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Abstract.

This report, prepared in response to a request from the Office of

Naval Research, describes research opportunities in statistics and applied
probability arising in physical oceanographic applications. It is expository,
with the intended audience being statisticians and quantitatively literate
people with a background in statistical applications to science, and federal
agency representatives interested in encouraging such cross-disciplinary

research.

1. OVERVIEW
Introduction
Purpose and scope of this report

Research in oceanography has historically been
pursued to better understand the oceans as, for ex-
ample, avenues to exploration, routes for commerce,
theaters for military operations and components in
the weather system. Today this research is also
done in conjunction with studies on major issues
such as global climate, environmental change and
biodiversity, among many others. Statistical tech-
niques have always been important in the analysis
of oceanographic data. With the recent introduc-
tion of oceanographic observational mechanisms that
yield much larger quantities of data than ever before,
statistical considerations have gained even more
prominence in oceanographic research contexts. Yet
disciplinary distinctions have limited interactions
across discipline boundaries in many national and
global research areas (NRC, 1987, 1990a); tradi-
tional statistics and oceanography are not excep-
tions. To stimulate progress on important research
questions now arising at this interface, more cross-
disciplinary efforts between statistics and oceanog-
raphy are needed. This report is thus presented
to help encourage successful collaborations between
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statistics and oceanography that are focused on po-
tentially fruitful cross-disciplinary research areas.

The report was prepared in response to a request
from the Mathematical Sciences Division of the Of-
fice of Naval Research for a cross-disciplinary report
describing basic research questions in statistics and
applied probability motivated by oceanographic ap-
plications. The request reflects ONR’s desire to call
such questions to the attention of research statisti-
cians and to develop stronger interactions between
the statistics and oceanography research communi-
ties. A panel of five oceanographers and five statisti-
cians was convened by the Committee on Applied and
Theoretical Statistics of the National Research Coun-
cil to produce the report. The charge to the panel
was to survey crossover areas between statistics and
oceanography of greatest potential value (with re-
spect to important oceanographic questions) and to
recommend statistical research opportunities. The
panel met in April 1992 and again in August 1992. It
quickly became apparent that a comprehensive sum-
mary of statistical research opportunities address-
ing all disciplines of oceanography would exceed the
project time and budget constraints. This report
is therefore limited to a discussion of statistical re-
search opportunities arising in physical oceanogra-
phy.

Lest the limited scope of this report be miscon-
strued as a statement of the unimportance of statis-
tical analysis to biological, chemical and geological
oceanography, the panel emphasizes that there are
numerous opportunities for statisticians to work in
those disciplines as well. For example, recent inter-
est in the carbon cycle has focused attention on the
spatial and seasonal distributions of phytoplankton
pigment concentration in the ocean. These data, ob-
tained by statellite, exhibit all the challenges of spar-
sity and incompleteness shared by the other data
sets discussed in this section, and furthermore ex-
hibit temporal and spatial correlation. An eventual
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question to address is the role of phytoplankton dis-
tribution in climate change, but first a quantitative
analysis of the distribution itself is necessary. Fac-
tors such as bathymetry, nutrients, eddy kinetic en-
ergy, wind stress, cloud cover, meltwater formation
and Ekman upwelling are believed to be potential in-
fluences on the phytoplankton distribution, but the
relationships are as yet unknown. Currently avail-
able data on many of these factors are sparse, and a
great deal of spatial and temporal aggregation is nec-
essary in order to assess such potential relationships.
Future satellite observations are expected to amelio-
rate the data issues basic to the study of these im-
portant biological and chemical oceanographic pro-
cesses, but the statistical problems discussed in Sec-
tions 2 through 8 will remain the same.

In physical oceanography, the development and
application of statistical analysis techniques are
somewhat more advanced than in other disciplines
of oceanography. In large part, a greater need
for sophisticated statistical techniques in physical
oceanography has been driven by rapid technological
advances over the past 30 years or so that have re-
sulted in larger volumes of observational data span-
ning a broader range of space and time scales than
are available in the other oceanographic disciplines.
There has also been intensive development of a the-
oretical foundation to explain the observations. As a
result of these two parallel efforts and recognition of
the importance of physical oceanographic processes
in many of today’s important global issues, there
are many significant opportunities for applications
of statistics, both where descriptive analyses of the
observational data are needed and where there is a
need to relate observations to theory. Even the lim-
ited scope of physical oceanography presents a rather
daunting task for those who would explore it, since
the discipline encompasses a very broad range of top-
ics. Input to the panel was sought and was gener-
ously provided by several outside experts to broaden
the span of topics outlined in this report.

It should be emphasized at the outset that statis-
tical analyses of physical oceanographic data have
not been developed in total isolation from develop-
ments in the field of statistics. On the contrary, sta-
tistical techniques are already used to an unusual
degree of sophistication compared with their use in
some other scientific disciplines, partly because of the
need to develop techniques to understand the almost
overwhelming quantity of observational data avail-
able. In this regard, physical oceanography has ben-
efitted from the parallel development of techniques
of statistical analysis in the field of atmospheric sci-
ences, in which researchers also need to interpret the
large volumes of atmospheric data available. Physi-
cal oceanographers are generally well versed in tra-
ditional and many modern statistical analysis tech-

niques. In addition, several books and monographs
have been written specifically on applications of sta-
tistical techniques in the atmospheric sciences and
physical oceanography (e.g., Gandin, 1965; Thiebaux
and Pedder, 1987; Preisendorfer, 1988; Daley, 1991,
Ghil and Malanotte-Rizzoli, 1991; Bennett, 1992).
Many statistical techniques tailored to specific anal-
yses of oceanographic data have also been published
in journal articles.

This report consists of a collection of sections (Sec-
tions 2 through 8) outlining research problems that
the panel believes could serve as fruitful areas for
collaboration between statisticians and oceanogra-
phers. In producing this report, the panel had to
surmount communication and comprehension diffi-
culties to truly understand, for example, what some-
one from another discipline had expressed. One re-
sult was an appreciation of just how difficult it is
to engage in truly collaborative, cross-disciplinary
work. Another result was an insight into what
strategies will (and will not) be likely to succeed in
performing such work. The panel believes under-
standing and appreciating these matters are as im-
portant to the encouragement and accomplishment
of statistical research in physical oceanography as
are the descriptions of statistical research opportu-
nities discussed in Sections 2 through 8. In Sec-
tion 9, the panel presents its conclusions, observa-
tions and suggestions on encouraging successful col-
laborations between statistics and oceanography. As
noted above, physical oceanographic research encom-
passes a very broad range of topics. Not all of these
subdisciplines are represented by the five oceanog-
raphers on the panel. This report should therefore
be viewed as a compendium of research interests re-
flecting the viewpoints of the oceanographers on the
panel. This somewhat parochial bias should be kept
in mind when using this report to identify poten-
tial crossover areas between statistics and physical
oceanography; there are likely many statistical re-
search opportunities that have not been identified in
the report. Notwithstanding these limitations, the
panel believes that the report represents a good first
step toward encouraging interaction between statis-
ticians and physical oceanographers to the mutual
benefit of both disciplines.

Oceanography—a brief sketch

The birth of oceanography as a science can be
traced back to 1769, when Benjamin Franklin con-
tributed significantly to scientific knowledge of the
oceans by charting sea surface temperature in the
North Atlantic and noting that the maximum flow of
the Gulf Stream (which had been known to exist and
had been used for navigation for a long time) occurred
where surface temperatures began dropping rapidly
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for a ship traveling from the New World to the Old
World. Further scientific surveys of the ocean were
conducted during this same era by Captain James
Cook, who set sail from England in 1772 with the
primary goal of making a detailed map of the Pacific
Ocean and learning the natural history of the Pacific
region. Fontaine Maury is generally credited as the
founding father of international oceanographic sci-
ence. As a U.S. Navy officer, Maury published an at-
las (Maury, 1855) based on a worldwide compilation
of data taken from ship logbooks. The culmination
of this era of scientific exploration of the ocean was
the historic voyage of the HMS Challenger funded in
1873 by Great Britain to collect detailed measure-
ments of the physical, biological, and chemical char-
acteristics of the world oceans. The 4-year expedition
resulted in some 50 volumes of reports published be-
tween 1890 and 1895.

The 20th century has witnessed a dramatic expan-
sion of oceanographic research. At the beginning of
the century, most of the deep ocean was thought to
be relatively quiescent. Except for moderate sea-
sonal variability, it was generally believed that the
circulation near the surface of the oceans was rela-
tively constant and large scale. Scripps Institution of
Oceanography was founded in 1903 and the Woods
Hole Oceanographic Institution was established in
1930. As a result of new technological developments,
it became possible to measure physical, chemical and
biological characteristics from the sea surface to the
ocean bottom. Dedicated research vessels set out to
systematically map the three-dimensional physical,
chemical and biological characteristics of the world
ocean on a coarse spatial grid. Although tremendous
progress was made in the field of oceanography prior
to World War II, it was still possible to summarize
existing knowledge in all three disciplines (physical,
biological and chemical) in a single book (Sverdrup,
Johnson and Fleming, 1942).

The general description of the steady component of
ocean circulation (defined to be the temporal mean)
has changed surprisingly little since World War II.
In contrast, the view of temporal variability has un-
dergone a major paradigm shift over the subsequent
half century. Although eddy-like characteristics of
ocean currents were known to exist even by Maury
(1855), it was difficult to distinguish unresolved vari-
ability from measurement errors. Multiship surveys
and repeated hydrographic surveys conducted begin-
ning in the 1950’s and moored current meter and sur-
face drifter measurements beginning in the 1960’s
revealed considerable spatial structure and tempo-
ral variability that did not support the view of ocean
currents as simple and large scale. Much of mod-
ern oceanographic research has focused on under-
standing the nature of the rich spatial and temporal
variability through a proliferation of new measuring

and modeling techniques. There has been a grow-
ing recognition of the importance of short space- and
time-scale variability (turbulence) to the large-scale
circulation, momentum transport and heat transport
and to the distribution of chemical and biological
properties.

Along with the rapid technological and theoretical
developments over the past half century, oceanogra-
phy has become progressively more specialized. It is
no longer possible to summarize adequately the sta-
tus of all disciplines of oceanography in a single book.
Indeed, it is very difficult to summarize even a single
discipline in one book. An excellent perspective on
the post—World War II evolution of physical oceanog-
raphy has been published by Warren and Wunsch
(1981). A more popularized summary of several as-
pects of physical oceanography can be found in the
Summer 1992 issue of Oceanus [Vol. 35(2)], which
is dedicated to physical oceanography; dedicated is-
sues on the other disciplines of oceanography can be
found in the other 1992 issues of the magazine. A
précis of physical oceanography is given in Chapter
1 of a National Research Council (NRC) report (NRC,
1988); also see NRC (1992b) for a state-of-the-science
overview of all of oceanography.

In simple terms, physical oceanography can be
defined as the study of the physics of the circula-
tion of the ocean on all space and time scales. Re-
search in physical oceanography includes studies of
the details of turbulent mixing on scales of millime-
ters; the propagation of surface and internal waves
with scales of centimeters to hundreds of meters; the
dynamics of wind-forced and thermohaline-driven
ocean currents (see, e.g., NRC, 1992b) on scales of
kilometers to thousands of kilometers; and the trans-
fers of momentum, heat and salt within the ocean
and across the air-sea interface. Because of the
pressing importance of questions about global warm-
ing, there has been an increasing emphasis in recent

. years on the role of the ocean in the global climate.

This has led to a quest for general understanding of
the dynamics and long-term evolution of the coupled
ocean—atmosphere system (see, e.g., Gill, 1982) and
its interactions with the land, cryosphere and bio-
sphere. The need to quantify and forecast natural
and anthropogenic changes in weather patterns and
global climate, on the one hand, and the emergence of
more easily accessible supercomputing power, satel-
lite remote sensing and other instrumentation tech-
nologies, on the other hand, are factors determining
the direction of present and near-future research in
physical oceanography.

Computer models of large-scale ocean circulation
and ocean—atmosphere coupling, of biogeochemical
cycles, and of the global budgets of carbon dioxide and
other greenhouse gases are becoming the desired re-
sults of much of present research. The input data for
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such models have intrinsic shortcomings because of
concerns about data quality and coverage (in space
and time). Much effort must therefore be devoted
to improving the interpretation of measured quan-
tities and their subsequent use in computer models.
The constraints may be due to limited spatial and
temporal resolution of the measurements of the ob-
served fields; limited accuracy of the measured quan-
tities; gaps in the data records; short data records;
or propagation of errors through different levels of
data processing and analysis. As a result, the tech-
nological innovations available do not guarantee suc-
cess unless considerable progress is made in utilizing
the available data. This will necessarily involve the
use of the sophisticated statistical techniques for a
wide variety of purposes, as summarized in this re-
port. Collaborative research involving statisticians
and physical oceanographers is desirable to fuel such
progress and improvements.

To provide statisticians with a brief sketch of the
physical oceanographic community, the panel in-
cludes a few demographic items. It is not aware of
any detailed demographic studies. The membership
of the Ocean Sciences Section of the American Geo-
physical Union probably provides a fair representa-
tion of the community. In 1991, the section’s total
membership was 4791, 84 percent of whom were reg-
ular members and 16 percent of whom were student
members. About one-fourth of this membership was
foreign. Of the remaining members, it is not known
what percentage are actively involved in research,
but the number is probably less than half. The to-
tal membership is certainly dominated by physical
oceanographers; it also includes a substantial num-
ber of chemical oceanographers and smaller numbers
of biological and geological oceanographers, most of
whom are members of other professional societies.
About a dozen U.S. universities offer graduate pro-
grams in physical oceanography. There are two civil-
ian federal government oceanographic laboratories
and several U.S. Navy-supported research and devel-
opment laboratories involved in open-ocean physical
oceanographic research. Private industry employs
a relatively small fraction of the physical oceano-
graphic community.

Most physical oceanographic research is pub-
lished in the six primary journals in the field:
Journal of Physical Oceanography, Journal of Geo-
physical Research—QOceans, Journal of Marine Re-
search, Deep-Sea Research, Progress in Oceanogra-
phy and Journal of Atmospheric and Oceanic Tech-
nology. Fundamental results frequently appear in
the Journal of Fluid Mechanics. Significant ad-
vances in physical oceanographic research are occa-
sionally published in Science, Nature and Geophysi-
cal Research Letters. Overviews of physical oceano-
graphic research written for less specialized audi-

ences are often published in Oceanography Magazine
and Oceanus.

Oceanographic Modeling, Data and Noise
The many meanings of the term “model”

The term “model” has a variety of usages in
oceanography, depending on the context. It can re-
fer to modeling of data by statistical methods (e.g.,
curve fitting of one-dimensional data, surface fit-
ting of 'multi- dimensional data, correlation and re-
gression analysis, modeling of probability distribu-
tions and so on). More typically, however, the term
“model” connotes physical modeling on the basis of
mathematical equations that govern fluid motion,
mass conservation, heat conservation and conserva-
tion of salt or other chemical tracers. Physical models
range from purely analytical (i.e., explicitly solvable
in closed form) to numerical (i.e., solvable on a com-
puter), depending on the degree of approximation of
the complete mathematical equations adopted. An
introduction to the equations of fluid motion in the
rotating reference frame of Earth can be found in
Pond and Pickard (1983); a more advanced discus-
sion can be found in Pedlosky (1987) or Stern (1975).
A brief overview is given here.

The vector equation for momentum conservation
based on Newton’s Second Law that relates the ac-
celeration of a fluid parcel to the forces acting on the
parcel is

(1.1) %;—+V-VV+2Q XV=g— %Vp+vV2v,

where v is the three-dimensional vector velocity, V
is the vector gradient operator along the x,y and z
coordinate axes with respective velocity components
u,v and w, 2 is the angular velocity vector of the ro-
tation of Earth, g is the gravitational acceleration,
p is the water density, p is pressure and v is the

" molecular viscosity. The three components of this

vector equation are referred to as the Navier—Stokes
(N-S) equations, in honor of the physicist Claude L.
M. H. Navier (1785-1836) and the mathematician
Sir George Gabriel Stokes (1819-1903), who first for-
mulated the molecular friction force in terms of the
second derivatives of velocity along each of the three
coordinate axes.

The unknown quantities in the N-S equations are
density, pressure and the three components of veloc-
ity. Two additional equations are thus necessary to
solve for the five unknowns. The first of these is the
mass conservation equation,

9 +V(pv) =0,

(1.2a) 5t

also known as the continuity equation. Seawater can
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generally be considered to be incompressible (i.e., the
so-called total derivative 8p/dt+v-Vp, corresponding
to the rate of change of density following a fluid par-
cel, is zero), in which case the continuity equation
reduces to
(1.2b) Vv =0.

The other equation necessary to solve for the five un-
knowns in the equation of state relating density of
temperature 7', salinity S and pressure,

(1.3) p=p(T,S,p).

This empirical relationship is based on laboratory
studies of seawater. The dependence of p on T' and
S requires the addition of two more equations gov-
erning the conservation of T and S. These equations
have the form

(1.4) %—f +v-VC = ke V2C + Qc,

where C could be either temperature or salt concen-
tration, x¢ is the molecular diffusivity for C (anal-
ogous to the molecular viscosity v in the N-S equa-
tions) and Q¢ is a source or sink term to account
for effects of he~ting and cooling. A source term is
not necessary for salinity since all processes affect-
ing salinity occur at boundaries (surface evaporation
and precipitation, river runoff, freezing and melt-
ing), and therefore enter the problem as boundary
conditions. Temperature is also usually treated as a
boundary condition, although, in a strict sense, the
effects of solar heating can penetrate below the ocean
surface.

In total, then, there are seven equations for the
seven unknowns u, v, w, p, p, T and S. These equa-
tions must be solved subject to boundary conditions

of no normal flow at material surfaces (the ocean bot- .

tom and lateral boundaries), as well as boundary con-
~ ditions for the normal and tangential components of
forces at the boundaries (e.g., surface wind stress,
bottom drag, lateral drag, and atmospheric pressure
forcing) and buoyancy fluxes (heat and salt) across
the air-sea interface and at coastal boundaries. The
equations themselves are deterministic in the sense
that a particular solution is obtained for a given spec-
ification of the boundary and initial conditions. How-
ever, the boundary and initial conditions have a ran-
dom character, which imparts a randomness in the
physical modeling.

It is noteworthy that many of the methods used
to determine the ocean circulation are based on
measurements of various natural and anthropogenic
chemical tracers. Examples include oxygen, carbon
dioxide, silicate and tritium. The concentrations

of these tracers are coupled to the dynamic vari-
ables of the equations of motion (1.1) and (1.2a) [or
(1.2b)] through conservation equations with exactly
the form (1.4), with the term Q¢ corresponding to
sources or sinks of the chemical tracer of interest.
These tracers are used to infer indirectly the direc-
tion and, to some extent, the speed of deep ocean
circulation where mean velocities are often too small
to be measured directly.

The equations of motion apply to the instanta-
neous velocity of the fluid. However, the nonlinear
terms in the momentum equation (1.1) give rise to
turbulent variability that is characteristically irreg-
ular in space and time. Because of this nonlinear-
ity and the large range of spatial scales over which
the ocean is energetic, it is not practical to solve the
above equations explicitly. In particular, it is not pos-
sible to measure, and hence specify, the boundary
and initial conditions at very fine spatial and tempo-
ral resolution. This, in effect, introduces, additional
noise-like or random character to the physical equa-
tions. The usual approach to addressing the turbu-
lent character of oceanic variability is to parametrize
the effects of turbulence in terms of large-scale ob-
servable quantities (typically the mean flow and its
derivatives). As a consequence of the neglect of the
detailed dynamics on small scales, the parametrized
physical equations pertain to averages of the ran-
dom dynamic variables. The simplest and most com-
monly used approach is to replace molecular viscos-
ity v and diffusivity xc with “eddy” or “turbulent”
viscosity and diffusivity (also referred to as effec-
tive diffusion or mixing coefficients), as first sug-
gested by Taylor (1915). The turbulent coefficients
serve the same function as molecular coefficients but
are much larger in magnitude to account for the ef-
fects of eddies smaller than those explicitly repre-
sented within the model. These eddies transport mo-
mentum and chemical properties much more rapidly
than does molecular diffusion. Horizontal mixing is
about 10 orders of magnitude larger than molecu-
lar diffusion. Because vertical density stratification
in the ocean inhibits vertical mixing, vertical mix-
ing is only about 2 orders of magnitude larger than
diffusion.

The detailed specification of turbulent mixing is
not well understood because, unlike molecular diffu-
sion, which is an intrinsic property of the fluid, tur-
bulent mixing varies spatially and temporally and
depends on the flow itself. Moreover, the partic-
ular choice of turbulent mixing coefficient depends
critically on the spatial scales represented within
the model. From coarsely spaced observations, it is
even possible for turbulent transport to be counter-
gradient (i.e., effectively a negative turbulent mix-
ing coefficient, corresponding to energy transfer from
eddies to the mean flow; see Starr, 1968). Such a
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situation is clearly nonphysical, and the turbulent
mixing coefficient would presumably be nonnegative
with sufficiently close sample spacing.

The equations of motion (1.1)—(1.4) (referred to as
primitive equations) are very complex and are there-
fore not solvable in exact form. Various simplifica-
tions of the complete equations are employed in or-
der to gain insight into the dynamics of fluid mo-
tion. A brief overview is given here; a more de-
tailed summary can be found in Holland (1977). One
class of simplifications concerns the treatment of
vertical density stratification. The simplest mod-
els, referred to as barotropic models, consider the
fluid density to be homogeneous. Next in complex-
ity are layered models that divide the ocean into two
or more distinct layers, in each of which the fluid
density is considered homogeneous. The most com-
plex models consider the fluid to be continuously
stratified. Although a barotropic approximation is
clearly unrealistic, many circulation aspects can be
successfully modeled without the need for the more
complex baroclinic layered or continuously stratified
models.

For both barotropic and baroclinic models, var-
ious approximations are employed to simplify the
equations of motion. The simplest model is the
geostrophic approximation, which neglects the non-
linear and acceleration (i.e., time-dependent) terms.
The resulting steady-state, linearized equations can
be solved analytically, and the geostrophic solution is
surprisingly successful at describing the large-scale
aspects of the circulation. The next level of com-
plexity includes the acceleration term, which permits
analytical wave solutions. Depending on the scales
of interest, these waves can range from short cap-
illary waves (wavelengths of millimeters) for which
the restoring force is surface tension, to surface and
internal gravity waves (wavelengths of tens of cen-
timeters to hundreds of meters) for which the restor-
ing force is gravity, to very long wavelength (tens to
hundreds of kilometers) Kelvin or quasi-geostrophic
Rossby waves, which arise from the restoring force
provided by the latitudinal variation of the local ver-
tical component of Earth’s angular velocity vector
or horizontal gradients of bottom topography. The
large-scale waves are the dynamical mechanism by
which the large-scale circulation adjusts to time-
dependent forcing such as the stress exerted by the
wind blowing over the surface of the ocean.

Although very illuminating, linear models of ocean
circulation are not capable of producing accurate rep-
resentations of detailed aspects of the circulation. In
particular, the short spatial scales of many of the in-
teresting features of the circulation (e.g., jetlike cur-
rents such as the Gulf Stream) result in strong gra-
dients in the velocity field, which elevates the magni-
tude of the nonlinear terms to a level comparable to

that of other terms in the equations of motion. More
complex classes of physical models thus include non-
linear effects. Analytical solutions are still possible
for weakly nonlinear approximations and for a few
special cases of strongly nonlinear approximations of
the equations of motion. Numerical methods using a
computer are necessary for more general solutions.

Numerical models can be- classified as either
process-oriented (also referred to as mechanistic) or
simulation models. Process-oriented models simplify
the ocean basin geometry in order to focus on the
physics of specific term balances in the mathemati-
cal equations. Simulation models attempt to repre-
sent the basin geometry more accurately and to re-
produce or predict some aspects of the actual circu-
lation for comparison with observations. Numerical
solutions to the equations of motion are obtained on
a space—time grid by approximating the derivatives
in the equations by finite differences or by the use of
Fourier transform techniques. At each grid point, so-
lutions are obtained by stepping forward in time from
the initial conditions according to the mathematical
equations governing the fluid motion (e.g., O’Brien,
1986; Haltiner and Williams, 1980; NRC, 1984).

Computational models of the climate, especially
coupled ocean—atmosphere models, are being used
to produce estimates of the climate changes to be ex-
pected to result from changes in radiative forcing.
Although deterministic, these models are sufficiently
chaotic to show variability that is in many respects
similar to that observed in the climate of the real
world. Thus, the analysis of model output and com-
parison with data (see Section 7), especially to detect
trends, raises serious statistical questions.

The accuracy of a numerical solution depends crit-
ically on the spatial resolution of the grid and on
the size of the time step, as well as on the partic-
ular parametrizations of the turbulent viscosity and
specifications of the boundary and initial conditions.

- There are thus many ways in which the mathemati-

cal equations governing the physics of the ocean can
be solved numerically. In general, the most accurate
simulations require very fine grid spacing and short
time steps. In practice, spatial and temporal reso-
lutions are limited by available computer time and
memory allocation. Disk storage capacity can also
present a problem since the volume of model output
can be very large. As discussed in Section 5, phys-
ical oceanographic research would benefit greatly
from improved methods of visualization to examine
the four-dimensional output of numerical models of
ocean circulation.

Besides the difficulties associated with the sub-
jective natures of the choice of grid resolution,
parametrization of turbulent viscosity and the prob-
lem of availability of computer resources, another
major issue in physical modeling of the ocean is as-
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sessment of the accuracy of the solution. Due to the
underlying chaotic nature of ocean circulation (e.g.,
Ridderinkhof and Zimmerman, 1992), to numerical
inaccuracies and to inaccuracies in the specifications
of boundary and initial conditions, numerical simu-
lations can be expected to diverge fairly quickly from
the actual circulation. One of the challenges of mod-
ern physical oceanography is development of tech-
niques for comparing simulations from different nu-
merical models with each other and with one or more
independent observational data sets in order to eval-
uate the relative accuracies of various model simula-
tions. It is unlikely that numerical simulations can
ever be expected to exactly depict the actual circula-
tion. There is currently no general agreement-about
what aspect of model simulation is most important.
For example, one measure of the accuracy of a model
is how well it represents the mean circulation. An-
other measure of accuracy is how well higher-order
statistics of the flow field are reproduced (e.g., the
variance of a particular variable or the covariance
between two variables). As discussed in Section 7,
data and model cross-comparison is another area in
which the field of statistics may be able to make im-
portant contributions.

It is noteworthy that, in contrast to physical mod-
eling of atmospheric circulation, the detailed evolu-
tion of the actual ocean circulation is very poorly
known because of a lack of observations. Global cov-
erage of the ocean can be obtained only from satel-
lite observations, but these are nonsynoptic (i.e., not
simultaneous at all locations over Earth) and sam-
ple only surface conditions. Sparsely distributed in
situ measurements or physical modeling (or both)
are necessary to extrapolate the surface measure-
ments from satellites to infer the ocean circulation
at depth. Much of the present emphasis in physical
modeling of the ocean is directed at developing meth-
ods of assimilating available observations (especially
satellite observations) into the model solution at reg-
ularly or irregularly spaced time steps using statisti-
cal estimation,.Kalman filtering and generalized in-
verse techniques. Such methods have been in use
in meteorology for some time. Recent reviews of
oceanographic applications of data assimilation can
be found in Ghil and Malanotte-Rizzoli (1991) and
Bennett (1992). Successful assimilation of available
data preserves some degree of similarity between nu-
merical solutions and the actual circulation.

Diverse definitions of the term “data”

Clarification is in order regarding oceanographic
usage of the term “data.” In the field of physical
oceanography, the term is used more liberally than
in some other fields of science. The intent here is not
to justify oceanographic use (or misuse) of the term,

but rather to clarify the standard oceanographic jar-
gon and the usage elsewhere in this report. Unlike
measurements in some fields of science, few, if any,
oceanographic measurements are direct. The quan-
tity of interest is typically sensed electronically as a
voltage drop, the number of frequency oscillations of
a quartz crystal, the number of rotations of a rotor
or a count of some other sort. These counts must be
converted to the geophysical quantity that is of inter-
est by a hierarchy of transformations, some of which
may be nonlinear or irreversible. These transforma-
tions are often empirically based and could benefit
from improved statistical formulations.

At each level of transformation, the output of the
previous transformation becomes the input for anal-
ysis or for a higher level of transformation. This in-
put is then generally referred to as “data” and is typ-
ically treated as if all previous levels of transforma-
tion have been done correctly. In this context, then,
even the output of a numerical ocean model forced
by wind fields derived from in situ or satellite ob-
servations can be, and sometimes is, referred to as

“data” by an investigator interested in analyzing the

model output to study ocean dynamics. An impor-
tant element of these multiple levels of transforma-
tion is that it becomes progressively more difficult,
and sometimes even impossible, to quantify uncer-
tainties in the output product.

Multiple levels of transformation are characteris-
tic of all oceanographic data but are especially pro-
nounced for satellite data. In an effort to distinguish
between different types of “data,” NASA defined a
hierarchy of data levels in the early 1980’s (see, e.g.,
Arvidson et al., 1986; Dutton, 1989). The same def-
initions have subsequently been used for in situ ob-
servations, although some definitions of data level
are not appropriate for some types of in situ data. A
summary of the data levels follows:

Level 0. Raw instrument.data at original resolu-

- tion, time ordered, with any duplicates removed.

For satellite observations, this level of data consists
of the bits (possibly compressed for transmission)
telemetered from the satellite to a ground receiving
station, corrected for any telemetry errors. For in
situ observations, this level of data might consist of
volts or counts of some other type. Level-0 data are
sometimes referred to as experimental data.

Level 1A. Reformatted or reversibly transformed
level-0 data, located to a coordinate system e.g., time,

.latitude, longitude, depth) and packaged with needed

ancillary, engineering and auxiliary data. Instru-
ment counts from level-0 data have been converted
to engineering units in level-1A data. In the case of
in situ data, level-0 and level-1A may be the same.
Level 1B. Irreversibly transformed values of the in-
strument measurements. For satellite observations,
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this might consist of calibrated microwave antenna
temperatures, infrared or visible radiances, or mi-
crowave normalized radar cross sections. For in situ
observations, this level of data is typically the geo-
physical parameter of interest. In some cases, the
data might be resampled to a new grid.

Level 2. Geophysical parameters at the measure-
ment time and location. For satellite observations,
level-2 data are obtained from a model function (typ-
ically derived empirically from some statistical anal-
ysis) applied to the level-1B data. For in situ obser-
vations, level-2 data may be the level-1B geophys-
ical parameters corrected for any systematic errors
or calibration adjustments (typically determined em-
pirically from some statistical analysis).

Level 3. Geophysical parameters resampled onto
a regularly spaced spatial, temporal or space-time
grid by some sort of averaging or interpolation.

Level 4 and above. No set definitions, but gen-
erally refer to higher-level processing. An example
would be a map of some statistical quantity such as
the mean value or standard deviation of a lower-level
data quantity. Another example would be higher-
level wind fields derived from gridded fields of sur-
face wind velocity (e.g., wind stress or the curl of the
wind stress, both of which are used for studies of
wind-forced ocean circulation). An extreme exam-
ple is the output of a numerical ocean circulation
model forced by wind fields derived from a level-3
wind product.

Specific examples serve to clarify the need for mul-
tiple data-level definitions in oceanography. Virtu-
ally any oceanographic measurement could serve as
an adequate example for this purpose. The following
two examples (one a satellite measurement and the
other an in situ measurement) were chosen rather
arbitrarily.

EXAMPLE 1. Near-surface vector winds estimated
by a satellite radar scatterometer. The basic quan-
tity measured by the scatterometer is the power of
the radar return. The measured return power is
digitized, compressed and telemetered to a ground
receiving station along with a variety of necessary
ancillary information (e.g., orbit altitude, satellite
altitude, temperatures of the electronic components
and so on). The telemetry “data” are uncompressed
and converted to engineering units “data” in ground-
based processing. A quantity referred to as the
normalized radar cross section (NRCS) is derived
from the measured return power by normalizing by
the power of the transmitted signal along with any
necessary calibration adjustments determined from
prelaunch calibration or from the ancillary informa-
tion. Estimates of vector winds are constructed from
NRCS “data” from two or more antenna look angles,
collocated at approximately the same location on the

sea surface. This requires both an empirically de-
rived model function and a statistical method for
solving the overdetermined problem of inverting the
model function in a manner that is consistent with
the noisy NRCS “data.” The result at this stage is
individual vector wind “data” at the measurement
locations. Most oceanographic applications of scat-
terometer observations require gridded fields of vec-
tor winds or some higher-level wind product derived
from Earth-located individual vector wind “data”.
These fields are obtained by space—time averaging or
interpolation and are generally referred to as “data”
by investigators who analyze the wind fields or use
them to force ocean circulation models.

EXAMPLE 2. Measurements of temperature and
salinity by a conductivity—temperature—depth (CTD)
profiler. A CTD (e.g., see page 389 in Dickey, 1991)
is lowered through the water column on a cable. Vari-
ations in voltage associated with changes in temper-
ature and conductivity are measured at a high fre-
quency from two separate sensors (a thermistor and
a conductivity probe). These engineering unit “data”
are converted to temperature and conductivity “data”
through simple algorithms. The conductivity of sea-
water is a function of both temperature and salinity.
Temperature effects are much greater than salinity
effects and must therefore be removed from the con-
ductivity measurements in order to estimate salinity.
However, the response time of the thermistor mea-
surements of temperature alone is much longer than
the response time of the conductivity probe because
of thermal inertia of the thermistor. This difference
in response time must be accounted for when using
the thermistor measurements to remove the temper-
ature component of conductivity variations. Salin-
ity “data” compatible with the thermistor measure-
ments are usually obtained by applying a low-pass
filtering algorithm to effectively slow down the re-

_sponse of the conductivity probe. The resulting tem-

perature and salinity “data” at closely spaced verti-
cal intervals usually are then bin averaged and pro-
cessed to reduce the data volume. It is also neces-
sary to adjust the salinity and, to a lesser extent, the
temperature estimates to account for periodic recal-
ibrations of the two sensors. The resulting vertical
profiles of temperature and salinity “data” are useful
for many oceanographic applications. Some applica-
tions require further processing of the temperature
and salinity “data” to derive density, thereby yielding
a vertical profile of density. The density “data” may
then be integrated vertically to estimate the so-called
steric height of the sea surface (or any other iso-
baric surface) relative to an arbitrary reference level.
Density profiles, steric height and other higher-level
“data” derived from the CTD temperature and salin-
ity “data” are typically used to construct vertical sec-
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tions or horizontal maps of the quantity of inter-
est. These sections or maps are often referred to
as “data” by investigators who analyze them or use
them to force ocean circulation models or to verify
ocean model output.

Because of the multiple scales characteristic of
both spatial and temporal variability in the ocean as
discussed in Section 2, oceanographic data are com-
monly undersampled in several respects. One prob-
lem is aliasing that arises as a consequence of prac-
tical considerations that often limit the sampling to
spatial or temporal intervals that are longer than
the shortest energetic space and time scales of vari-
ablity of the quantity being measured. For exam-
ple, time series constructed from satellite observa-
tions are limited by the time interval between re-
peated satellite orbits over a given location. As an-
other example, temperature measurements from an
instrument lowered through the water column are
sampled discretely at a fixed rate that often does not
adequately resolve variations on the vertical scales
of millimeters to centimeters that are important to
turbulent mixing. As a third example, lines of ver-
tical profiles of temperature and salinity along hy-
drographic sections across an ocean basin are some-
times not sampled sufficiently often along the ship
track to resolve the energetic 10- to 50-km mesoscale
variablity that is superimposed on the larger-scale
100- to 1000-km variability that may be the primary
signal of interest. The degree to which aliasing af-
fects oceanographic data depends on the energy of
the unresolved variability, be it of high frequency or
short spatial scale, compared with the energy of the
oceanographic signal of interest for the particular ap-
plication of the data.

Another common problem is the limited spatial
or temporal resolutions inherent in many oceano-
graphic measurements because of limitations of the
measurement process. For example, satellite data
generally consist of instantaneous measurements
effectively averaged over a relatively large spatial
“footprint.” As another example, current meter mea-
surements often consists of a time series of successive
timeé averages at a fixed location. In some cases, the
spatial or temporal averaging obscures signals in the
quantity being measured that might be of interest for
some studies. In others, time series may be uncom-
fortably short, important concomitant variables may
not have been measured and other factors may be
contaminating the records. . For example, a change
in instrumentation or recording sites can limit the
amount of useful information contained in a data set.
There may be gaps in the records and the raw (level-
0) data may not be readily accessible.

Such processes often generate measurements that
violate the assumptions of the simplest statistical
theory; that is, the data are typically not indepen-

dent, are not identically distributed, are not station-
ary, are non-Gaussian or some combination. Espe-
cially problematic in this regard is serial dependence,
which occurs atleast to some extent in nearly all tem-
poral oceanographic data.

Collected data can involve a sampling problem be-
cause of the fundamentally “red” spectral charac-
teristics of ocean variability (i.e., the predominance
of energy at the lowest frequencies). Most oceano-
graphic data records are not long enough to resolve
all of the time scales of variability of the quantity of
interest. This limits the frequency and wavenumber
resolution of the measurements and the number of
independent realizations of the physical process of
interest. For example, the El Nifio phenomenon that
affects much of the ocean and the overlying atmo-
sphere has a time scale of 3 to 5 years (cf. Ropelewski,
1992). Even a 30-year record (which is unusually
long for physical oceanographic data) only resolves 6
to 10 realizations of this process, resulting in limited
degrees of freedom for inferences about cause and ef-
fect (see, e.g., Davis, 1977; Chelton, 1983; Thiebaux
and Zwiers, 1984; Barnett and Hasselman, 1979).

An important example of unresolved variability is
the secular trend of sea level rise (see, e.g., NRC,
1990b) associated with global warming (see also,
Baggeroer and Munk, 1992). The study of oceanic
sea levels is further complicated by there being very
few long data records, and by the existence of other
poorly understood signals in the data (e.g., glacial
rebound effects). The data also include long-period
signals, such as the 18.6-year lunar tide. The pro-
cesses responsible for changes in sea level need to be
understood, and especially in their relation to pos-
sible global warming. If the oceans were to warm,
thermal expansion of sea water would be reflected in
increased sea levels, with obvious effects on human
activity.

Coupled with the problem of limited record length

. is the problem that many oceanographic signals of

interest are intermittent (i.e., non-stationary or non-
homogeneous). For example, turbulent mixing in the
ocean generally occurs in sudden bursts and spatially
irregular patches. Another example is the energetic
wind events such as storms that vigorously force the
ocean but occur only intermittently at a given loca-
tion. As a consequence, it is difficult to charater-
ize the statistics of ocean variability. For some pur-
poses, it is the intermittent events that are of in-
terest. In other applications, energetic intermittent
events might be considered nuisances that can skew
the samples statistics (e.g., the mean value or vari-
ance) that may be of interest. Techniques for analysis
of non-Gaussian data (see Section 8) or estimation of
robust statistics are therefore needed for many anal-
yses of oceanographic data.

These data provide the statistician and data ana-
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lyst with many challenges. For example, work needs
to be done on multivariate transfer functions, par-
ticularly with mixed spectra. Data such as these of-
ten contain both large deterministic effects and peri-
odic terms plus a non-deterministic part. This can
cause serious problems of estimation. Short mul-
tivariate series for which the number of series is
greater than the number of temporal observations
provide a particular challenge because any standard
estimate of the spectral matrix is singular. An ex-
ample of this type of problem is spatial temperature
series for which the assumption of spatial homogene-
ity is obviously not appropriate, but, at least in some
regions, spatial continuity might be reasonable. In
many of these instances, estimates of uncertainty are
inadequate or are completely lacking.

Low noise is good noise

Oceanographic measurements often suffer from
low signal-to-noise ratio, in some cases because the
signal of interest has much smaller energy than other
geophysical signals in the data. For example, the sea
level rise from global warming is much smaller than
the energetic sea level variations of other oceano-
graphic and nonoceanographic origin (see Chelton
and Enfield, 1986). As another example, the visi-
ble radiances measured from a satellite for estima-
tion of ocean chlorophyll concentration and investi-
gation of the role of the ocean in the global carbon
budget are dominated by atmospheric contamination
from the scattering of sunlight from aerosol parti-
cles and atmospheric molecules; only about 20 per-
cent of the measured radiances originate from the
ocean (Gordon and Castano, 1987). A low signal-to-
noise ratio may also arise because of the short record
lengths typical of oceanographic data compared with
the time scales of the signal of interest. Quantify-
ing the signal-to-noise ratio and the auto- and cross-
covariance functions of the signal and noise are im-
portant challenges in physical oceanography. A par-
ticularly difficult problem arises because of the fact
that low-frequency calibration drifts in the measur-
ing devices are often as large in magnitude as the
low-frequency signal of interest. For example, esti-
mation of sea level rise from global warming is com-
plicated by vertical crustal motion in the vicinity of
many ocean tide gauges. As another example, esti-
mation of low-frequency variations in bottom pres-
sure is complicated by electronic drifts in the pres-
sure gauge measurements.

Because of the variety of sampling problems inher-
ent in oceanographic data, the term “noise” is often
used to refer to more than just the measurement er-
ror associated with inaccuracies in the observations.
Inadequately resolved contributions to a measure-
ment from geophysical variability of the quantity

of interest are generally referred to as “geophysical
noise.” As discussed above, such unresolved geophys-
ical variability can arise from use of a discrete sample
interval (aliasing), from inherent spatial or tempo-
ral smoothing in the measurement (limited resolu-
tion), from finite record length (limited frequency or
wavenumber resolution), from intermittency of ener-
getic signals other than those of primary interest or
from low signal energy cémpared with the geophys-
ical noise of other processes affecting the measured
quantity. Although such geophysical noise is fun-
damentally different from that due to measurement
errors, it has exactly the same effect as measurement
errors from the point of view of data analysis. When
there is a low signal-to-noise ratio, extraction of the
signal of interest is especially difficult because typ-
ically the measurement noise and geophysical noise
in the data are serially correlated.

2. STATISTICAL ISSUES IN THE MULTIPLE-SCALE
VARIABILITY OF OCEANOGRAPHIC FIELDS

Oceanographic Variability

Oceanographic fields and processes possess cer-
tain features that are not commonly encountered in
some other areas of science and engineering. One of
these is a wide range of scales (wavenumbers and fre-
quencies) in which observed fields exhibit spatial and
temporal variation. In other words, a “typical” time
(space) scale is absent, and there exists a broad band
of frequencies (wavenumbers) of roughly equal im-
portance. This is the reason for the term “multiple-
scale variability.” Oceanographic processes include
coupling across a large range of scales (i.e., nonlocal
interactions) and linkage between a number of fac-
tors of different nature. In Figure 2.1 (from Dickey,
1990, 1991), typical spatial and temporal scales of
some oceanographic processes are sketched.

. From the statistical standpoint, a random field is
a stochastic process with multidimensional parame-
ters (e.g., time and position) or a more complicated
parameter such as a function. The fields of pri-
mary interest have four parameters: one dimension
of time and three dimensions of space. Examples of
such time-varying fields include fluid velocity, pres-
sure, water density, temperature and salinity. Fields
with only two spatial dimensions include sea surface
height (sea level), wind velocity and wind stress at
the surface, sea surface temperature (SST), ocean
color and sea ice. Wavenumber spectra of these fields
are usually very broad, covering several decades of
wavenumbers (e.g., Fu, 1983; Freilich and Chelton,
1986), and the spectral density function can be ap-
proximated by a power law. Characteristic values of
exponents in the power laws indicate a fractal regime
in the geometry of the fields. For instance, the sea
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surface elevation field, for scales related to wind-
generated surface gravity waves (from a decimeter
to several hundred meters), is characterized by a
two-dimensional wavenumber spectrum that falls off
roughly as £~7/2. This corresponds to a cascade pat-
tern in surface topography (a hierarchy of randomly
superimposed waves with decreasing amplitude and
wavelength). A characteristic property of this field is
its statistical self-affinity (Glazman and Weichman,
1989). The corresponding Hausdorff dimension, for
an assumed Gaussian distribution, is 2.25.

The fluid velocity field, whose kinetic energy spec-
trum is characterized by £~5/3, exhibits a Hausdorff
dimension of 2.666. A typical geometrical feature of
such fields is a hierarchy of eddies. Such cascade
patterns in a field’s geometry are related to the cas-
cade nature of the energy transfer along the spec-
trum through nonlinear interactions among different
scales of fluid motion. Other physical quantities, e.g.,
momentum, enstrophy (i.e., half the square of vor-
ticity) and wave action, may also be transferred ei-
ther up or down the spectrum. The spectral cascades
of these quantities are not necessarily conservative:
interactions between different oceanographic fields
(occurring within certain limited ranges of scales—
the “generation and dissipation subranges”—and re-
sulting in energy and momentum exchange) provide
energy sources or sinks in various spectral bands.
For instance, at meter scales wind provides the en-
ergy input into surface gravity waves that in turn ex-

change momentum and energy with larger-scale mo-
tions (e.g., mesoscale eddies, Langmuir circulations,
internal waves). Mesoscale oceanic eddies are caused
by the barotropic instability of basin-scale currents.
Seasonal heating and cooling of the ocean surface
causes convection and vertical mixing, while differ-
ential (across the ocean basins) heating, evaporation,
precipitation and ice melting cause density-driven
currents. Ocean circulation on basin scales is caused
by large-scale curl of the wind stress. This multiplic-
ity of the energy sources and sinks and the interac-
tions between different scales and individual compo-
nents of ocean dynamics are responsible for the ex-
treme complexity of patterns of ocean circulation, sea
surface temperature, sea level and so on as observed
both in satellite images and in highly complicated
trajectories of free-drifting floats. Apparently, the in-
teraction of motions with different scales implies sta-
tistical dependence between corresponding Fourier
components or between corresponding eigenvectors
in the empirical orthogonal functions (EOF) series
(Karhunen-Loeve expansion; see, e.g., Lorenz, 1956;
Davis, 1976; Preisendorfer, 1988). Identifying and
accounting for such correlations in statistical models
are important problems of oceanographic data anal-
ysis.

The difficulties mentioned above need not defeat
efforts to understand ocean dynamics. In contrast
to economics, demography, biology and many other
fields, physical oceanography is based on the compar-
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atively reliable and universal quantitative physical
models summarized in Section 1.

Initial and boundary conditions complete the for-
mulation of specific oceanographic problems. Since
the boundary conditions (e.g., the distribution of
wind stress over the sea surface) and the coeffi-
cients in the equations (e.g., ocean current veloci-
ties in the heat-transfer equations) are intrinsically
random, oceanographic problems are actually those
for stochastic partial differential equations (SPDE’s).
Many of the issues related to SPDE’s are also en-
countered in analysis of oceanographic observations.
These include, for instance, the impact of subscale
(microscopic) motions on the (macroscopic) behavior
of the mean fields (analogous to the dependence of
measured quantities on the spatial, temporal or spa-
tio temporal resolution of a measuring technique).
On a more fundamental level, the justification of the
“macroscopic” equations remains a difficult problem.

These problems that present opportunities for
statisticians are also central to eventually under-
standing the structure of turbulent flow. Turbulent
fields of fluid velocity, pressure and temperature are
highly inhomogeneous and include compact regions
where these fields or their spatial derivatives attain
extreme values. Regions with large fluid velocity gra-
dients are particularly important, because most dis-
sipation of the mechanical energy into heat occurs
in these localized regions. Due to an irregular spa-
tial and temporal distribution of such regions, the oc-
currences of extreme events are often referred to as
intermittency. Intermittency becomes pronounced
at high Reynolds numbers associated with the on-
set of turbulence. The Reynolds number is a mea-
sure of the relative importance of inertial forces in
the fluid as compared to viscous forces (namely, it is
the ratio of the inertia of fluid particles to the fluid’s
viscous friction). At high Reynolds numbers, when
the inertia of fluid particles is no longer balanced by
friction forces, particle trajectories become tremen-
dously complicated. This results from the friction-
less fluid particles having an unrestrained ability to
continue their motion in whatever may be the direc-
tion they were launched (by some initial disturbance)
or deflected (by interactions with neighboring parti-
cles). No matter how small the differences in ini-
tial directions and velocities between individual par-
ticles, their trajectories quickly diverge. An observer
sees a highly chaotic pattern of flow, including inter-
mittent events with particularly large velocity gra-
dients. What is the probability structure of the dissi-
pation field and related field gradients in a tubulent
flow? No rigorous deductions based on the govern-
ing N-S equations have been reported, although a
number of heuristic models have been proposed (e.g.,
Novikov and Stewart, 1964; Novikov, 1966; Yaglom,
1966; Mandelbrot, 1974).

Satellite Observations

Satellite instruments measure at different inci-
dence angles the electromagnetic characteristics of
the emitted radiation (passive instruments work-
ing in visible, infrared and microwave ranges of the
electromagnetic spectrum) and backscattered radar
pulses (active instruments working in the microwave
range) that come from the ocean surface. These char-
acteristics (e.g., the intensity of visible and infrared
radiation at various wavelengths, radio brightness
temperature, radar cross section, round-trip travel
time of a reflected pulse, the shape of the pulse dis-
torted by a random sea surface and so on) are inter-
preted in terms of oceanographic parameters (pig-
ment and chlorophyll-A concentrations, sea surface
temperature, wind speed and direction at the sur-
face, sea level height and others). The interpre-
tations are typically obtained from empirical algo-
rithms based on incomplete or approximate phys-
ical models. For instance, empirical relationships
based on a limited set of coincidental radar and buoy
observations are routinely employed to derive wind
speed from altimeter and scatterometer radar cross
sections. Such relationships are called geophysical
model functions (GMF’s). The available GMF’s are
based on rather simple linear or nonlinear regres-
sion models, and considerable improvement might be
possible in this area with the use of more advanced
statistical methods.

Instrument footprint sizes, swath widths and other
characteristics of typical satellite instruments are
summarized in Table 2.1. The footprint is a spot
on the surface from which reflected or emitted ra-
diation is collected by satellite antenna to produce
the observed radar cross section, brightness temper-
ature and so on. Spatial coverage (which depends
on swath width, footprint size, sampling rate and
satellite orbit geometry) varies from one instrument
to another. The spatial sampling rate, that is, the

" distance between individual satellite footprints, may

cause aliasing of the data. Other factors leading to
aliasing are the spatial separation of satellite orbits
and the specific time interval between repeat tracks
(see Figure 6.1 in Section 6). All these factors raise
issues regarding correct interpretation of satellite
measurements and their use in numerical models
of ocean circulation. Spatial inhomogeneity of sur-
face properties on scales within and beyond the foot-
print size, and these properties varying nonlinearly
along any direction within a footprint, produce an
appreciable dependence of satellite measurements
upon the instrument employed. The case of wind
speed measurements is most instructive. Wind speed
maps for same period of time but based on measure-
ments by different satellite techniques exhibit ap-
preciable differences—regardless of the fact that the
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TABLE 2.1
Characteristics of satellite microwave instruments for ocean studies
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Instrument and its
main features

Measured
electromagnetic
parameters

Inferred ocean
parameters

Altimeter: sends short
pulses at nadir
incidence (13-GHz
carrier frequency;
TOPEX altimeter will
also have a 5-GHz
channel)

Scatterometer: sends
short pulses in a range
of incidence angles
from 20 to 60 degrees,
using both strictly
horizontal (HH) and
strictly vertical (VV)
polarizations; 14-GHz
carrier frequency

Synthetic aperture
radar: high-spatial-
resolution radar
images of sea surface
roughness distribution
for C, L, and X bands.
other bands have also
been employed

Special Sensor
Microwave/Imager
(SSM/T) with channels
(GHz):

19.4

22.2

37.0

85.5

Scanning
Multichannel
Microwave
Radiometer (SMMR)
with channels (GHz):

37.0

21.0

18.0

10.7

6.6

Travel time of a
return pulse,
radar cross
section, shape
of a return
pulse

A set of radar
cross sections
for each surface
bin, at several
azimuthal
angles and
polarizations

Analog and/or
digital matrices
of radar cross
section showing
spatial
variation of
surface
roughness

Radio
brightness
temperature

Radio
brightness
temperature

Sea level height; Wind
speed; significant wave
height

Wind speed; wind
direction

Length and direction, or
surface gravity and
internal waves, wave
number spectra of surface
roughness spatial
variation, surface
signatures of mesoscale
eddies, fronts, current
boundaries, sea ice,
bathymetry

Characteristics of
atmosphere (e.g., water
content); surface wind
speed, sea ice

Characteristics of
atmosphere (e.g., water
content); surface wind .
speed, sea surface
temperature, sea ice

Additional
Footprint Swath width information
Circular, 5- to One; pixel Along-track pixel
12-km diameter, diam. ~10km  spacing: ~7 km.
depending on Distance between
surface roughness tracks at equator:
~150 km. 10 to 20
days exact reptition of
all orbits
Aspect ratio Two swaths 600 Global coverage every
~ 1:4. Major axis: to 700 km each 2 days
30 to 90 km
depending on
position within the
swath, etc.
10- to 100-m linear Hundreds of Usually only regional
size, depending on  kilometers coverage for selected
the mode frequency locations
electromagnetic
band, etc.
Length Width 1300 km Almost total global
(km) coverage obtained
70 45 every day
60 40
38 30
16 14
Length Width 780 km Almost total global

(km) coverage every 2 days
22 14
28 25
43 28
74 49
120 79

Source: Courtesy of Roman Glazman, Jet Propulsion Laboratory, California Institute of Technology.

Statistical models of oceanographic fields with pre-

root-mean-square measurement errors characteriz-
ing individual instruments are very similar. Pandey
(1987) compared wind fields based on satellite scat-
terometer, altimeter and microwave radiometer data
and found that the discrepancy locally may exceed 2
m/s. Statistical distributions of wind velocities de-
rived from different instruments can also differ.

scribed statistical properties might prove useful for
analysis of satellite and other measurements (e.g.,
Ropelewski, 1992). In Section 6, additional prob-
lems arising in connection with the spatial inhomo-
geneity, statistical anisotropy and intermittency ob-
served in oceanographic fields are reviewed. Those
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include transferring (binning) the satellite-produced
data onto geographic grids; filling gaps in the data;
and interpolating, extrapolating, smoothing and fil-
tering the data.

Issues for Statistical Research

There are important open questions associated
with sampling at different rates: how does sampling
at different rates relate to aliasing, and to interaction
of processes occurring at different scales? What can
and cannot be inferred about the continuous process
within which sampling is done? These concerns also
involve different types of estimates such as second-
and higher-order spectral estimates, probability den-
sity estimates and regression estimates. Such ques-
tions should be considered under the assumptions of
both stationary and nonstationary processes. These
problems are connected with those involving non-
Gaussian observations (see Section 8). Suitably se-
lected and designed multiscale wavelets may be help-
ful in this situation.

There are statistical research opportunities in
modeling a random field given the following:

1. observational data representing averages over
regions (pixels) of a given size (as determined,
e.g., by a satellite footprint), and

2. observational data obtained by irregular sam-
pling (spatial and temporal data gaps, etc.) of a
random field.

An analysis of extrema of non-Gaussian fields is
needed. It will depend partly on what one can say
in the stationary case about the tails of the instanta-
neous distributions. Such an analysis will have both
a probabilistic and a statistical aspect; i.e., given a
nice probabilistic characterization, can some aspect
of it be effectively estimated from data? Progress
on these questions may also carry over to notions of
intermittency. Specific issues for focus include the
following:

1. analysis of asymptotics of extrema of a non-
Gaussian field;

2. analysis of behavior of outlying observations in
a case of non-Gaussian data;

3. modeling of a random field with given statistics
of extrema.

Additional issues and problems concerning non-
Gaussian random fields and processes are listed at
the end of Section 8.

3. LAGRANGIAN AND EULERIAN
DATA AND MODELS

In the last two decades the use of Lagrangian (i.e.,
current-following) devices has become very popular

in oceanography (for a review, see Davis, 1991a).
Drifting buoys have been developed that can follow
the ocean currents with good accuracy, moving ei-
ther at the surface of the ocean or in the interior on
surfaces of equal pressure or density. These drifting
buoys are tracked acoustically or via satellite for ex-
tensive time after deployment (up to a year or more).
They report their position at discrete times, with an
interval that can vary from hours to days depending
on the specific purpose of the measurements made.
From these positions, an estimate of the horizontal
velocity along the buoy trajectory can be made. In
addition to their position, drifting buoys are often
equipped to measure other physical quantities, such
as temperature or pressure.

Data from drifting buoys are used both for un-

derstanding the dynamics of ocean circulation (e.g.,
Price and Rossby, 1982; Bower and Rossby, 1989) and
for describing its statistical properties (e.g., Kraus
and Boning, 1987; Figueroa and Olson, 1989). This
section focuses on this second aspect. An appropriate
statistical description of ocean circulation includes
two main parts. One is the statistics of the velocity
field, and the other is the statistical description of
the transport mechanisms. The ocean plays a fun-
damental role in the transport of such quantities as
heat, salinity or chemical substances (both natural
and anthropogenic) that are fundamental for envi-
ronmental and climatic studies. Before going into the
details of how the Lagrangian data are actually uti-
lized to obtain the statistical information, it is useful
to point out that there is a direct connection between
Lagrangian trajectories and transport properties in
a flow (e.g., Davis, 1983). This can be seen by con-
sidering the equation for the evolution of the concen-
tration of a substance released and transported in an
incompressible fluid: (V,u) = 0 (see, e.g., Pedlosky,
1987). Assuming that the substance concentration is
a scalar function c(¢,r), and that the substance does
not interact with the flow while it is advected (i.e., it
is a passive scalar, or “tracer”), the equation is
3.1) e+, V)e=0, c(0,x)=co.
Note that equation (3.1) is the same as equation (1.4)
of Section 1, except that the molecular diffusivity
is neglected because here the concern is large-scale
flows, and for simplicity no sources or sinks are con-
sidered. The solution of equation (3.1) by the method
of characteristics takes the form

3.2) c(t,r) =co (X‘l(t, r)),

where X1 is the inverse of the function r — X(¢,r)
that represents the position reached at time ¢ by a
particle that was atr at ¢t = 0.
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From (3.2) one can calculate statistical moments
of the concentration c(¢, r) by the formula

(e, r)et,ra) - - - c(t,xp))
(3.3) =/60(r'1)---Co(r},)
R

/ /
'PX—l(t,l"l),..‘,X‘l(t,l‘;Q(rl’ -, Xp)dry - drp,

where P¢, .. ¢, is the probability density of a random
vector &1, ..., &, representing the probability distri-
bution of Lagrangian trajectories in the fluid.

In oceanography, most of the work performed to
date has focused on the first moment of ¢ (i.e., on
the mean concentration (c)) and on the related prob-
ability density function for a single particle P¢,. A
few studies have considered the statistics of particle
pairs (e.g., Bennett, 1984; Davis, 1985). Even in the
simplest case of a single particle, though, the data
are not sufficient to compute P¢,, so that (3.3) cannot
be used directly.

Information on (c) can, in principle, be retrieved by
combining the data with the equation for (c) obtained
by averaging (3.1). The trouble with this approach
is that the resulting equation for (c) involves terms
such as (u Vc); the equation for these terms in turn
involves still higher order statistical terms, and so
on in an unending hierarchy. This is the “closure”
problem, one of the central problems in fluid dynam-
ics. In practice, what is usually done is to “close” the
equations for (c) at a chosen level using some kind
of assumptions. The issue then becomes identifying
the closed equations’ appropriate form for the spe-
cific context under examination (e.g., see Molchanov
and Piterbarg, 1992). As discussed in Section 1, the
simplest form of closure is given by the advection
and diffusion equation (1.4) where molecular diffu-
sivity is replaced with turbulent (“eddy”) diffusivity.
An estimate of diffusivity can be obtained from the
data, as a function of the velocity autocorrelation
measured by buoys (e.g., Kraus and Boning, 1987).
This form of closure is, strictly speaking, valid only
if the flow is homogeneous in space and stationary
in time, and if the time scales considered are longer
than the time scales of the turbulence. Other more
general and more widely valid equations have also
been used in the literature. Examples are the elab-
orated form of the advection and diffusion equation
proposed by Davis (1987) and stochastic models used
to describe the motion of single particles (Thomson,
1986; Dutkiewicz, Griffa and Olson, 1993).

One of the difficulties in using data from drifting
buyos is that, whereas the data are inherently La-
grangian, the information oceanographers are inter-
ested in is often Eulerian (i.e., associated with a fixed
point). Typically, oceanographers seek maps of sim-
ple statistics of the velocity, such as the mean flow

and the variance, and of some turbulent transport
quantities, such as the diffusivity. The knowledge
of diffusivity as a function of space is of great im-
portance for a number of reasons. First, it provides
a direct picture of the nature of ocean turbulence,
which is still not well understood (as discussed in
Section 1). In particular, comparing diffusivity maps
and maps of mean flow or velocity variance provides
a way to test simple theories of turbulence, and even-
tually indicates how to improve them. Secondly, one
must know diffusivity as a function of space, because
it is an input of key importance for numerical mod-
els that simulate oceanic processes using equations
(1.1)~(1.4) in Section 1.

The theoretical problem of determining Eulerian
statistics from Lagrangian statistics is quite diffi-
cult, and it is still open (e.g., Li and Meroney, 1985;
Babiano, Basdevant and Sadourny, 1985). Oceanog-
raphers take the simplest possible approach. They
consider a set of measurements taken in a certain
geographical region and assume that the region can
be divided into smaller subregions (boxes) charac-
terized by a space scale L, where the statistics are
approximately homogeneous and stationary. All the
data present in each box at all times can then be con-
sidered as representative of the same spatial point,
and can be used to compute averages of the quanti-
ties of interest. In this way, the Eulerian statistics
are computed from a combination of space and time
averaging. The important question is: What hap-
pens when the hypotheses of homogeneity and sta-
tionarity inside the boxes are relaxed, as is expected
to occur in a realistic situation? An extensive analy-
sis regarding this problem has recently been done by
Davis (1991b) in the context of the elaborated advec-
tion and diffusion equation. The following paragraph
briefly summarizes some important points.

Stationarity can be relaxed fairly realistically pro-
vided the ocean is characterized by slowly varying

. fluctuations so that time averages, even though not

constant, are representative of the particular ocean
climate present during the measurements. Inhomo-
geneity could in principle be reduced inside each box
by increasing the resolution, that is, by decreasing
L, the scale of the boxes. In practice, though, the un-
certainty in the estimate of the statistical quantities
also depends on L, so that a trade-off must be found
between resolution and accuracy. The scale L must
be large enough to give a reasonable uncertainty and
small enough so that the statistical quantities com-
puted in the box are meaningful.

It is important to note that biases can occur in esti-
mating the statistical quantities as a consequence of
both inhomogeneity in the sampling (array bias) and
in the turbulent velocity (diffusion bias). This last
type of bias reflects the observed tendency of drifting
buoys deployed at a point to migrate toward regions
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of high turbulent energy. As shown by Davis (1991b),
the size of these biases can be identified for mean ve-
locity, but it appears to be much harder to identify
for diffusivity. The use of other model equations for
transport (or equivalently for particle motion) may
help in identifying this bias or possibly suggest bet-
ter estimators for the quantities of interest.

Finally, in some special cases the inhomogeneity of
the statistical quantities can likely be solved explic-
itly. This can happen when general information is
available on the spatial structure of the quantities,
so that they can be approximated by space-functions
dependent on a discrete number of parameters. An
approach of this type has thus far only been applied
to simple linear flows (e.g., Davis, 1985), but it is
likely to also be useful for more complex flows, such as
strong vortices or meandering currents, which play
an important role in oceanography. The technique
consists of estimating the parameters by using the
data in conjunction with a model equation, such as
some form of the advection and diffusion equation
or a stochastic model for particle motion. The use
of a stochastic model also provides a natural and
straightforward way to filter the data.

Prospective Directions for Research

As is apparent from the preceding discussion, a
number of key problems (e.g., the “closure” problem,
determining Eulerian statistics from Lagrangian
statistics, dealing with array bias and diffusion bias)
are still open that relate to the use of Lagrangian
data in the description of the ocean circulation. They
suggest a variety of directions for statistical research,
ranging from statistical analysis for oceanographic
data to probabilistic modeling for processes in the
ocean. Some specific considerations are the follow-
ing:

1. statistical methods for irregular and sparse ob-
servations, with emphasis on estimation of spec-
tral and correlation characteristics (see Sections
6 and 8); .

2. .filtering and parameter estimation for random
fields governed by randomly perturbed ordinary
and partial differential equations, with empha-
sis on numerical methods for nonlinear filtering,
spectral methods and others;

3. the study of single-particle statistics in inhomo-
geneous and nonstationary turbulent flows;

4. the study of multiparticle statistics;

5. the Lagrangian approach to turbulence;

6. the derivation of closed-form equations for mo-
ments of passive scalars;

7. the exploration of the time evolution of distribu-
tions of passive scalars, with emphasis on inter-
mittence (“patchiness”).

4. FEATURE IDENTIFICATION

A fundamental problem in oceanographic data
analysis is the identification of features in image
data: their shape, size and motion. The data used
in identification are typically satellite images, e.g.,
infrared or visible images from the NOAA polar-
orbiting satellites or from synthetic aperture radar
(SAR). Features are identified in order to quantify
their statistics (e.g., ring size and frequency, front
locations), to understand the evolution of the fields
(e.g., ice leads and floes) and in successive images to
infer motion in the field [e.g., sea surface tempera-
ture (SST)]. Statistics of the features can be used to
determine the accuracy of numerical models that de-
scribe the physics of the process. Feature identifica-
tion can also be used to generate realistic fields from
data with numerous gaps for assimilation into nu-
merical models for prediction. Feature identification
is usually complicated by the presence of instrument
noise or geophysical (e.g., clouds) noise. Automation
of feature identification using statistical measures is
a primary issue; to date, few automated techniques
have matched the success of a skilled analyst.

Tracking of Fronts and Rings

The locations of major current systems and the lo-
cation, tracks, diameters and lifetimes of rings have
been studied using infrared images from the Ad-
vanced Very High Resolution Radiometer (AVHRR)
sensor on the NOAA polar-orbiting satellites. Brown
et al. (1986) characterized the warm-core rings in the
Gulf Stream system using 10 years of AVHRR data; a
histogram of ring lifetimes showed two distinct peaks
at 54 days and 229 days. Auer (1987) analyzed rings
as well as the “north wall” of the Gulf Stream, de-
fined subjectively as the location of the maximum
SST gradient, using analysis charts derived from
AVHRR images. Among other findings, Auer found

_that the position of the north wall had an annual sig-

nal, and that its interannual variability in position
was comparable, to its annual variability. Cornillon
(1986) examined variations in the Gulf Stream po-
sition upstream and downstream of the New Eng-
land Seamounts, again locating the north wall sub-
jectively, and found that the meander envelope did
not increase due to the seamounts, but that the mean
path length did increase. Cornillon and Watts (1987)
found that subjective identification of the north wall
was more accurate than that enabled by any “conven-
tional algorithm,” such as the location of the maxi-
mum SST gradient, and found that the root-mean-
square difference between the AVHRR-derived loca-
tion and a traditional definition based on in situ tem-
perature measurements was less than 15 km.

Ring motion is generally determined by the ring
displacement over periods of tens of days, but there
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may be substantial changes in ring structure and mo-
tion over these time periods. Cornillon, Weyer and
Flier (1989), in an attempt to determine the motion
of warm-core rings relative to the motion of the Gulf
Stream slope water, confined their analyses to pairs
of observations separated by 36 hours or less. The
ring outline was determined from AVHRR images,
again by subjective methods, and the ring center was
found by the best fit to an ellipse. This fit to the el-
lipses was found to be better than both a center-of-
mass estimate or the intersection of perpendicular
bisectors from the ring edge. Absolute velocity esti-
mates were derived from adjacent pairs of ring cen-
ters. The velocity of the slope water was determined
by a subjective tracking of small SST features in
pairs of images (horizontal velocity estimation is dis-
cussed in more detail below), and the difference be-
tween the velocity estimates was the desired result.
The uncertainties in all of the motion estimates were
quite large. Arelated problem is the determination of
the ring characteristics and frequency of occurrence
based on a series of line samples (as from a radar al-
timeter subtrack), where the spacing between tracks
is as large as a ring diameter and the time between
successive tracks is comparable to the time required
to move to another track (an “aliasing” problem).

Mariano (1990) developed a method for combining
different types of data to produce a map of a field
that preserves typical feature shapes, rather than
smearing them out as in an optimal estimate. Opti-
mal estimates (generally known as “objective” maps
in oceanography) minimize the expected squared er-
ror of the field value; Mariano’s contour analysis pro-
duces instead an optimal estimate of the location of
each contour of the field values. Thus it preserves the
typical magnitudes of the field gradients; i.e., it pre-
serves the shapes and sizes of rings and ocean fronts.
Because the gradients affect the dynamics of the field
in the simulation, the analyzed contour fields give
more realistic input for assimilation into numerical
simulation models. Mariano’s method requires a pat-
tern recognition algorithm to first delineate the con-
tour in each type of data, before the optimal estimate
of the final contour location can be made.

All of these statistical characterizations using im-
ages have in common the problem of detecting fea-
tures in the presence of extensive cloud contamina-
tion or instrument noise; subjective methods have
probably been most successful because the human
eye can compensate for slight changes in the values
of the field and locate a feature by its shape. The
problem with subjective methods is that they tend
to be labor intensive. A successful automated tech-
nique is highly desirable, especially for the case of
analyzing large quantities of data (e.g., satellite ob-
servations or numerical model output). Ring studies
have the additional problem of isolating an ellipti-

cally shaped feature that has numerous streamers
and smaller eddies attached to it. The delineation
of fronts is similar to a contouring problem: a sin-
gle line must be designated in a noisy field, and the
presence of closed contours must be determined to
distinguish a ring from the front.

Sea Ice Tracking

There are several problems in feature identifica-
tion in sea ice for which good statistical estimators
are needed. Some examples are given here. The mo-
tion of pack ice, using a feature-tracking method to
determine velocities from a sequence of images, is
similar to that of cloud motion or movement of wa-
ter parcels (e.g., Ninnis, Emery and Collins, 1986).
This problem is closely related to ocean velocity esti-
mation, which is discussed below. Feature identifica-
tion algorithms are needed to characterize ice floes
(Banfield and Raftery, 1991; see also Chapter 3 of
NRC, 1991b) and leads (the open water between the
ice floes): floe size distribution, and lead direction,
spacing and width distributions.

If one considers a set of markers on sea ice, their
subsequent changes in position can be decomposed
into four components: a translation, a rotation, an
isotropic scaling and a change in a shape. An alter-
native decomposition would be into rigid body mo-
tion and deformation, and the deformation may be
further decomposed into affine and nonaffine compo-
nents. Shape statistics, concerned with the analysis
of shapes such as these, includes the examination of
a series of shapes evolving over time. In the context
of polar oceanography, the emphasis is not so much
on the shape itself—as it might be in biology, where
much of shape statistics originates—but rather on
the motion and deformation of the shapes. The de-
formations and motions of various shapes must be
reconciled with each other to establish the evolution

.of the entire field, and to infer something about the

field dynamics.

A combination of feature identification and feature
tracking is used to estimate the opening and closing
of sea ice leads, which is necessary for models that
estimate sea ice thickness (e.g., Fily and Rothrock,
1990). The object of this analysis is to produce an es-
timate of the fractional increase or decrease in size
of sea ice leads from a pair of sequential SAR im-
ages. The first step in the estimation requires the
designation of tie points between the same features
in sequential images, which are determined by cross-
correlations between subsets of the images. This pro-
cedure is quite similar to that required for estimation
of ice motion. The next step requires the classifica-
tion of the entire image into ice or lead, which is a
statistical problem by itself, similar to that of flag-
ging AVHRR images for cloud cover, or classifying
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AVHRR images by cloud type. The net increase or
decrease in the area covered by the leads based on
a comparison of the two classified images gives the
required estimate.

Estimation of Horizontal Velocities from Image
Sequences

Another oceanographic problem that might bene-
fit from the application of advanced statistical meth-
ods is the estimation of horizontal ocean velocities
using pairs of satellite images. One method of es-
timating these velocities is to track identifiable fea-
tures in a tracer field, usually the sea surface tem-
perature (SST, Emery et al., 1986). Other methods
use the heat advection equation (1.4) (Kelly, 1989) or
an assumption of geostrophic balance (Kouzai and
Tsuchiya, 1990) to relate observed SST to the veloc-
ity field. SST images from the AVHRR have a hori-
zontal resolution of approximately 1.1 km, with tem-
poral separations of 4 to 8 hours. While clouds often
obscure much of the ocean, there are occasionally pe-
riods of 1 to 8 days with relatively few clouds during
which 4 to 12 images can be collected. Most of the
velocity estimates assume that changes in SST are
due to horizontal advection; however, other processes
also change the SST seen by AVHRR: contamination
by undetected clouds and fog; heating and cooling
by the sun and air; vertical mixing and vertical mo-
tion; and changes in the top “skin” of the ocean (less
than 1 mm thick). In the absence of these complica-
tions, the problem of estimating velocities would be
one of mapping the location of all pixels in the first
image onto the second image. It has been suggested
that other statistical methods, such as simulated an-
nealing (see, e.g., Chapter 2 in NRC, 1992c¢), might
produce such a mapping of individual pixels, but this
has not been attempted to date.

The feature tracking method has been automated
using a maximum cross-correlation (MCC) method,
first applied by Emery et al. (1986) and derived
from the methods used to track the motion of pack
ice. The procedure is to cross-correlate a subre-
gion of an initial image with the same-sized subre-
gion in a subsequent image, searching for the loca-
tion in the second image that gives the maximum
cross-correlation coefficient. The size of the region
searched in the second image depends on the max-
imum displacement that could be caused by rea-
sonable velocities in the surface ocean. There is a
trade-off between the spatial resolution of the ve-
locity estimates and the statistical reliability of the
cross-correlation. The small-scale features can be
enhanced by the calculation of gradients or by high-
pass filtering. It has been suggested that wavelet
transforms might provide another way of first cor-
relating larger-scale features and then smaller-scale

features, but this has not been tried. Further refer-
ences to the MCC method include Collins and Emery
(1988), Kamachi (1989), Garcia and Robinson (1989),
Tokmakian, Strub and McClean-Padman (1990) and
Emery, Fowler and Clayson (1992).

Identifying features in consecutive images is not
the most difficult problem in velocity estimation, al-
though there is room for improvement here. Two re-
lated unresolved issues are ring motion (or rotation)
and inferring velocity along isolines of the tracer field
or in regions of small gradients. These flows produce
only small changes in the tracer field, but the mag-
nitudes of the velocities may be larger than those of
the velocities that produce large changes in the tracer
field. The MCC method can be modified to accomo-
date rotation of the features. Besides simply dis-
placing the initial search region and calculating dis-
placement, the initial region can be rotated through
a reasonable range of angles (Kamachi, 1989;
Tokmakian, Strub and McClean-Padman, 1990).
However, the additional searches increase the chance
of random high correlations, and the benefit is ques-
tionable. Emery, Fowler and Clayson (1992) have in-
vestigated an alternate method of following rotation
in closed rings and eddies, also noting that the basic
method, without rotation, produces similar results.

Another method, which addresses the latter prob-
lem, solves the heat advection equation using inverse
methods to find the velocity field most consistent
with the change in SST fields observed in the two
images (Kelly, 1989). The heat equation used, based
on equation (1.4), is

4.1) Ti +uTy +vTy — m(x, y) = S(x,y),

where u,v are the horizontal velocity components,
T, T, are horizontal derivatives of SST, T} is the
temporal derivative of SST, S(x,y) is a term that de-
scribes SST fluctuations with relatively large spatial
scales (which are not due to advection) and m(x,y)

- is the misfit. As in the MCC method, there is an

optimal temporal lag § between images for the inver-
sion: approximately 12 hours, compared to values of
4 to 6 hours preferred for the MCC method. Velocity
fields that include the along-isoline velocity compo-
nent can be obtained by adding constraints on the
velocity solution, notably the minimization of hori-
zontal divergence, with a weighting factor «a relative
to the heat equation (4.1), that is,

(4.2) oluy +vy =0).

Two-dimensional biharmonic splines were used as
basis functions for the velocity fields in the inver-
sion to give a continuous solution, unlike the feature-
tracking methods, which give estimates at discrete
grid points (Kelly and Strub, 1992). The spatial res-
olution of the solution depends on a parameter that
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sets the number of data per knot in the spline, and
on the size of the subregion used to compute the
SST gradients. A statistical challenge in this inverse
problem is determining the best solution as a trade-
off between the fit to the heat advection equation and
the constraints. Although inverse theory methods
exist to solve this problem more rigorously, it has not
yet been done.

The horizontal velocity problem has been exam-
ined by many scientists and engineers. Other meth-
ods include the use of a single image in conjunc-
tion with the thermal wind equation, which relates
horizontal SST gradients to vertical velocity shear
(Kouzai and Tsuchiya, 1990). This method neglects
salinity effects and requires an empirical relation be-
tween SST gradients and velocity from field data.
Wahl and Simpson (1991) explored a variety of ar-
tificial intelligence methods for modifying the basic
feature-tracking method and improving the cross-
isoline solution. These methods have not been eval-
uated using field measurements.

The MCC and heat advection inverse methods
have been compared by Kelly and Strub (1992) to
in situ velocities from surface drifters and acoustic
Doppler current profilers (ADCP), and to geostrophic
velocities from the Geosat altimeter. They found that
both methods produce velocity fields that captured
the main features of the horizontal velocity field in
a region of the coastal ocean approximately 500 km
square. Both methods also underestimated the max-
imum velocities in the most energetic jets (velocities
over 1 ms~1). Detailed examination of the SST fields
showed that in some cases the MCC method was
not underestimating the displacements of identifi-
able features within the jet. Rather, drifters at 15-m
depth within the jet were moving to locations beyond
the SST feature in the second image. Thus, substan-
tial errors in both methods occurs because some of
the largest velocities in the ocean do not produce ob-
servable SST changes. Although further modifica-
tions of these two methods or entirely new techniques
might improve the estimates, these errors suggest
that even a perfect mapping of SST fields would not
give an accurate velocity field in regions with en-
ergetic jets. One promising approach is to incorpo-
rate independent velocity measurements into the es-
timate, either from radar altimeters or from drifters.

Prospective Directions for Research

Identifying features through the analysis of
oceanographic data presents many opportunities for
statistical research to contribute to progress on im-
portant physical oceanographicissues. The following
particular issues exemplify some of the challenges for
which statistical advances that improve on current
approaches would be valuable:

1. detection of SST fronts and rings (maximum
gradients) in the presence of noise with a va-
riety of spatial scales;

2. characterization of rings or eddies by shape, fre-
quency and motion in a series of images or from
a series of line samples, which may lead to alias-
ing of the feature motion;

3. characterization of the evolution of ice floes and
leads, using a time series of images; the empha-
sis is on inference of the dynamics of the field
from the feature evolution and statistics;

4. estimation of oceanic velocity using a time series
of tracer fields, where the relationship between
the velocity field and the tracer is not unique and
the velocity field is subject to some dynamical
constraints.

5. VISUALIZATION

Scientific visualization has nearly become a cliché
in recent years, as researchers apply increasingly so-
phisticated hardware and software tools to the task
of data analysis. Techniques ranging from video an-
imations of three-dimensional fields to simple two-
dimensional line plots are often lumped under the
term “visualization.” In a sense, any visual repre-
sentation of data may be considered visualization.
However, a more useful definition would be more re-
strictive; visualization is the representation of data
as apicture. This picture could consist of either static
or evolving fields (animations).

The motivation for scientific visualization is the
increasing availability and complexity of enormous
observational data sets and numerical model out-
put. Traditional line plots, tables of data and other
methods are inadequate to cope with the volume
and complexity of these “data.” Suitable visualiza-
tion, by presenting the data as a picture, can allow
the researcher to detect relationships and patterns
much more quickly. This “illustrative” approach con-
veys information about relationships between com-
ponents of the image simultaneously, rather than re-
lying on a “discursive” or sequential approach using
tables of numbers, sentences and so on. The tru-
ism about a picture being worth a thousand words is
applicable for many studies. In an effort to deduce
the underlying processes responsible for the relation-
ships between various physical phenomena, visual-
ization tools will play an important role as scientists
examine multidimensional data sets.

Uses of Visualization

The volume of data that can be collected by
oceanographers has increased dramatically over the
past 10 years. Although satellite sensors are the
usual example, data rates from in situ instrumenta-
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tion have also increased. For example, data storage
technology now allows moorings to collect samples
more frequently and for a longer time period. New
instrumentation, such as spectroradiometers, are be-
ing deployed on moorings to measure upwards of 50
variables. Typical data sets now range from hun-
dreds of megabytes to a few gigabytes or more.

Although the sheer volume of data may require
visualization tools, an equally compelling need for
improved visualization tools is the multitude of vari-
ables that are now being measured. Advances in
ocean instrumentation have greatly increased the
variety of processes that may be measured. For ex-
ample, probes can now measure oxygen nearly con-
tinuously, rather than relying on bottle samples at
a few discrete depths. High-resolution spectrome-
ters measure phytoplankton fluorescence with much
greater accuracy, resolving many pigments rather
than just chlorophyll. The search for relationships
becomes increasingly difficult as more data sets are
added, and so analysis tools that simplify this process
are essential. The need to examine complex relation-
ships is not driven simply by our ability to measure
numerous variables; rather, the importance of un-
derstanding the interplay between biology, physics
and chemistry has driven the need for an interdisci-
plinary approach to data analysis.

Numerical models can now provide detailed three-
dimensional views of the ocean. Such volumetric
data are nearly impossible to analyze using tradi-
tional, two-dimensional graphic techniques (see, e.g.,
Pool, 1992). The addition of the temporal dimension
also requires animation tools to allow researchers
to study model dynamics and evolution. Visualiza-
tion tools play an important role in assessing model
performance as well. For example, most model out-
put has traditionally been discarded in an attempt to
limit data volumes to manageable levels. However,
specific events in model simulations often appear in
just a few time steps, so that the ability to retain
model output at every time step is useful for model
, diagnostics. The resulting large quantities of model
output place a greater demand for sophisticated vi-
sualization techniques to search through the large
volumes of data in an efficient manner that enables
easy identification of the events.

Challenges for Visualization

Visualization will continue to be important for
oceanographic research as the ability to measure and
model the ocean improves. Existing visualization
tools, however, are inadequate for these tasks. Many
deficiencies revolve around implementation prob-
lems and have been described in numerous NASA
and other federal government reports (Botts, 1993;
McCormick, Defanti and Brown, 1987). For exam-

ple, existing visualization packages are generally ex-
pensive and difficult to learn. Packages are usu-
ally not extensible, so that custom features cannot
be added easily. Some tools cannot handle three-
dimensional data sets or animations. One of the
more difficult challenges is the ability to visualize
evolving volumetric data, such as that produced by
an ocean circulation model. It is very difficult to
“see” into the interior of such volumes using present
technology. Most commercially available packages
that are designed for such volumetric data are capa-
ble of handling static images, such as automobiles.
For many packages, visualizing three-dimensional
systems that evolve over time is a difficult task.
Such implementation deficiencies are slowly being
addressed by the software vendors and developers.

The most troublesome aspect of existing visualiza-
tion tools is that most of them break the link between
the underlying data and the image on the screen. Al-
though a researcher may be able to produce a sophis-
ticated animation of the evolution of an ocean eddy,
it is generally not easy to go from the animation on
the computer screen back to the numbers that the
various colors represent. As visualization is a tool to
allow the detection of previously unknown relation-
ships, it is still necessary to obtain quantitative in-
formation about the nature of the relationships. For
example, if one notes a possible relationship between
phytoplankton concentration and the strength of a
density front in an eddy, it is desirable to examine
the quantitative aspects of this relationship. Thus
there must be techniques for excising subsets of the
actual data for use in other analysis packages, such
as statistical and plotting tools. Present visualiza-
tion packages do not have probes or cursors that al-
low the user to examine the quantitative values of
a three-dimensional image at specific locations, nor
do they have tools for graphically selecting subsets
of visualized data (the equivalent of the “lasso” tool
on the Macintosh).

Most earth science data are referenced to some sys-
tem of Earth coordinates. As there is no standard
way to carry such information along with the data,
existing visualization packages either define their
own format for such ancillary information or else dis-
card it. It is vital that researchers be able to overlay
different data sets on a geographic basis. A com-
mon example is the comparison of satellite maps of
sea surface temperature and ship observations along
a transect across the map. Again, most visualiza-
tion tools do not retain this link to the underlying
data. Visualization must include a link between the
tools and an underlying database. This link must
operate in both directions. That is, the visualization
tool should be able to query databases to locate the
raw data of interest for analysis, as well as maintain
a database of the various visualization operations
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that were used to create a new, analyzed product.
For example, an animation of vector winds and sea
surface temperature might be created by querying a
database. The steps used to create this animation
would be stored along with the animation. Visual-
ization tools can create large amounts of analyzed
data that may be difficult to recreate without some
type of audit-trail mechanism.

Currently, visualization tools are used largely in an
exploratory manner, rather than for presentation to
the research community. The high cost of color print-
ing often prohibits the use of color imagery, and there
is no established method for distribution of video an-
imations. Occasionally, special sessions are held at
scientific meetings for presentations of videos, but
this approach reaches only a small fraction of the
community. New methods for dissemination of visu-
alizations must be established, as the existing print
medium is not adequate. One approach would be to
develop animation servers that are capable of stor-
ing and retreiving hundreds of video animations and
other visualizations. For example, a research arti-
cle might reference a video loop that is stored on the
server, much as on-line library catalogs are stored
now. With the planned increases in network capa-
bilities, it would be possible to retrieve and view the
animation on a local workstation. Such an animation
could be an integral part of the paper and thus sub-
ject to peer review. If scientific visualization is made
part of the publication process, it will no longer be
just a tool for exploring data sets but a key compo-
nent of scientific research and communication.

Lastly, color is often used in visualization to rep-
resent the underlying data. Most computer manu-
facturers have not invested in retaining color fidelity
from device to device. For simple business graphics,
variations in the shades of red from computer display
to video tape to hard-copy printer may not be a se-
rious concern. However, when this color represents
specific data values in scientific applications, main-
taining an exact shade of color across the breadth
of output devices is essential for scientific research.
This link to the data must also be maintained.

Visualization tools will likely increase in impor-
tance for oceanographic research as the volumes and
complexity of data continue to increase. However,
more attention must be paid to using these tools for
their quantitative value, and not just for their ability
to present complex relationships. This requires that
these tools retain the links to the data that are used
in the visualization process.

Outstanding Statistical Issues

One issue that could benefit from input from the
field of statistics is the question of what method to
use to interpolate irregularly spaced data to a reg-

ular grid in a manner that preserves the statistics
of the field of interest (cf. NRC, 1991b). For exam-
ple, satellite data generally consist of high-resolution
data within measurement swaths, separated by hun-
dreds or thousands of kilometers for which there are
no data between swaths. Most interpolation meth-
ods smooth the data and minimize spatial gradients.
It is desirable to retain as much of the full range of
spatial scales as possible in the gridded fields.

Another issue that oceanographers are concerned
with and that statisticians could contribute to is
determining a method of identifying “interesting”
events in the data that warrant a more detailed anal-
ysis. With small data sets, this can be accomplished
by simply examining all of the data by various graph-
ical techniques. For large satellite data sets or nu-
merical model output, it is highly desirable to develop
automated methods of locating such features. This
can be done (with some success) for specific events
with easily characterized features, but it is difficult
when features are difficult to characterize concisely
or do not possess simple characterizations.

6. INTERPOLATION, NONLINEAR SMOOTHING,
FILTERING AND PREDICTION

The topics of smoothing and filtering, commonly re-
ferred to as “data assimilation” in the oceanographic
and meteorological literature, have attracted a great
deal of attention of late. This emphasis on the com-
bination of statistical with dynamical methods, rela-
tively new to oceanography, arises as a natural con-
sequence of the increasing sophistication of models,
the rapid increase in available computing power and
the availability of new extensive data sets.

The most extensive of these newly available and
soon to be available data sets are remotely sensed
from space. Active and passive instruments operat-
ing in the microwave, infrared and visible portions

-of the electromagnetic spectrum provide spatial and

temporal coverage of the ocean unavailable from any
other source, but present new challenges in interpre-
tation. In particular, problems of filling in temporal
and spatial gaps in the data, interpolating satellite
data sets to model grids and selecting a limited num-
ber of points from very large data sets in order to
formulate tractable computational problems must be
considered.

Interpolation of Satellite Data Sets
Characteristics of satellite data

Different satellite instruments pose different prob-
lems, depending on spatial and temporal coverage,
on effects of clouds and rain cells and on viewing ge-
ometries. Characteristically, satellite data are sam-
pled very rapidly (on the order of seconds or min-
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utes). Data are acquired as areal averages along the
satellite ground track, as in the case of the altimeter,
which samples a region 10 km wide, or as areal av-
erages of patches 5 to 50 km in diameter in swaths
1000 km wide in the cross-track direction, as in the
case of the scatterometer or AVHRR. Spatially over-
lapping samples are taken on the order of 10 days
later in the case of line samples, or on the order of 1
day later in the case of swaths.

The satellite altimeter, as indicated in Table 2.1,
takes measurements roughly every 7 km along the
track. Employing active microwave radar, the al-
timeter functions in both day and night hours, in
the presence of clouds or in clear weather. Two sets
of satellite tracks, corresponding to ascending and
descending orbits (i.e., orbits that cross the equator
moving northward or southward, respectively) form
a nonrectangular network that is oriented at an an-
gle with respect to the parallels and meridians of
latitude and longitude. The angles change as func-
tions of the distance from the equator, as do the sep-
arations between adjacent tracks in the same direc-
tion (Figure 6.1). The irregular space—time sampling
inherent in satellite measurements over an ocean
basin raises important questions about aliasing and
the range in wavenumber—frequency space that can
be resolved by the data. The problem is very dif-
ficult, and only a few attempts have thus far been
made to address the issue (Wunsch, 1989; Schlax and
Chelton, 1992).

Satellite instruments, such as AVHRR, that work
in the visible and infrared range of the electromag-
netic spectrum provide ocean observations only in
the absence of clouds. Hence, maps based on these
observations have gaps. One way of achieving full
coverage of a specific ocean area is by creating com-
posite images that combine data from different time
periods (cf. NRC, 1992a). However, since the fields
(for example, sea surface temperature) are time de-
pendent, the composite images represent only some
average picture of sea surface temperature distribu-
tion for the period covered. Therefore, it is important
to know how this picture and its statistical properties
are connected with the statistical properties of cloud
fields, and how representative the composite image
is with respect to the ensemble average of the tem-
perature field (see, e.g., Chelton and Schlax, 1991).

Mapping satellite data: motivation and methods

For most applications, satellite data must be repre-
sented on a regular grid. The most common method
of mapping satellite observations onto a geographic
grid is by interpolating the data from nearby points
at the satellite measurement locations. Given the
complicated statistical geometry of oceanographic
fields (see Section 2), such gridding may lead to con-

siderable distortion. Therefore, it is important to
study effects of intermittent and rare events, as well
as effects of statistical anisotropy and inhomogeneity
of oceanographic fields, on the gridding process.

Each interpolated value is typically computed from
the 10 to 1000 closest data points, selected from the
millions of points typically found in satellite data
sets. Common nontrivial methods of interpolating
include natural or smoothing spline fits, successive
corrections, statistical interpolation and fitting ana-
lytical basis functions such as spherical harmonics.
In all cases the interpolated values are linear func-
tions of some judiciously chosen subset of the data.

Applications of natural splines and smoothing
splines to interpolate irregularly spaced data are as
common in oceanography as they are in most other
fields of science and engineering. The methods have
been well documented in the literature (e.g., Press et
al., 1986; Silverman, 1985).

Successive corrections (Bratseth, 1986; Tripoli and
Krishnamurti, 1975) is an iterative scheme, with one
iteration per spatial and temporal scale starting with
thelarger ones. The interpolating weights are a func-
tion only of the scale and an associated quantity, the
search radius (e.g., Gaussian of given width arbitrar-
ily set to zero for distances greater than the search
radius). This scheme is computationally very fast
and adapts reasonably well to irregular data distri-
butions, but does not usually provide a formal er-
ror estimate of the interpolated field, although it is
straightforward to add one. Somewhat related is an
iterative scheme that solves the differential equation
for minimum curvature (Swain, 1976) of the interpo-
lated surfaces with predetermined stiffness param-
eter, akin to cubic splines; however, the extension to
three-dimensional data is not commonly available.

Statistical interpolation (Gandin, 1965; Alaka
and Elvander, 1972; Bretherton, Davis and Fandry,
1976), also referred to as optimal interpolation and

. most generally referred to as objective mapping (de-

spite the fact that all of the techniques described
here are objective), consists of least-squares fitting
between interpolated and data fields. It assumes
that estimates are known and available of the co-
variance matrix of the data with errors, and of the
field to be interpolated. This is formally identical to
ordinary least squares regression, in which the value
of the interpolated field at a given point is assumed
to be a linear function of the data at nearby points,
and the moment and cross-product matrices are de-
termined by assumptions about the spatial and tem-
poral covariance of the underlying field. The formu-
las for the coefficients are derived simply by taking
the expected values of the matrices in the ordinary
least squares regression formula. Because matrix
inversions are required for each set of estimates, the
computational requirement is typically an order of
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Fic. 6.1. Example pattern of satellite ground tracks for the Geosat altimeter [see Douglas and Cheney (1990) and Vol. 95, Nos. C3and
C10 of Journal of Geophysical Research) with a 17-day exact repeat orbit configuration. Upper-panel shows the ground tracks traced out
during days 1 to 3 (solid lines), days 4 to 6 (dashed lines) and days 7 to 9 (dotted lines) of each 17-day repeat cycle. Note the eastward shift
of a coarse-resolution ground track pattern at 3-day intervals. Lower panel shows the complete grid of ground tracks sampled during each
17-day cycle. Source: Courtesy of Dudley Chelton, Oregon State University.

inagnitude larger than with the successive correction
scheme. Formal error estimates are always given.
Kriging (Journel and Huijbregts, 1978; NRC, 1992a)
is a similar method in which the structure function
rather than covariance is used to describe the data
and desired field, with somewhat better adaptabil-
ity to inhomogeneous statistics. The equivalence of
objective analysis and spline interpolation was pre-
sented by McIntosh (1990).

Projecting the data on a space spanned by a con-
venient set of nonlocal basis functions is simple and
well known, but there is no obvious choice of an effi-
cient set of basis functions. The spherical harmonics
commonly used for this purpose in meteorology do
not form an efficient basis over the oceanic domain

alone, requiring high-degree terms just to adapt to
the domain. Recent efforts to define an equivalent
set only over the oceans (Hwang, 1991) appear to
have been successful.

The disadvantage of using L? norm minimizations
is their relatively high computer resource require-
ment. An insidious consequence of this high re-
source demand is that in order to limit the prob-
lem to a size manageable with available computer
resources, some researchers use too few data val-
ues or too small a region to achieve proper isolation
of the length scales of signal and error. The disad-
vantage of schemes with fixed weights is clear: they
are unable to adapt to data of varying accuracy, even
though they do a decent job at adapting to inhomo-
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geneous data distributions. The practical disadvan-
tage for both objective mapping and successive cor-
rections is that spatially inhomogeneous scales and
anisotropy are not easily treated, and require break-
ing up the problem into several regional ones. This
can lead to inconsistencies or other undesirable prob-
lems along the boundaries of adjacent regions. In the
case of basis functions, most natural choices prove to
be very inefficient in representing small-scale fea-
tures; for example, many higher-degree terms may
be required to define a narrow jet such as the Gulf
Stream.

Data Assimilation: Use of Dynamical Models for
Smoothing and Filtering

As discussed in Section 1, it is not possible even
with satellite data sets to provide complete initial
and boundary conditions for the models in use to-
day. This is partly due to physical considerations,
such as the unknown details of air-sea exchanges,
but the greatest limitation on modeling studies today
remains the sparsity of data, especially subsurface
data that are inaccessible via satellites. It is there-
fore necessary to extract all available information
from the data while, simultaneously, understanding
the limitations on the applicability of any given data
set.

Most data assimilation work to date has been
based on least-squares formulations and the result-
ing linearized mathematical formalism. This can
be justified rigorously for linear system under fairly
general conditions, assuming the initial error distri-
butions are Gaussian. Within their realm of applica-
bility, linearized methods have been quite successful.
The ocean modeling community has a fair amount
of experience with filtering and smoothing of linear
models. The major remaining issues involve valida-
tion of statistical error models. These issues are most
fruitfully considered in the contexts of specific prob-
lems. A review of data assimilation in oceanography
can be found in Ghil and Malanotte-Rizzoli (1991).
For a general overview, see NRC (1991a).

The use of ocean circulation models in smooth-
ing and filtering of observational data has a rela-
tively short history. Still, there have been a num-
ber of successful attempts (e.g., Thacker and Long,
1988; Gaspar and Wunsch, 1989; Miller and Cane,
1989). A recent excellent study is that of Fukumori
et al. (1993). There has been, however, little sys-
tematic study of nonlinear smoothing and filtering
in the context of ocean modeling. The ocean model-
ing literature naturally overlaps with the numerical
weather prediction literature on this subject, and the
two fields share a common interest in qualitative re-
sults, but systematic studies are few, and those that
exist are elementary.

Direct approaches to applying statistically based
data assimilation methods to nonlinear prob-
lems have so far been based on generaliza-
tions of linear methods.  Variational methods
used to date (e.g., Tziperman and Thacker, 1989;
Bennett and Thorburn, 1992; Miller, Ghil and
Gauthiez, 1994; Moore, 1991) have been derived from
quadratic cost functions; that is, the optimized solu-
tion is the one that minimizes some combination of
covariances. This presupposes the notion that min-
imizing quadratic moments is the right thing to do
in this context, even though the underlying distri-
bution may not be unimodal. As one might expect,
these methods work well in problems in which the
nonlinearity is weak, or at least does not result in
qualitatively nonlinear behavior such as bifurcation
or chaos. Model studies have been performed on the
Lorenz equations (Gauthier, 1992; Miller, Ghil and
Gauthiez, 1994), which, for the most part, used co-
variance statistics and linearized methods. [An ap-
plication in which third and fourth moments were
calculated explicitly was presented by Miller, Ghil
and Gauthiez (1994), but it is unlikely that this
method has any wider applicability.] Gauthier (1992)
and Miller, Ghil and Gauthiez (1994) discuss in detail
the pitfalls in filtering and smoothing of highly non-
linear problems. In those cases, the implementation
of variational methods results in extreme computa-
tional difficulty.

The solution to the nonlinear filtering problem for
randomly perturbed dynamical systems is well un-
derstood theoretically (see Rozovskii, 1990). It can
be reduced to a solution of the so-called Zakai equa-
tion, a second-order stochastic parabolic equation. It
describes the evolution of the nonnormalized density
of the state vector conditioned upon observations.
Smoothing and prediction are technically based on
the Zakai equation and the so-called backward fil-
tering equation (see Rozovskii, 1990). In the last

.decade substantial progress has also been made in

numerical studies of the Zakai equation (see, e.g.,
Florchinger and LeGland, 1990). However, this the-
oretically perfect approach has some practical limi-
tations. In particular, the dimension of the spatial
variable for the Zakai equation is equal to the di-
mension of the state vector. This is clearly imprac-
tical for modern dynamical ocean models that have
thousands, if not hundreds of thousands, of state
variables.

It appears that the most promising approach to
this problem is development of hierarchical methods
that would involve Kalman-type filtering where pos-
sible and refinement of the first-level coarse filtering
by application of intrinsically nonlinear procedures
when necessary. These require further research
on numerical approximation for Zakai-type stochas-
tic partial differential equations, including develop-
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ment of stochastic versions for multigrid methods,
wavelets and so on.

While true nonlinear filtering will not find direct
application to practical ocean models in the near fu-
ture, guidance from solutions of simplified problems
can be expected. Further, there may be approxima-
tions to the Zakai equation is terms of parametric
representations to solutions that are more versatile
than those derived from methods explored earlier.

Overall, it appears that numerical methods for
stochastic systems are developing into an exciting
area of science that is of importance to oceanographic
data assimilation.

Inverse Methods

Some oceanographers consider that, in some larger
sense, all of physical oceanography can be described
in terms of an inverse problem: given data, describe
the ocean from which the data were sampled. Ob-
viously direct inversion of the sampling process is
impossible, but the smoothing process is occasion-
ally viewed as some generalized inverse of the sam-
pling process, with the laws of ocean physics used as
constraints (see, e.g., Wunsch, 1978, 1988; Bennett,
1992).

It has become common in oceanography and dy-
namic meteorology to solve the smoothing problem
by assuming that the system in question is governed
exactly by a given dynamical model. Since the output
of many dynamical models is determined uniquely
by the initial condition, the problem becomes one
of finding the initial conditions that result in model
output that is closest to the observed data in some
sense; the metric most commonly used has been least
squares. These problems are usually solved by a con-
jugate gradient method, and the gradient of the mean
square data error with respect to the initial values
can be calculated conveniently by solving an adjoint
equation. For that reason, this procedure is often re-
ferred to as the adjoint method (see, e.g., Tziperman
and Thacker, 1989). This is formally an inverse prob-
lem, that is, when given the outputs in the form of
the data, find the inputs in the form of the initial
conditions.

There are many significant problems in physical
oceanography that bear specific resemblance to what
is formally called inverse theory in other fields such
as geophysics. These include estimation of empirical
parameters (e.g., diffusion coefficients) and the de-
sign of sampling arrays to yield the most detailed pic-
ture of the property being sampled. Problems such
as these, along with others that fall within the strict
category of smoothing and filtering, are described in
detail in the volume by Bennett (1992).

Prospective Directions for Research

There are many opportunities for statistical
and probabilistic research regarding interpolation,
smoothing, filtering and prediction associated with
oceanographic data. The following are some of the
contexts that present challenges:

1. filtering and smoothing for the systems in which
the dynamics are given by discontinuous func-
tions of the state variables;

2. parameter estimation for randomly perturbed
equations of physical oceanography;

3. alternative numerical and analytical ap-
proaches to the least-squares approach for non-
linear systems;

4. hierarchical methods of filtering, prediction and
smoothing;

5. spectral methods for nonlinear filtering (sepa-
ration of observations and parameters);

6. multigrid and decomposition of the domain for
Zakai’s equation;

7. application of inverse methods for (a) data in-
terpolation, (b) estimation of empirical and/or
phenomenological parameters and (c) design of
sampling arrays.

In particular, progress in answering the following
questions would certainly be beneficial:

1. What is the best way to solve the smoothing
problem in cases where the dynamics are given by
discontinuous functions of the state variable? Such
examples are common in models of the upper ocean
in which convection takes place. Possibly the best
ocean model known, that of Bryan (1969) and Cox
(1984), deals with this problem by assuming that the
heat conductivity becomes infinite if the temperature
at a given level is colder than it is below that level.
The result is instantaneous mixing of the water, to
simulate the rapid time scale of convection in na-

- ture. This can be viewed as an inequality constraint

on the state vector; i.e., some regions of state space
are deemed to be inadmissible solutions of the prob-
lem. Such problems are treated in the control theory
literature (see, e.g., Bryson and Ho, 1975), but the en-
gineering methods are not conveniently applicable to
high-dimensional state spaces.

2. If the least-squares approach is inadequate for
highly nonlinear systems, what would be better?

3. What is the best way to apply solutions of the
nonlinear filtering problem to more complex sys-
tems? Might it be possible to implement the ex-
tended Kalman filter for a relatively simple system
and use the resulting covariance statistics in a subop-
timal data assimilation scheme for a more detailed
model? In general, how might the hierarchical ap-
proach suggested in the section above on data assim-
ilation (also cf. NRC, 1992a) be implemented?
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4. When should one statistical method be applied
as opposed to another? What diagnostics are there
to help make decisions on suitable methods? Anwers
to such questions could be compiled in a handbook
on statistical analysis of oceanographic and atmo-
spheric data, could include such things as definitions
and methods of statistical parameter estimation and
could discuss such questions as, e.g., What do these
parameters convey?

5. What statistical methods can be used for cross-
validating data that take inherent averaging errors
into account, and that provide estimates of their
magnitude? With the advent of remote sensing, data
comparison (Section 7) is not limited merely to mea-
surements and model verification, but involves cross-
validation of different sensors or assimilation of data
into models for quality assessment (see NRC, 1991a).
In such analyses, each data set contains errors that
are inherent to the averaging process. As Dickey
(1991, page 410) has noted:

One of the major challenges from both the
atmospheric and ocean sciences is to merge
and integrate in situ and remotely sensed
interdisciplinary data sets which have dif-
fering spatial and temporal resolution and
encompass differing scale ranges.... In-
terdisciplinary data assimilation models,
which require subgrid parameterizations
based on higher resolution data, will need
to utilize these data sets for applications
such as predicting trends in the global
climate.

7. MODEL AND DATA COMPARISONS

Oceanographers often have available multiple
independent estimates of the various geophysical
quantities of interest (e.g., sea surface temperature,
surface winds, surface humidity, sea level, velocity,
etc.). The sources of such estimates might be in situ
observations, satellite-based observations, numeri-
cal model simulations or so-called analyzed fields.
The latter may consist of regularly gridded estimates
constructed by subjective (i.e., hand-drawn) or ob-
jective (i.e., computer generated by some objectively
prescribed interpolation algorithm) analysis of ir-
regularly spaced observations. Alternatively, ana-
lyzed fields may be constructed from a numerical
model forecast, adjusted to be consistent in some
least-squares sense with all available observations
acquired since the previous “analysis time.” Inde-
pendent estimates of the same quantity are never
precisely the same, and small differences can some-
times have a profound influence on the scientific in-
terpretation or application of the geophysical field.
An important statistical problem in oceanography

is therefore development of techniques for quanti-
tatively evaluating the degree of similarity or dif-
ference between independent estimates of a multi-
dimensional field. This includes cross-comparisons
between different observational data sets (e.g., in
situ vs. satellite); comparisons of model simulations
with observations; and comparisons between differ-
ent model simulations.

An example of a geophysical quantity that illus-
trates the kind of problems that can be encountered
in comparisons of different observational data sets is
sea surface temperature (SST). Temporal variations
of SST are generally dominated by the seasonal cy-
cle, which may have an annual range of 5 to 10°C
or more at any particular geographical location. In-
terannual deviations from the local seasonal cycle
typically have magnitudes of only about 0.5°C. Such
small anomalies in SST can have a significant effect
on climate. Even the Ei Niné phenomenon that af-
fects weather patterns on a global scale can be initi-
ated by an SST anomaly in the eastern tropical Pa-
cific of only a degree or two. It is very difficult to
estimate SST to an accuracy of 0.5°C by any of the
means currently available. Since the actual SST is
not known on ocean-basin scales, it is difficult to as-
sess the accuracy of the several different estimates
available. Attempts to determine the accuracy of
satellite estimates of the SST field are often made
by comparisons with in situ observations from ships
and buoys or with other satellite-based estimates
(e.g., Bernstein and Chelton, 1985). In the case of
in situ observations, comparisons are complicated by
the sample size and distribution. The data are not
uniformly distributed geographically or temporally.
Observations tend to be concentrated along standard
shipping routes and are generally more sparse dur-
ing severe wintertime weather conditions. Moreover,
in situ observations can differ from satellite esti-
mates because of measurement errors and because of
smaller-scale variations that are spatially averaged
in satellite measurements. Comparisons between
two different satellite estimates of SST are compli-
cated by a common source of error, atmospheric ef-
fects on the radiance emitted from the sea surface,
which obscures the errors in both data sets.

Systematic errors, particularly in satellite data,
create biases in the simplest statistical measures, be
they spatial or temporal averages. In addition to the
problem of limited sample size discussed above (see
also Preisendorfer and Barnett, 1983), such gross
statistics can obscure important characteristics of
the differences such as geographical or temporal bi-
ases (see, e.g., Barnett and Jones, 1992). For the
SST example above, such biases may arise from sys-
tematic errors in the algorithms applied to correct
for atmospheric effects on satellite estimates of SST.
As an example, volcanic aerosols injected into the
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atmosphere by the El Chichon volcano in 1982 con-
taminated infrared-based satellite estimates of SST
within about 30° of the equator for a period of about
9 months. As another example, microwave-based
satellite estimates of SST have been found to be bi-
ased upward in regions of high surface winds because
of incomplete corrections for the effects of wind speed
on ocean surface emissivity.

Evaluation of numerical model simulations, either
through comparisons with observations or by com-
parisons with other model simulations, presents ad-
ditional problems. Models produce a large number
of output variables on a dense space-time grid. An
ocean circulation model, for example, typically out-
puts current velocities, temperatures and salinities
at anumber of different depths, as well as the sea sur-
face elevation. It is not reasonable to expect present
models to reproduce the details of the actual circula-
tion, but one hopes that basic statistics such as the
mean or variance of some characteristics of the ac-
tual circulation are well represented by the model.
Assessing the strengths and weaknesses of a model
is thus complicated by the large number of possi-
ble variables that can be considered. For example,
present global ocean circulation models can repro-
duce the statistics of sea level variability with some
accuracy but generally underestimate the surface
eddy kinetic energy computed from surface veloci-
ties (e.g., see Morrow et al., 1992). A model that
successfully represents the statistics of some geo-
physical quantity at one level may misrepresent the
statistics of the same quantity at a different level.
An even more stringent assessment of the perfor-
mance of a model is"how accurately it represents
cross-covariances between different variables (which
can be shown to be related to eddy fluxes of quanti-
ties such as heat, salt or momentum). Some of these
issues are discussed by Semtner and Chervin (1992)
with regard to comparisions of numerical model out-
put to satellite altimeter estimates of sea level vari-
ances and eddy kinetic energy. The overall goal of
such comparisons is to guide further research in an
éffort to develop more accurate numerical models.

The types of questions that need to be addressed by
techniques for comparing two different geophysical
fields, whether they consist of observations or model
simulations, are indicated by the following:

1. How, where and when do the two independent
estimates of a field differ?

2. Are the differences statistically significant?
Addressing this question may lead to develop-
ment of appropriate bootstrap techniques for es-
timating probability distributions.

3. What statistical comparisons are most appro-
priate for evaluating a model?

8. NON-GAUSSIAN RANDOM FIELDS

For purposes of statistical analyses, oceanographic
fields are usually assumed to be Gaussian, station-
ary and spatially homogeneous, and their statistical
description is limited to the calculation of wavenum-
ber spectra. However, since oceanographic stochastic
partial differential equations (see Section 2) are non-
linear or bilinear, the statistics of the fields depart
from such simple models. The nonlinearity is due
mainly to advective terms such as (u - V)u, where
u is the velocity vector for water motion. In some
cases, specifically for surface gravity waves, the non-
linear nature of the fluid motion is due to nonlinear
boundary conditions: water motion is described by
a function and is governed by the Laplace equation,
while the (kinematic) boundary condition expressing
the continuity of the free surface isnonlinear. Asare-
sult, closed equations for various statistical moments
of the fields cannot be rigorously derived. Pertinent
definitions and statistical problems are reviewed in
two comprehensive volumes on statistical fluid dy-
namics by Monin and Yaglom (1971, 1975). Areview
of statistical geometry and kinematics of turbulent
flows is given by Corrsin (1975). Walsh (1986) and
Rozovskii (1990) provide introductions to stochastic
partial differential equations.

One of the most important and least understood
features of oceanographic processes is the inter-
mittent (rare) occurrence of special or catastrophic
events. These include (in order of increasing scale)
appearance of white caps at the crests of exceedingly
steep and breaking surface gravity waves, patches
of small-scale turbulence left by breaking internal
waves, the shedding of mesoscale rings and eddies
by large-scale currents (such as the Gulf Stream or
the Agulhas current) and the occurrance of localized
anomalies in SST including El Nifio events with a
time interval on the order of years. Such events
play a very important role in the overall dissipation

" of kinetic energy, and in the transport of heat, salt

and other quantities by ocean currents, as well as
in the exchange of energy, momentum and chemi-
cal quantities across the air-sea interface. In terms
of the primitive equations describing individual re-
alizations of oceanographic fields, such events may
often be viewed as singularities devloping in the pro-
cess of a field’s evolution. Statistical analysis and
modeling of such events are highly desirable. The
use of quantile estimates might be investigated, es-
pecially for information in the tail of the distribution.
The statistical geometry of these intermittent events
is poorly understood, and improved understanding
can be achieved by accounting more fully for the non-
Gaussian nature of oceanographic fields.
Considerable progress in statistical modeling of
geophysical “tubulent” fields has been achieved us-
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ing ideas of multifractal processes (e.g., Schmitt et
al., 1992). However, most of this work is related to at-
mospheric phenomena (Lovejoy and Schertzer, 1986;
Schertzer and Lovejoy, 1987). A review of various
problems arising in remote sensing, geophysical fluid
dynamics, solid earth geophysics and in ocean, atmo-
sphere and climate studies can be found in Schertzer
and Lovejoy (1991).

The special case of weak turbulence (when the non-
linear terms are of second order with respect to the
linear terms in the governing equations) deserves
particular attention, for it is encountered in many
oceanographic problems and can be treated by small-
perturbation techniques. Examples of weak turbu-
lence include two-dimensional and geostrophic tur-
bulence and surface gravity waves. Weak turbu-
lence theory in its present form (Zakharov, L'vov and
Falkovich, 1992) permits derivation of kinetic equa-
tions describing energy exchanges (and exchanges
of other quantities) among Fourier components, as
well as derivation of higher-order spectra (bispec-
tra, etc.) representing Fourier transforms of vari-
ous statistical moments. Initially, this theory was
developed for surface gravity and capillary waves
(Hasselmann, 1962; Zakharov, 1984). However, sta-
tistical phenomena in waves (e.g., the existence of
Kolmogorov-type spectra, the intermittency of break-
ing waves and so on) have analogies in other oceano-
graphic fields. The elegant Hamiltonian formula-
tion of nonlinear wave dynamics (Zakharov, 1984;
Zakharov, Lvov and Falkovich, 1992) is a powerful
tool for studies of fundamental statistical properties
of turbulent fields.

To better characterize the scope of statistical is-
sues that the weak turbulence theory or alterna-
tive statistical approaches could address, a brief re-
view of some issues related to wind-generated sur-
face gravity waves is in order. Until recently, sta-
tistical studies of field geometry were dominated
by the work on Gaussian fields. Longuet-Higgins
(1957, 1962, 1984) studied a large variety of geo-
metrical properties of such fields with application
to sea surface waves. Among other problems, he
considered statistics of ‘specular points (the points
at which the gradient of the field is either zero or
is specified depending on a viewing angle) and of
the wave envelope, which play an important role in
wave dynamics and analysis of sun glitter and radar
backscatter from a wind-disturbed sea surface. A
rigorous mathematical analysis of envelope statis-
tics, high-level excursions, field maxima and other
geometrical properties of random two- and multi-
dimensional Gaussian fields is presented by Adler
(1981). Some of these results have been successfully
employed in sea wave studies. Specifically, the the-
ory of level crossings by two- and three-dimensional
Gaussian-and Rayleigh-distributed fields was em-

ployed to estimate statistics of whitecaps (breaking
waves) and of wave trains (Glazman, 1986; Glazman
and Weichman, 1989; Glazman, 1991). Observations
indicate that whitecaps occur in clusters. Hence,
the use of a simple Poisson distribution (Glazman,
1991) for whitecap occurrence, which is known from
the theory of high-level excursions by the (Gaussian)
wave slope field, may be insufficient. The statistical
theory of cluster point processes may be of great help
here.

Linear methods are intrinsic for Gaussian station-
ary processes, and Fourier analysis is a natural tool
to use in the resolution of stationary random fields.
These yield a global resolution. However, in many
situations, a resolution that is better adapted to lo-
cal behavior would be more appropriate and interest-
ing. This could be behavior in time or local spatial
behavior. One attempt in this direction makes use of
wavelet transforms, which are in effect local filters
of the field (Farge, 1992). Such a method amounts to
a linear analysis of the field, although it could pre-
sumably be adapted to types of nonlinearity.

In the last few years, significant research effort
in probability and statistics has been directed to-
ward the development of models of non-Gaussian
and time-varying random fields. Examples include
stable fields; functionals of Gaussian, stable and
other fields represented via multiple integrals; den-
sity processes and measure-valued diffusions; and
fields described by nonlinear stochastic differential
equations. Applications of this research to oceano-
graphic phenomena would be of interest to oceanog-
raphers since the fields they study are frequently
non-Gaussian and time-varying random fields.

One of the questions that arises in ocean remote
sensing concerns the probability density function
(pdf for the heights of specular points and for the
slopes and curvature radii of the surface. These pdf’s
are essentially non-Gaussian. A particularly in-

_teresting problem is statistically characterizing the

asymmetry of the sea surface shape about the hori-
zontal plane coincident with the mean sea level. This
asymmetry is responsible for the deviation of the
mean height of the specular points from the mean
(zero-valued) height of the surface itself. As a result,
an error bias (known as the sea-state bias) appearsin
altimeter measurements of the sea level. Mathemat-
ical analysis of such non-Gaussian surface properties
is based on approximate joint pdf’s for surface height
and slopes. Following the work by Longuet-Higgins
(1963) in which a truncated Gram—Charlier series
expansion for the joint pdf was derived, the sea-state -
bias has been related to various spectral moments
(Jackson, 1979; Srokosz, 1986) and ultimately ex-
pressed in terms of wind-wave generation conditions.
While a simplified case of a one-dimensional sur-
face has been studied, a two-dimensional case needs
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additional effort. The estimation of joint pdf’s for
dependent random sequences is reviewed, e.g., by
Rosenblatt (1991). Further statistical effort in this
direction could greatly facilitate analysis of biologi-
cal and other oceanographic multidimensional pro-
cesses.

The arrival of supercomputers opens new avenues
for numerical modeling of complex processes. Now,
for instance, numerical simulation of electromag-
netic scattering by individual realizations of the ran-
dom sea surface has become feasible. In this re-
gard, simulated non-Gaussian random fields that
satisfy basic conservation laws of fluid dynamics rep-
resent a great interest. A possible way of construct-
ing individual realizations of a random field might
be via the use of Wiener—Hermite polynomials [i.e.,
the Weiner—Ité expansion (Major, 1980)] in which the
functional coefficients are determined on the require-
ment that the field yields the correct cumulants up
to a certain order. Although bispectra (in the fre-
quency domain) for surface gravity waves have been
known since the work by Hasselmann, Munk and
MacDonald (1963), cumulants above second order for
the surface’s spatial variation have not been stud-
ied. In the literature on large-scale ocean dynam-
ics (two-dimensional and geostrophic turbulence),
the Weiner—Ité expansion has never been used, al-
though it appears to be most relevant. Estimation of
the cumulant spectra is discussed in the pioneering
work of Brillinger and Rosenblatt (1967). See also
Rosenblatt (1985) and more recent material in Lii
and Rosenblatt (1990).

Statistical Research Opportunities

There are many statistical research opportunities
in the realm of non-Gaussian physical oceanographic
random fields on which progress would be desirable.
Some specific topics worthy of investigation are the
following (also see related issues in Section 2):

1. models of non-Gaussian and time-varying ran-
dom fields: (a) probabilistic analysis of differ-
ent models of non-Gaussian or nonstationary or

' time-varying random processes and fields (e.g.,
stable fields, measure-valued diffusions, den-
sity processes, non-Gaussian generalized fields
and so on), (b) structure of random fields with
long-range dependence and (c) non-Gaussian
time series;

2. theoretical models and techniques of simulation
of non-Gaussian random fields with prescribed
statistical properties, for example: (a) known
moments up to some order, (b) known tail behav-
ior of multivariate probability density functions
and (c) known statistics of extremes;

3. extrema, sample path behavior and geometry
for non-Gaussian random processes and fields;

4. inference and analysis of point processes with
applications to oceanographic data;

5. analysis of the Navier—Stokes system driven by
Gaussian and non-Gaussian white noise;

6. analysis of random fields that appear as solu-
tions of stochastic partial differential equations
(of special interest are equations driven by non-
Gaussian noise or noises over a product of time-
space and location-space);

7. wavelet analysis of random fields with applica-
tion to oceanographic problems;

8. statistical problems for non-Gaussian data (see
models of particular interest in items 2 above):
(a) modeling (model identification, parameter
estimation and so on), (b) data analysis of ir-
regularly sampled points on a field, (c) quantile
estimation from dependent stationary processes
and fields, (d) estimation problems for random
fields given the types of sampling or observa-
tional layouts that are typical in oceanography
and (e) estimation problems for samples from
non-Gaussian random fields.

9. ENCOURAGING COLLABORATION BETWEEN
STATISTICIANS AND OCEANOGRAPHERS

Offered for the purpose of encouraging successful
collaborations between statisticians and oceanogra-
phers, the following conclusions, observations and
suggestions are based on information that the Panel
on Statistics and Oceanography gathered in this
study, on the panel discussions that took place in
preparing this report and on the panelists’ own expe-
rience and knowledge concerning cross-disciplinary
research and collaborative efforts. The panel be-
lieves understanding and appreciating these matters
are as important to the encouragement and accom-
plishment of statistical research in physical oceanog-
raphy as are the descriptions of statistical research

- opportunities discussed in Sections 2 through 8.

Conclusions

1. There are many opportunities for statistical re-
search in biological, chemical, geological and physi-
cal oceanography, far more than this report can ad-
dress (owing to constraints of time and resources).
This report thus represents a first step, focusing on
challenging statistical issues in physical oceanogra-
phy. However, the statistical problems it describes
are universal, and progress on them would bene-
fit the other oceanographic disciplines and also con-
tribute to a better understanding of the coupled
ocean—atmosphere system, weather patterns and
global climate change.

2. Many sophisticated statistical techniques are
used routinely in physical oceanography. Neverthe-
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less, in numerous general areas collaboration be-
tween oceanographers .and statisticians could con-
tribute to improving currently used models, analysis
techniques, data assimilation methods, visualization
methods and so on. Examples of such areas identi-
fied in this report include multiple-scale variability
of oceanographic fields; use of Lagrangian data in
descriptions of ocean circulation; ocean feature iden-
tification; pictorial representation of oceanographic
data; interpolation, smoothing, filtering and predic-
tion in the context of oceanographic data; compar-
ison of oceanographic models and data; and non-
Gaussian, nonstationary random fields.

3. Identifying research areas of mutual inter-
est and need is basic to achieving results of gen-
uine value to all participants in cross-disciplinary
projects; another crucial requirement is providing an
environment that encourages and sustains individu-
als who embark on collaborative research. Although
exploring this second issue was beyond the scope of
this study, the panel became increasingly aware dur-
ing its deliberations of just how difficult it can be
to engage in truly collaborative, cross-disciplinary
work. There are many possible reasons for such dif-
ficulties (see, e.g., NRC, 1990a). different parties
in a cross-disciplinary collaboration may have dif-
ferent motivations or different disciplinary impera-
tives; there may be institutional impediments due to
the traditional organization of separate disciplines
within an institution; there may be inherent obstruc-
tions to peer-reviewed funding or publishing of cross-
disciplinary research (for instance, in defining what
constitutes a peer); and there may be contextual sci-
entific obstacles (since”the multifaceted system un-
der study may not fit into traditional categories for
scientific investigation).

Without attempting to specify particular remedies,
the panel includes below a few generic observations
and outlines some possible initial approaches to en-
couraging collaborative research, especially between
statisticians and oceanographers. The recent pub-
lication of several excellent studies and reports ad-
dressing cross-disciplinary research in various con-
texts (e.g., NRC, 1987; Institute of Mathematical
Statistics, 1988; NRC, 1990a; see also Goel et al.,
1990; Gnanadesikan, 1990; Hoadley and Kettenring,
1990), together with heartening signs of an improv-
ing environment for such activities (Crank, 1993;
Harris, 1993), suggests that attention to the value
of collaborative research is increasing and that work
toward facilitating it will be ongoing.

Observations and Suggestions
1. The need for clear communication and sub-

stantive interaction among collaborating researchers
from different disciplines suggests the desirability

of their working together at the same physical loca-
tion for a significant period of time on specific prob-
lems to which both parties can contribute needed
expertise. Funding agencies and research institu-
tions could stimulate such interactions (a) by spon-
soring workshops on well-delineated topics—drawn,
for example, from the research areas discussed in
this report—that are best addressed by a collabora-
tive effort; (b) by providing for postdoctoral fellow-
ships, senior research sabbaticals and graduate stu-
dent residencies that would enable statisticians to
work with oceanographers at oceanographic research
institutions; and (c) by sponsoring a series of one- or
two-week short courses on oceanography for statisti-
cians in which specialists would review selected top-
ics and indicate open areas of research. It is much
more likely that statistical research on one of the
physical oceanographic challenges described in this
report will produce valuable results if that research
involves continuous interaction with an oceanogra-
pher who is versed both in the nuances of that chal-
lenge and in the practical oceanographic realities
surrounding it.

In all such considerations, the panel encour-
ages active cooperation between statisticians and
oceanographers at agencies that fund research in
these disciplines.

2. Effectively communicating the results of suc-
cessful collaborative research—and thereby increas-
ing understanding of its value in addressing complex
problems—includes having the results published in
journals that are well regarded in the relevant dis-
ciplines. The panel suggests that, as an initial step,
one or more of the major statistical journals could
publish a special section or issue on statistics and
oceanography designed to increase awareness of the
research opportunities in that area. This would en-
courage interaction between statisticians and phys-
ical oceanographers, increase the visibility of the

results of successful collaboration and set a prece-

dent that could stimulate other highly regarded dis-
ciplinary journals to publish statistics and oceanog-
raphy cross-disciplinary papers.

3. Promoting and nurturing cross-disciplinary re-
search in statistics and physical oceanography, which
will likely involve broadening the educational base
of prospective researchers as well as the criteria
by which their later efforts are rewarded, can be
fostered now (a) by university statistics depart-
ments that stimulate cross-disciplinary interactions
and learning and encourage statistics undergradu-
ate and graduate students to obtain an “applied” mi-
nor in some other area, with oceanography being but
one possibility (others being physics, engineering, ge-
ology and so on) and (b) by funding agencies that
promote a broader orientation in graduate and un-
dergraduate statistics education.
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It is likely that many people will be encour-
aged to undertake the significant efforts interdis-
ciplinary statistics and oceanography research re-
quires if funding agencies offer prospective cross-
disciplinary collaborators some likelihood of obtain-
ing research support, if recognized journals in an
individual’s discipline offer sufficient flexibility in
publishing such cross-disciplinary research papers
and if research institutions accord cross-disciplinary
research the same level of professional recogni-
tion (in promotion and tenure considerations) as
is currently given to research in the individual
disciplines.

Many major national and global concerns in-
volve scientific research challenges that are cross-
disciplinary in nature, with weather prediction and
global climate change being but two examples related
to the focus of this report. Encouraging the pursuit
of such cross-disciplinary research opportunities can
benefit both science and society by focusing scientific
attention on research issues relevant to societal con-
cerns. Encouraging the pursuit of cross-disciplinary
research opportunities in statistics and oceanogra-
phy will certainly benefit both disciplines: applica-
tion of sophisticated statistics techniques will lead
to better descriptions and improved dynamical un-
derstanding of oceanographic phenomena, and the
statistics research challenges presented by oceano-
graphic issues will inspire the development of new
statistical techniques.
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Comment
David R. Brillinger

INTRODUCTION

This Report presents such a wealth of scientif-
ically important, well-defined technical problems
that all future submitters of nonnovel grant pro-
posals will have some explaining to do. The Re-
port is well-written, stimulating and full of sentences
and phrases worth highlighting. I commend the
Panel.

CURSORY REMARKS

The Report, Section 5, comments on the prob-
lem of noticing “interesting events” in the presence
of masses of data. Perhaps some of the many ex-
isting procedures for detecting outliers might be of
use.

The Report comments often on the problems of
“aliasing” in many places. This seems to be an ap-
propriate point in time to rethink the whole topic
in both its active (selection of the measurement
locations) and passive (working with those at hand)
modes for all the various types of processes.

The Panel is concerned with hew to move things
forward. Having data sets and readme’s conve-
niently available for anonymous ftp-ing seems an el-
ementary way of quickly involving computer-literate
statisticians. Email means that statisticians can col-
laborate with researchers around the world.

I was surprised to read in Section 7: “Even the El
Nifio phenomenon that affects weather patterns on
a global scale can be initiated by an SST anomaly
in the eastern tropical Pacific of only a degree or
two.” Is the genesis of El Nifio really so well
known?

David R. Brillinger is Professor of Statistics at the
University of California, Berkeley, California 94720.
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ZAkHAROV, V. E,, L’vov, V. S. and FarLkovicH, G. (1992).
Kolmogorov Spectra of Turbulence: Wave Turbulence.
Springer, New York.

TIDES

There was minimal mention of the study of tides
in the Report. I do not doubt that the Panel felt that
they were important, and since I was asked to pro-
vide a data analysis, I will report on one for some
tidal data.

Tidal prediction has been important for many
years, surely predating the report’s stated 1769
birth date of oceanography. Novel numerical tech-
niques and computing machines have been devel-
oped, for example, the harmonic analyser of Lord
Kelvin (Kelvin, 1911), and used routinely for prepar-
ing tables for harbours around the world.

The Bay of Fundy lies between New Brunswick
and Nova Scotia. It is renowned for having the high-
est tides in the world, reaching 17 meters at times
and places. Some data for it have have been studied.
They were a sequence of 7' = 2160 hourly observa-
tions made in the Bay, near St. John, for the inter-
val 1 January to 31 March 1991. A simple graph

- of the series shows a dominating periodicity of just

over 12 hours. The top display of Figure 1 is the
log-periodogram of the data flattened by subtracting
the result of a robust smoothing; specifically, what is

plotted is
2
Z Y () exp{—iXt} )
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log (
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where loess,, is the robust smoother of Cleveland
(1979). The robust character of this smoother “re-
moves” the peaks. The dashed horizontal line gives
an approximate upper 95% marginal significance
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