use graphical models to see if alterna-
tive types of structures, perhaps not initially contem-
plated, may account for the data. If the answer is yes,
with intelligent use, we might find out something new;
of course, if used like some of the indices above, this
will not be the case.

CAUSATION AND CAUSAL INFERENCE

I use the facts that Cox and Wermuth disassociate
their work from causal concepts and Spiegelhalter et
al. use the term “direct influence” to refer to intuitive
judgements of relevance as a license to close with some
remarks on causation and irrélevance; these remarks
are more general in nature, not particularly addressed
to either paper. _

There is a large philosophical literature on causation,
and numerous views have been espoused (including the
view that probabilistic relations have nothing to do

with causation). Thus, the merits of an inference about
causation (hereafter causal inferences) cannot be evalu-
ated unless the concept of causation under consider-
ation has been made clear. Undaunted by this problem,
many researchers in artificial intelligence, decision sci-
ence, philosophy and statistics who write on graphical
models often simply equate the absence (presence) of
a directed edge or a path in an independence graph
with the absence (presence) of causation; in many in-
stances they neither formally define causation by condi-
tional independence nor attempt to say what it is.
Their counterparts in the social and behavioral sciences
utilize path diagrams in a similar way, equating the
presence or absence of parameters or functions of these
with the presence or absence of causation.

Although social and behavioral scientists do not typ-
ically say what causation is, at least among users
of structural equation models there appears to be an
implicit commitment to a manipulative account of the
causal relation, evidenced in the interpretation of
model parameters as unit (or average) effects. For ex-
ample, in the context of a univariate regression,
Byx-xp« is interpreted as the amount Y would increase
for any unit (or on average) if the value of X, say x,
were increased to x + 1, and all remaining variables
(in the conditioning set) were “held” constant. Of
course, these variables are not actually held constant,
but merely conditioned upon, a point I shall ignore
here [but see Sobel (1990)]. If this value is 0, one might
say that X does not cause Y. In the normal theory
context, this is equivalent to conditional independence;
this ties the discussion to treatments in the literature
on graphical models which use conditional indepen-
dence and dependence relations to make causal infer-
ences, arguing that the inferences so obtained will
sustain a manipulative account.

The foregoing types of interpretations are very strong,
and one wonders when these are warranted. To that end,
such interpretations hinge on comparing, for any unit,
its values on the dependent variable(s) as the unit takes

‘on all values of the independent variable(s). The aver-

ages when all units in the population take on the same
value can then be compared with one another, by look-
ing, for example, at average differences. Readers famil-
iar with Rubin’s (1974, 1977, 1978, 1980) work on causal
inference or the review by Holland (1986) will realize
that I have just defined an average effect. Of course,
in practice a unit can be administered only one value
of the causal variable. Nevertheless, when treatment
assignment is random, or random conditional on a
vector of covariates, valid causal inferences can be
obtained by calculating the usual sample quantities
(valid in the sense that the estimator is unbiased and/
or consistent for the desired population quantities).
In Sobel (1992), I introduce the concept of causation
in distribution and use the ideas in Rubin’s model to
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examine the issue of spurious causation. Since spurious
causation is typically defined as a case in which certain
marginal dependencies vanish upon conditjoning, the
results are relevant to literature in graphical modeling
that equates the absence of causation with conditional
independence. The idea behind causation in distribu-
tion is to examine the distribution of the response Y,
when every element of the population has the same
value x on the causal vector (X) and to compare the
distributions as x varies. If the distributions do not
change as x varies, one says X does not cause Y in
distribution and otherwise one says X causes Y in
distribution. For a conditioning set Xz+, I show (1)
X 1l Y | Xg+ does not imply X does not cause Y in
distribution, and (2) X does not cause Y in distribution,
does not imply X 1| Y | Xg.. For example, if Xz« is
prior to variable X, and X prior to variable Y, with no
variables intervening between X and Y, the results
state that X may (or may not) “directly influence” Y
(using the sense of directly influence in the graphical
modelling literature), but X may not (may) cause Y in
distribution. Note also there is no path connecting X
to Y in this example. This should suggest that causal
inferences based on the usual conditional independence
relations do not generally sustain a manipulative ac-
count of the causal relation. Sobel (1992) also gives

Comment

Joe Whittaker

It gave me great pleasure to read these articles. Here
we have two papers on the application of conditional
independence: one to the specification of a graphical
model for assessing association in multivariate re-
sponses and the other to message passing on a directed
graph, in a paper which expertly summarises the proba-
bilistic view of dealing with uncertainty in expert sys-
tems. Right at the outset, let me state my own belief
that it is not so much the graphic display but the
notion of conditional dependence and independence and
the idea of a ternary relationship that X, affects (or is
irrelevant to) X, in the presence of X5, which consti-
tutes the fundamental contribution of graphical models
to statistical analysis.

I particularly want to focus on the Cox and Wermuth
(CW) paper, which I believe raises some unresolved
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necessary and sufficient conditions for equivalence of
conditional independence and causation in distribution.

The foregoing suggests more cautious use of the
term “causation” in future work. Not surprisingly, I
do not like the terms “causal network” and “influence
diagrams”; is not influence just another synonym for
causation? The terms employed by Spiegelhalter et
al. (directed graphical model, belief networks) seem
preferable. Finally, I want to briefly take up the term
“irrelevance,” sometimes defined via structures that
satisfy the axioms of generalized conditional indepen-
dence (Smith, 1988). (Smith uses the term “uninforma-
tive” and is always careful to mention the conditioning
set.) From my view, scientists often allow the connota-
tive aspects of words to creep into their use of technical
terms, and this can be detrimental. Thus, one might
want to choose terms whose connotative aspects are
in accord, as much as possible, with the technical defi-
nition. In that vein, relevance seems to encompass
many things, including causation; for example, the
phrase “causally irrelevant” describes one form of irrele-
vance. Even leaving aside causation, adding informa-
tion to the conditioning set of marginalizing over this
set can make “irrelevant” variables become “relevant”;
should these variables have been called irrelevant to
begin with?

issues, and discuss three topics in more detail: the
value of a graphical representation, the distinction
between multivariate and “block” regression and the
role of the Schur complement as a partial variance.

VALUE OF A GRAPHICAL REPRESENTATION

Few practising statisticians can be unaware of the
immediate and powerful impact of visual display in
conveying the results of a statistical analysis to a
consulting client. A tremendous selling point of graphi-
cal models is the graph: a fact which is well known to
statistical researchers in related areas such as path
analysis, causal modelling, factor analysis and struc-
tural equation modelling. The same lesson can be learnt
from the recently expanding field of neural networks,
where statisticians [for instance, Ripley (1993) and
Cheng and Titterington (1993)] are discovering that
neuroscientists and computer scientists have been busy
proposing neural network formulations of nonlinear
statistical classification methods. While perhaps not



