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data. I have encountered many incomplete multi-
variate datasets where the “ideal” imputation model
has far more parameters than the observed data can
estimate; simulating imputations using Bayesian
methods and standard noninformative priors simply
does not work. When this happens, the imputer may
either (i) trim the model by omitting less-crucial vari-
ables or restricting the parameter space, or (ii) stabi-
lize the inference by applying a mildly informative
prior distribution. The first option may be easier
and less controversial, but the second may be more
satisfying from an inferential point of view. Choosing
an informative prior distribution can be made more
automatic and less subjective by allowing some as-
pects of the prior to be determined by the data, in the
spirit of empirical Bayes. A discussion of model trim-
ming for imputation of a large, multipurpose sample
survey is given by Schafer, Khare and Ezzati-Rice
(1993). An example of a mild, data-determined infor-
mative prior for categorical data is given by Clogg et
al. (1991). For continuous data, one can often apply
a data-determined prior similar to that used in ridge
regression. Several analyses of incomplete data sets
using informative, data-determined priors will ap-
pear in Schafer (1994).

THE NUMBER OF IMPUTATIONS

In practice, a small number of imputations is usu-
ally adequate when the fraction of missing informa-
tion about the estimand is small to moderate. In
advance of the analysis, however, it is difficult to
know what the fraction of missing information will

Comment
Chris Skinner

Meng’s paper provides both a response to Fay’s
(1991, 1992) specific critique of multiple imputation
as a method of variance estimation, and also a gen-
eral case for multiple imputation as a method of both
point and interval estimation. My comments will ad-
dress these two aspects separately.

Fay (1991, 1992) presented examples where vari-
ance estimators based on multiple imputation could
be inconsistent. Doctor Meng’s framework, in partic-
ular the introduction of the concept of “uncongenial”
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be. The estimate of this fraction given by Rubin
(1987, pages 93-94) can be quite noisy, particularly
for small m. For this reason, Meng’s suggestion that
imputers make available a generous number of im-
putations (say m = 30) is wise, even if most analysts
will use only a smaller subset of them for any par-
ticular inference. Once 30 or more imputations are
made available, however, I suspect that analysts will
eventually gravitate toward using all of them rather
than just a subset. Otherwise, questions about the
objectivity of published analyses (Did they really se-
lect their imputations at random?) will naturally
arise. Moreover, the analysts themselves will proba-
bly want to look at more imputations than they really
need. When working with a small number of impu-
tations, there is always a gnawing question in the
back of my mind: What will happen if I add just a
few more? I have performed analyses in which an ef-
fect looks statistically significant (p-value less than
0.05) with m = 5, but the significance disappears for
m > 10. When generating imputations for personal
use, [ have a strong temptation to use a larger-than-
necessary value of m just to remove as much ran-
dom variation as possible from the final summary
statistics. I suspect that many analysts, like myself,
would have strong desire for the results of their anal-
yses to be essentially deterministic and reproducible
by another analyst working with the same observed
data. When multiply imputed data files are released
to the public, the complete set of m imputations—
however large m is—will tend to develop an air of au-
thenticity and objectivity that arbitrary subsets will
not have.

to apply to differences between an imputation model
and an analysis procedure, is I think very helpful for
understanding such examples. One of Fay’s exam-
ples is essentially that in Section 3.1. Meng’s analy-
sis agrees with Fay’s in finding that, even though the
imputation model may be correct and the analysis
procedure may be sensible, the multiple-imputation
variance estimator may be inconsistent. Meng ar-
gues, however, both for this specific example and in
the Main Result more generally, that under reason-
able conditions multiple-imputation intervals will be
conservative and their width will be bounded by the
width of confidence intervals based on corresponding
incomplete-data procedures.
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I should like to question whether the conditions of
the Main Result are always reasonable, in particular
the assumption that “most of the time analysts will
use (asymptotically) efficient estimators.” It seems to
me to be common for some efficiency to be sacrificed
in return for other advantages, such as simplicity or
robustness to model misspecification. Consider the
following variant of one of Fay’s (1991) examples of
cluster sampling.

Suppose that a simple random sample of clusters is
selected. Given complete data, a common estimator
of the population mean is the sample mean

7= 2Yi
rm;’

with associated variance estimator
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where y; and m; are the cluster total and size, re-
spectively, for the ith cluster, n is the number of
clusters sampled and the finite population correc-
tion is ignored. It is not obvious to me that there
is any sensible Bayesian model which is congenial
to this procedure. More important, it seems unlikely
to me that 7 is self-efficient under many nonresponse
mechanisms and Bayesian models. For example, sup-
pose that clusters (and all the elements within them)
respond (R; = 1) independently with a fixed proba-
bility and consider the class of hierarchical models
considered by Scott and Smith (1969). The Bayes
posterior mean of the population mean will be of the
form Yw;y;, where w; depends on the intracluster
correlation and the m;. It thus seems quite possi-
ble that there will be a convex combination of 7 and
the incomplete-data estimator L R;y;/SR;m; which
will have smaller mean-squared error than § and
hence that 7 will not be self-efficient. Thus I see
no necessary reason to expect a multiple-imputation-
based variance estimator to be conservative in prac-
tice. This possibility is confirmed in Fay’s (1991)
example where y; is binary, m; = 2, there is perfect
intracluster correlation and the elements respond
independently with probability r. In this case the ac-
tual design effect for the sample mean is 1+r, greater
than the limiting multiple-imputation value of
1+78

How should a multiple imputer respond to such
examples? One possibility, suggested by Dr. Meng,
is to conclude that “the analyst’s complete-data pro-
cedure is statistically misguided and should be re-
placed,” for example, by procedures such as those of
Scott and Smith (1969). This may be sensible in spe-
cial cases but seems an unfortunate general solution

since, even aside from robustness considerations, the
procedure (7,v) underlies many delta-method ap-
proaches to handling complex sampling designs, and
its replacement would rule out much current prac-
tice and the use of much complete-data software for
complex designs.

Another approach would be to use the novel idea
introduced in this paper of releasing the importance
densities in (5.3.1) to enable analysts to compute the
importance ratios in (5.1.1). My concern with this
approach is that public-use files may have as many
as several hundred variables, yet most analyses only
involve a few variables. Does this imply that each an-
alyst would have to specify a model for all variables
with missing values on the file in order to compute
the R;? Also, will not the importance sampling pro-
cedure usually by made very inefficient for fixed m
by the need to include so many redundant variables?

Yet another response might be to separate the sam-
pling variance from the imputation variance and to
take the complex sampling design into account only
in estimating the former, as considered by Belin et
al. (1993). This seems cumbersome, however, and at
odds with the general simplifying aims of multiple
imputation.

It seems worth noting that the procedure of Rao
and Shao (1992) does handle complex sampling de-
signs.

Let me turn now to the paper’s discussion of point
estimation and specifically to the frequentist notion
of bias. Since multiple imputations are identically
distributed, the bias of an estimator based on multi-
ply imputed data is the same as for the correspond-
ing estimator based on singly imputed data. Thus
the benefits of bias removal arising in the example
in Section 3.2, referred to as a powerful feature of
multiple imputation, should rather be attributed to
the imputation procedure, whether it be single or
multiple.

The possibility of bias in examples such as in
Section 3.1, where subclass means or other multi-
variate parameters are estimated subject to inad-
equate multivariate control in the imputation pro-
cess, is well known in the survey literature (e.g.,
Kalton and Kasprzyk, 1986). Although I find the
statement in Section 6.1 that Bayesian prediction
is the “only sensible general approach” to imputa-
tion too sweeping (other approaches may be adequate
for special purposes or for minor nonresponse), I do
agree that the Bayesian idea of imputing from the
posterior distribution of Yy,;; provides potentially a
very valuable general means of reducing bias. It
also opens up the opportunity for applications of
the current explosion of new methods of multivari-
ate Bayesian modelling. I look forward to exciting
new developments in this area in the next decade.
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Despite the great potential of such work, given the
unknowably enormous range of possible analyses of
many public-use files, and the typical dependence
of Bayesian model specification on prior assump-
tions, I remain sceptical that the kinds of biases
arising in the example in Section 3.1 can ever be
removed entirely and feel that missing values in
public-use files should continue to be flagged to en-

able users to use incomplete-data methods when
necessary.
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Comment: Using the Full Toolkit

Alan M. Zaslavsky

Meng’s paper sits at the intersection of two parad-
igms of statistical inference: randomization-based
frequentist inference, as traditionally practiced in
the analysis of sample surveys, and model-based,
specifically Bayesian, inference. It has been diffi-
cult to combine these approaches, not only because
of the philosophical differences between them but
also because of the different strengths and emphases
of modeling in the respective traditions. Nonethe-
less, some problems can be solved by using tools
from each paradigm to attack different aspects of
the analysis. This melding of approaches is im-
plicit in the distinction between the complete- and
missing-data analyses in multiple imputation, and
Rubin (1987) lays out a theoretical basis for it,
which Meng has extended in a useful and interesting
Way‘ .

In this commentary, I contrast the main features
of these two inferential approaches.in order to draw
out some of the difficulties in combining them. I
then describe three examples in which frequentist
and Bayesian modes of inference are merged to give
useful answers to practical problems.

Typically, when a survey is conducted, only the
randomization (sampling) scheme is assumed to
be known. “Design-based” inferential methods are
intended to produce inferences that are asymptot-
ically valid regardless of complex features of the
population, such as various systematic relationships
that are not the object of inquiry, or complex patterns
of dependency among units at various nested levels.
In order to give valid inferences under these circum-
stances, randomization inferences typically are de-
signed to depend only on means and variances, hence

Alan M. Zaslavsky is Associate Professor, Depart-
ment of Statistics, Harvard University, Cambridge,
Massachusetts 02138.

the emphasis on unbiased estimation of means and
variances in the survey literature. In fact the ro-
bustness of survey inference is dependent on features
of the population other than the first two moments,
particularly the adequacy of the asymptotic nor-
mal approximation to the sampling distribution
of estimators, which in turn depends on the
underlying distributional form of the population
as well as the design. Nonetheless, randomiza-
tion inference is usually conducted without at-
tempting formally to model these features, which
are instead investigated through diagnostics and
rules of thumb that are secondary to the main
analysis.

Bayesian inference, on the other hand, in princi-
ple requires specification of probability distributions
for all relevant features of the population. These
distributions can be expressed either directly, or
indirectly through the intermediary of hypothetical
parameters of greater or lesser parsimony, such as
superpopulation means and variances. (In finite pop-
ulation inference, the parameters may be regarded
as devices for the specification of population models,

" because the object of inference is the population at

hand rather than the hypothetical superpopulation;
see Rubin, 1987, Chapter 2.) Only after such a com-
plete specification is it possible to “turn the Bayesian
crank” to obtain inferences, a process which can be
computationally challenging but which requires no
particular conceptual innovation.

Thus, the requirement of complete specification of
realistic models in Bayesian inference runs counter
to the survey analyst’s typical effort to make infer-
ences for particular estimands of interest by choosing
and evaluating estimators.

Skinner, Holt and Smith (1989, Chapter 1) distin-
guish three approaches to analysis of survey data
when the population, the survey design and the es-
timators have complex features. One approach is to



