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Abstract.

Conducting sample surveys, imputing incomplete observa-

tions, and analyzing the resulting data are three indispensable phases
of modern practice with public-use data files and with many other
statistical applications. Each phase inherits different input, including the
information preceding it and the intellectual assessments available, and
aims to provide output that is one step closer to arriving at statistical infer-
ences with scientific relevance. However, the role of the imputation phase
has often been viewed as merely providing computational convenience for
users of data. Although facilitating computation is very important, such a
viewpoint ignores the imputer’s assessments and information inaccessible
to the users. This view underlies the recent controversy over the validity
of multiple-imputation inference when a procedure for analyzing multi-
ply imputed data sets cannot be derived from (is “uncongenial” to) the
model adopted for multiple imputation. Given sensible imputations and
complete-data analysis procedures, inferences from standard multiple-
imputation combining rules are typically superior to, and thus different
from, users’ incomplete-data analyses. The latter may suffer from serious
nonresponse biases because such analyses often must rely on convenient
but unrealistic assumptions about the nonresponse mechanism. When it
is desirable to conduct inferences under models for nonresponse other than
the original imputation model, a possible alternative to recreating impu-
tations is to incorporate appropriate importance weights into the standard
combining rules. These points are reviewed and explored by simple exam-
ples and general theory, from both Bayesian and frequentist perspectives,
particularly from the randomization perspective. Some convenient terms
are suggested for facilitating communication among researchers from dif-
ferent perspectives when evaluating multiple-imputation inferences with

uncongenial sources of input.

Key words and phrases:

Congeniality, self-efficiency, importance sam-

pling, incomplete data, missing data, nonresponse, normalizing constants,
public-use data file, randomization.

' 1. BACKGROUND AND SUMMARY
1.1 Multiple Imputation

Incomplete observations are frequently encoun-
tered in statistical analyses, especially of survey
data. A common technique for handling incomplete
observations is to impute them before any substan-
tive analysis. An obvious reason for the popularity
of imputation, from a computational point of view,
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is that it allows users of the data to apply standard
complete-data techniques directly. From an infer-
ential point of view, perhaps the most fundamental
reason for imputation is that a data collector’s as-
sessment and information about the data, both ob-
served and unobserved, can be incorporated into the
imputations. In other words, imputation sensibly di-
vides the tasks for analyzing incomplete data by as-
signing the difficult task of dealing with nonresponse
mechanisms to those who are more capable of han-
dling them, while allowing users to concentrate on
their intended complete-data analyses. These points
are not new (e.g., Rubin, 1987, pages 11-12), but
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the key point—imputation is not (merely) a compu-
tational tool but rather a mode of inference, which al-
lows hierarchical and sequential input of assessment
and information—is worthy of more emphasis.

Only rarely can an imputer complete all incom-
plete observations purely by deductive imputation,
that is, by substituting the one and only logically
possible value for each missing observation. The
uncertainty in the imputed values, therefore, needs
to be incorporated into users’ analyses in order
to obtain valid statistical inferences. This is im-
possible with single imputation without requiring
users to perform specifically designed procedures
beyond standard complete-data analyses, and even
these procedures are only available for limited cases
(e.g., Schafer and Schenker, 1991; Rao and Shao,
1992). Multiple imputation (Rubin, 1978, 1987) is a
general method that aims to remove as many bur-
dens as possible from the users when facing in-
complete data. Conducting a multiple-imputation
inference, for users, only requires repeating the
same standard complete-data analysis several times,
a task that is trivial and ideal for computers.
The extra computation needed for combining these
complete-data analyses is generally minor, involv-
ing only simple arithmetic and looking at standard
statistical tables.

Specifically, under multiple imputation, missing
values, as a set, are imputed independently m (>2)
times, and thus m completed-data sets are created.
To obtain a repeated-imputation inference, which
treats the imputations as repeated draws from a
Bayesian prediction model (Rubin, 1987, page 75), an
analyst of the multiply imputed data sets first con-
ducts the intended coniplete-data analysis on each of
the m completed-data sets. The analyst then com-
bines these m analyses into one inférence by follow-
ing the simple combining rules given in Rubin (1987,
Chapter 3), reviewed in Section 2.4 of this paper
(except the part concerning interval estimates with
finite m).

1.2 The Controversy

Like many statistical methodologies, the devel-
opment of multiple imputation is not without con-
troversy. Multiple imputation is motivated from
the Bayesian perspective, yet survey inferences, its
primary application area thus far, are traditionally
dominated by frequentist analyses. Among all the
criticisms of multiple imputation, the recent work
of Fay (1991, 1992) is the most intense, as it is
directed at the validity of multiple-imputation in-
ference in practice. Fay provided several examples
(see also Kott, 1992) to show that the variance esti-
mator obtained from the repeated-imputation com-

bining rules disagrees asymptotically with the sam-
pling variance of the repeated-imputation estimator,
even when the imputation model is correctly speci-
fied. Fay’s consequent questioning of the validity of
existing applications of multiple imputation, espe-
cially those related to census undercount (e.g., Be-
lin et. al., 1993), has direct practical consequences
such as whether nonresponse in the next U.S. census
should be multiply imputed.

As shall be illustrated in Section 3 using a sim-
plified version of one of Fay’s (and Kott’s) examples,
the discrepancy in variances arises when a procedure
for analyzing the multiply imputed data sets is un-
congenial to the model adopted for imputation. The
definition of uncongenial will be given in Sec-
tion 2.3, but it essentially means that the analy-
sis procedure does not correspond to the imputa-
tion model. The uncongeniality arises when the
analyst and the imputer have access to different
amounts and sources of information, and have dif-
ferent assessments (e.g., explicit model, implicit
judgement) about both responses and nonresponses.
If the imputer’s assessment is far from reality,
then, as Rubin (1995) wrote, “all methods for han-
dling nonresponse are in trouble” based on such
an assessment; all statistical inferences need un-
derlying key assumptions to hold at least approxi-
mately. If the imputer’s model is reasonably accu-
rate, then following the multiple-imputation recipe
prevents the analyst from producing inferences with
serious nonresponse biases. A fair judgement of
the validity of a repeated-imputation inference has
to take into account the imputer’s input, which
usually is superior to that available to the analyst. In
addition, the utility of multiple-imputation method-
ology has to be judged by comparisons to alternative
methods under the same circumstances with respect
to both feasibility in practice and validity of results.
Two approaches were suggested in Fay (1991, 1992)
as competitors; one is jackknife with single hot-deck

.imputation (Rao and Shao, 1992), and the other is a

design-based approach that Fay advocated.

When users are only provided with a single impu-
tation, carefully designed single-imputation meth-
ods, such as the jackknife procedure, are obviously
useful. However, these methods themselves do not
cure the deficiency of single imputation; they at most
cover some of its scars at the expense of delicate
cosmetic operations. This is not a criticism of
these methods; they try to accomplish a diffi-
cult task. The problem is the method of single
imputation itself, whose deficiency is not only com-
putational but, more important, statistical. For in-
stance, Rubin (1995) provides a simulation example
to show that a confidence interval obtained from a
repeated-imputation inference (with 10 imputations)
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is at least as narrow but has no less coverage than
the one from the jackknife method under single im-
putation with the same nominal coverage. A key
reason for this seemingly contradictory phenomenon
is that estimators based on multiple imputations
are more efficient than those based on single impu-
tation. A general theory, especially from the ran-
domization perspective, is established in this paper
for comparing repeated-imputation confidence inter-
vals to those from analysts’ most efficient procedures
for analyzing the incomplete data without multiple
imputations.

Regarding Fay’s design-based approach, the sim-
plest description is given in Fay (1991, page 437):
“The design-based approach first makes inferences
from a sample with missing data to a census with
missing data, and then evaluates the uncertainty
in making inferences from the uncertain census to
the population.” While this perspective is refresh-
ing and may provide a stimulus for methods in cer-
tain applications, it seems to move opposite to the
intended direction of multiple imputation by shift-
ing substantial burdens to the users of survey data.
Its first step places the major computational burden
on the users, because now they have to handle gener-
ally irregular missing-data patterns. Its second step
creates an even heavier burden than before—if the
users are having difficulties dealing with the nonre-
sponse in the sample, how can they be expected to
conduct sensible inferences from “the uncertain cen-
sus to the population”? If this approach is intended
only for in-house use (e.g., for data collectors to pub-
lish some basic variance estimates), then it does not
compete with multiple imputation, at least from a
general user’s point of view.

1.3 Summary of Key Points

The purpose of this paper perhaps can be best de-
scribed by a Chinese proverb: Pao-Zhuan Yin-Yu
(“cast a stone to attract jade”), which roughly means,
“make a few exploratory points in hoping that oth-
ers will come up with more valuable opinions and
_ complete results.” Summarizing and extending the
discussions made in the recent debate, this paper re-
views and explores the following points:

1. Due to the different inputs of an analysis phase
and of the imputation phase, procedures for
analyzing data sets with imputations are often
uncongenial with the models adopted for impu-
tation. Consequently, we often have inferential
uncongeniality—a repeated-imputation inference
differs from the incomplete-data analysis (i.e.,
only analyzing the observed data) conducted by
the same analyst, even with a large number of
imputations and a large sample size for the ob-
served data.

2. Thanks to the imputer’s resources and efforts,
the inferential uncongeniality usually implies su-
perority of the repeated-imputation inference in
terms of both validity and efficiency. In limited
cases, a repeated-imputation inference can be con-
servative in its own right because information
built into the imputations cannot be explicitly in-
corporated into the analyst’s complete-data proce-
dures. However, such a conservative inference is
still sharper than the incomplete-data inference,
which does not use the imputer’s extra informa-
tion at all.

3. When it is desired to conduct inferences under
models for nonresponse other than the original im-
putation model, a possible alternative to requir-
ing the reimputation of the missing values un-
der different models is to incorporate appropriate
importance weights into the standard repeated-
imputation combining rules. These importance
weights can be computed using only complete-data
computation and can also be provided by the im-
puter for certain types of common analytic models.

4. The quality of the imputation is crucial, just as

the quality of the survey is. Sensible imputation
models should not only use all available informa-
tion to increase predictive power, but should also
be as general and objective as practical in order to
accommodate a potentially large number of differ-
ent data analyses. The imputer should also report
to the users about the imputation phase as much
as feasibility and confidentiality permits, just as a
survey conductor should always inform the users
about the design of the survey.

5. Creating multiple imputations with sophisticated
and realistic Bayesian models is now computation-
ally feasible thanks to the rapid development of
computing environments and an explosion of sta-
tistical algorithms. It also seems possible soon to
provide users with more imputations than their
particular analyses need for achieving satisfac-
tory efficiency. Increasing the number of impu-
tations or allowing users to make selections will
also help to reduce the impact of possible arti-
facts in a particular imputation on all potential
analyses.

All the assertions above are validated or antic-
ipated by both theoretical and empirical studies,
some of which are provided in this paper. The rel-
atively new contributions of this paper, compared
to the existing literature, include the following: (i)
the formulation of the notions of congeniality and
uncongeniality (Section 2.3); (ii) the establishment
of a general frequentist theory, from an efficiency
point of view, for justifying (uncongenial) repeated-
imputation inferences (Section 4); and (iii) the ex-
ploration of weighted combining rules (Section 5).
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Clearly, more research is needed given the size of
the topic, its practical complications and, especially,
its practical importance. In fact, one purpose of
this paper is to call for more research attention
from both theoretical and applied statisticians, es-
pecially those of my generation, as multiple impu-
tation is an excellent area for learning and study-
ing statistics—one not only needs to be comfort-
able with both Bayesian and frequentist perspec-
tives, but also needs to take full advantage of both
perspectives in order to develop practicable method-
ologies that will produce scientifically relevant
inferences.

2. BASIC CONCEPTS AND REVIEW
2.1 Phase and Input

Because of its practical and inferential advantages,
as well as its feasibility with the development of
the computing environment and techniques, (multi-
ply) imputing incomplete observations is becoming
an indispensable intermediate phase between the
two traditional phases of statistical practice, collect-
ing data and analyzing data, especially in the con-
text of public-use data files. It is an intermediate
phase not only because it has to be carried out be-
tween collection and analysis, but, more important,
because it shares its goal with the collection phase
but its modeling task with the analysis phase. As
with the collection phase, its goal is to create a data
base that reflects nature as closely as possible. Yet
(explicit) model assumptions for variables included
in the data files, traditionally only associated with
the analysis phase, have to be introduced in the im-
putation phase because missing values are otherwise
inaccessible.

An imputer’s model assumptions, purpose of impu-
tation, available information and data from the col-
lection phase, as well as any other potentially useful
resources (e.g., past similar surveys) are all part of
the input to the imputation phase, or, in brief, impu-
tation input. Similarly, analysis input consists of the
analyst’s purpose of investigation, information and
data from the collection and imputation phases, as-
sessment of the provided information and data, com-
putational skills and so on. In addition, imputation
output contains both the imputed data sets and any
accompanying documentation (for either public or in-
ternal use), and analysis output includes the usual
statistical output as well as the analyst’s interpre-
tation and documentation of it. These terms and
some other terms introduced later are not intended
to be precise or comprehensive. Rather, they are sug-
gested merely as a set of convenient terms for com-
munication. Part of the difficulties in debates, in the

current context and in others, is the lack of common
language. If a Bayesian compares an imputation
model with an analysis model, a frequentist might
consider such a comparison irrelevant, because he
only uses an analysis procedure rather than a full
model, even if there is an implicit model underlying
his procedure.

A common (mis)perception of “objectivity” would
require output to be influenced only by the objective
part of the input (e.g., observed data), especially in
the context of producing public-use data files. How-
ever, statistical inferences almost always require in-
tellectual input from individual investigators. As a
mode of inference, imputation is no exception. Con-
sequently, if interpreting a statistical inference from
(truly) observed data needs caution, then it is even
more so with an inference from data with (multiple)
imputation, because the imputer is also part of the
inference team.

A quantitative description of the difference be-
tween the imputation input and the analysis input
will make this point more clear. Assuming all in-
tended computations can be carried out exactly (of-
ten not true in practice), all imputation input can be
summarized by an imputation model and all anal-
ysis input is represented by an analysis procedure.
The separate use of model and procedure contrasts
the Bayesian nature of imputation and the common
frequentist methods for analyzing survey data. The
Bayesian framework is ideal for imputation because
it allows direct and coherent modeling of the un-
known given the known and an explicit display of
model assumptions. Consequently, Bayesian poste-
rior prediction under an explicit model provides a
principle for imputation. Any other methods either
approximately follow this principle (e.g., Bayesian
bootstrap) or should generally be avoided (e.g., mean
imputation). Discussions of imputation methods,
therefore, will primarily be made with respect to
posterior predictions under explicit models, although

- other less ideal imputation methods will also be im-

plied whenever possible. In addition, for simplic-
ity of the presentation and in view of the tradi-
tional focus on point and interval estimators with
survey data, typically justifiable due to large sam-
ple sizes, an analysis procedure will only be identi-
fied in this paper with the production of an estima-
tor and an associated variance (interval estimators
are obtained by invoking the standard large-sample
normal approximations). Discussions when the an-
alyst’s procedure is identified with a full Bayesian
model are in fact more straightforward, as presented
in Rubin (1987, Chapter 3) and in Meng (1993),
because one does not need to embed a frequentist
procedure into a Bayesian model, as formulated in
the next subsection.
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2.2 Notation and Review of Different Perspectives

To formulate the embedding, we need notation and
a brief review of different perspectives for analyz-
ing survey data. The notation adopted here is from
Rubin (1987, Chapter 2), and readers are referred
to that reference for hidden assumptions underlying
the notation. Let X be an N x ¢ matrix of fully ob-
served covariates, and let Y be an N x p matrix of
partially observed outcome variables, where NV is the
total number of units in the finite population being
targeted. Furthermore, let 7 be an N x p matrix of
sampling indicators (i.e., I;; = 1 if Y;; is included in
the survey and I;; = 0 otherwise), and let R be an
N x p matrix of response indicators (i.e., Ry =1 if
the response on Y;; is obtained and R;; = O other-
wise, when I;; = 1; R;; is unknown when I;; = 0). In
addition, inc = {(i, j) | I;; = 1} indexes the included
(intended) sample, obs = {(7,7) | R;;I;; = 1} indexes
the observed data, and mis = {(3, j) | [;;(1— R;;) = 1}
indexes the missing values; thus we have Y;,. = ( Yyps,
Yis)- Finally, let Q = Q(X,Y) be the unknown quan-
tity of interest to an analyst (e.g., the total number
of current members of IMS who are against, at a de-
fined moment, the idea of certifying statisticians).
Three common perspectives for analyzing survey
data are Bayesian, likelihood and randomization, in
an order of decreasing methodological flexibility but
increasing general acceptance. Briefly speaking, the
Bayesian perspective directly describes the uncer-
tainty in Q by probability statements and obtains the
inference for @ from its posterior distribution given
all the observed quantities. The likelihood perspec-
tive treats @ as a function of a fixed but unknown
model parameter 6, models all the rest of the quan-
tities and obtains the inference from the likelihood
function of 6 given observed quantities. The ran-
domization perspective treats only I and R as ran-
dom variables and seeks estimators of @ that are
(asymptotically, in the finite-population sense) un-
biased when averaging over the sampling and non-
response mechanisms.
From a non-Bayesian perspective, an analyst’s
,complete-data procedure can be summarized by
?cqm = [Q(X; Yinc; I); U( X, Yine, I)], where Q(X, Yine, D
is an estimator of Q with U(X, Y., I) being an asso-
ciated variance (estimator). The dependence of Py,
on I accommodates different survey designs, and the
disappearance of R, in Peon, reflects the common as-
sumption that, once a response is obtained, the re-
sponse behavior itself carries no information about
Q@ (Rubin, 1987, pages 102-107). In the presence
of nonresponse, without being provided with sensi-
ble imputations, the existing procedures for analyz-
ing the incomplete data vary from naive convenient
approaches (e.g., filling in the missing observations

with sample means), all of which are invalid most
of the time, to sophisticated model-based methods
(e.g., fitting a model with the EM algorithm), the va-
lidity of which depends crucially on the analyst’s as-
sumptions about the mechanism that generated R;,.
A common feature of these incomplete-data proce-
dures is that they would yield the same output as the
analyst’s complete-data procedure Py, if there were
no incomplete observations. Conducting a multiple-
imputation inference only requires the analyst to
have a valid complete-data procedure. However, to
compare the multiple-imputation methodology with
any analyst’s incomplete-data procedure, denoted
by j)obs = [Q(X, Yobs, 1, Rinc), U(Xa Yobs) I, Rinc)], we
will include P, in our formulation and discussion.
The most interesting comparison, of course, is be-
tween the multiple-imputation approach and the
best possible incomplete-data procedure in the ab-
sence of the imputer’s input. This comparison is the
focus of this paper.

Before embedding a frequentist procedure into a
Bayesian model, a few words are needed on finite-
population Bayesian calculations, which differ from
the generally familiar superpopulation Bayesian cal-
culations. With finite-population Bayesian calcula-
tions, one models {X,Y, I, R} to obtain a posterior
predictive distribution for all of the unobserved val-
ues of Y, denoted by Y., which includes all the
values that were not sampled. The posterior dis-
tribution of Q(X,Y) is then calculated from the ob-
served values (X,Yps) and the posterior distribu-
tion of Y,,p. Details and examples are given in
Rubin (1987, Chapter 2); also see Ericson (1969).
Finite-population Bayesian calculations allow an in-
ference for any Q(X,Y), including those which are
not functions of the model parameters. In contrast,
the super-population Bayesian calculations directly
assign a prior distribution to @ and thus treat Q
as a parameter of the model. Multiple imputation
was developed under the finite-population Bayesian
calculations, but since the superpopulation Bayesian
calculations are much more familiar to general read-
ers, with some loss of generality, the following for-
mulation will switch to superpopulation calculations
whenever Bayesian specifications are involved. A
change of notation from Q to 6 signifies this switch.

2.3 Defining Congeniality and Uncongeniality

For notational simplicity, write the complete data
as Z. = {X, Yiy, I} and the incomplete (i.e., observed)
data as Z, = {X, Yops, I, Rinc}- The following defini-
tion connects the analysis procedure P = {Pgps; Peom }
to a Bayesian model f (including both the likelihood
and the prior density).
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DEFINITION 1. A Bayesian model f is said to be
congenial to the analysis procedure P = {Pyps; Peom }
for given Z, if the following hold:

(i) The posterior mean and variance of § under
f given the incomplete data are asymptotically the
same as the estimate and variance from the analyst’s
incomplete-data procedure P, that is,

@3.1) [6(2,),U(2,)] = [Ef[0] Z,), Vs [0 | ALk

(ii) The posterior mean and variance of § under
f given the complete data are asymptotically the
same as the estimate and variance from the analyst’s
complete-data procedure Pcopn, that is,

23.2) [0(2.),U(2)) = |E;[8] 2.],V; [0 ] 2],

for any possible Yipe = ( Yobs, Ymis) With Yoy, fixed (i.e.,
conditioned upon).

In the definition, a ~ b means the differences
between corresponding elements of a and b are neg-
ligible compared to the leading terms (e.g., a/b — 1
when a and b are scalar quantities) as the (sample)
size of Yyps gets large, and £y and V; denote the pos-
terior mean and variance with respect to f. Strictly
speaking, f should be called second-moment conge-
nial to P, with (2.3.1) and (2.3.2) defining an equiva-
lence class of f determined by P, a class that will be
denoted by F». Any model from Fp will be called a
congenial model for P.

Once we embed an analysis procedure into a
Bayesian model, we can compare it to the model un-
derlying the given imputations. Let g( Y5 | Z,, A) be
the imputation model, where A represents possible
additional data that the imputer has access to. The
following definition formalizes this comparison.

DEFINITION 2. The analysis procedure P is said to
be congenial to the imputation model g( Va5 | Z,, A) if
one can find an f such that (i) f is congenial to P and
(i) the posterior predictive density for Yy, derived
under f is identical to the imputation model

f(Ymis , Zo) = g(Ymis | ZmA)

(2.3.3)
for all possible Y.

Identity (2.3.3) also implies that the observed
quantities used in the two prediction densities are
effectively the same, and so a sufficient (but not nec-
essary) condition for congeniality between P and g is
that the full Bayesian model underlying g is in Fp.
If no such congenial f exists, then P is said to be
uncongenial to g, and the two sources of input, the

imputation input and the analysis input, are consid-
ered uncongenial as well (besides the obvious differ-
ence between the two sources of input). Notice that
the congeniality is defined with respect to a particu-
lar analysis procedure (for both incomplete data and
complete data); an analyst can perform two types of
analyses, of which one is congenial to the imputation
model and the other is not. Congeniality is also de-
fined with respect to the Z, and A actually observed;
any other possible sets of Z, and A that could have
been observed are formally irrelevant.

For a useful analysis procedure, especially for a
large survey, it is typically easy to find a Bayesian
model that is congenial to it. Put in another way,
a procedure that cannot be embedded into any
Bayesian model should perhaps be avoided in the
first place. For example, standard normal models
with noninformative prior densities are expected to
be in the equivalence classes for many procedures
that essentially only involve sample means and vari-
ances (see Rubin, 1987, Chapter 2; also see Pratt,
1965). It is often more difficult, however, to have
congeniality between an analysis procedure and the
imputation model underlying the imputed-data sets
being analyzed, especially with public-use data files
(e.g., Rubin, 1987, page 117). The uncongeniality oc-
curs at least in the following three cases. First, the
imputation model is largely unknown to the analyst,
who also has limited or no access to the imputer’s
extra resources. Second, different purposes of im-
puting missing observations and of substantive anal-
yses suggest that different models can better accom-
modate their different needs. Third, several models
are considered for imputation or for analysis, such
as when conducting a sensitivity study of underly-
ing model assumptions. The uncongeniality is the
core issue of the debate (e.g., Fay, 1992) and of this
paper, which will examine its impact on repeated-
imputation inferences via both examples and theory
after reviewing the standard repeated-imputation

" combining rules given by Rubin (1987, Chapter 3).

2.4 Standard Combining Rules and Inferential
Uncongeniality

Following the notation of the previous sub-
sections, suppose an analyst is provided with m sets
of completed data, Z¥ = {X, V¥, 1}, 1 =1,..., m,
where Y, = (Yys, Y2) with Y being the Ith
(independent) draw from the imputation model
9(Ynis | Z,, A). To conduct a repeated-imputation in-
ference, the analyst needs to carry out the following
two steps:

STEP 1. Perform the desired complete-data proce-
dure Peom, using each of Z¥,1 = 1,..., m, pretending
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they were the real observations. This produces
241 6=0(z%) U, =UZP), 1<i<m.
STEP 2. Combine the 2m quantities in (2.4.1) to

form a repeated-imputation estimator and an asso-
ciated variance. The estimator is simply the average

_ 1 & A
(2.4.2) O = — > 6,

and the variance associated with 6,,, is given by

(2.4.3) T =Up, + <1 + i)Bm,
m
where m
1
2.4.4 —
( ) m 5

measures the within-imputation variability,
1 o~ A T
=== (0= 0m) (01~ Om)
1=1

measures the between-imputation variability, and
the adjustment (1 + 1/m) is due to the finite num-
ber of imputations.

By analogy to the notation for the analysis proce-
dure, the repeated-imputation output will be denoted
by Pm = [0, T.], and accordingly Po = [foo, Tool
when m — oo. The justification for the combining
rules (2.4.2)—(2.4.5) is most straightforward when
the analyst’s procedure is congenial to the imputa-
tion model, in which-case the desired inference is
prov1ded by the analyst’s incomplete-data procedure,

Pobs = bz, ), U(Z,)]. To see this, let f be a Bayesian
model congenial to P. Then, by (2.3.1)-(2.3.3),

(2.4.5) B,

000 = Ey[0(Z,) | Zo, A]

Es[0] Z.] |ZO,A] [by (2.3.2)]

~ 5|
|

= B;[E[012]]2)  [by(23.3)]
= Ef[0]| Z,) ~0(Z)  [by(23.1)].
Similarly,
Uoo = lim Un =~ E;|V;[0] 2] | 2,
Beo= lim By = V;[B[0] Z]| Z)]
and thus

Too = Uoo + Boo = V[0 | Z,] ~ U(Z,).

Therefore, when an analysis procedure is congenial
to the imputation model, the inference from the
repeated-imputation combining rules with infinitely
many imputations agrees (asymptotically with re-
spect to the size of Y,;,;) with the (desired) incomplete-
data analysis under the analyst’s procedure, that is,
Poo 22 Pobs.

This agreement can be called inferential congenial-
ity (or output congeniality) between the repeated-
imputation inference and the incomplete-data
analysis, both under the analyst’s procedure. Cor-
respondingly, a disagreement, if it occurs, will
be called inferential uncongeniality. Although the
inferential congeniality is the same as the fact
that the repeated-imputation estimators are consis-
tent, as m — oo (conditional on Z,), with estima-
tors from the incomplete-data analysis (up to a pos-
sible negligible term), the term “consistent” is not
adopted here to avoid the confusion with its common
meaning—large-sample consistency with the under-
lying true population characteristics. The congenial-
ity addressed here only refers to the agreement be-
tween two approaches of analysis: (i) analyzing only
the incomplete data by ignoring all the imputed val-
ues (which are typically “flagged” in a released data
file) and (ii) analyzing the multiply-imputed data via
the standard combining rules, assuming the number
of imputations is essentially infinite. Using a sim-
plified version of one of Fay’s (1992) examples and
Kott’s (1992) example, the next section details such a
comparison. Of course, a more practical comparison
would be between (i) and (ii) with a finite and often
small number of imputations, an issue that is beyond
the scope of this paper (but see Section 6.3). Never-
theless, as is well known, limiting results typically
help us understand the performance of a procedure
with finite arguments. Furthermore, asymptotic the-
ory (with respect to m) here is especially relevant,
because the limitation on m is (largely) due to com-
puting power rather than data limitations and thus

- can be eventually removed (see Section 6.3).

3. ILLUSTRATING UNCONGENIALITY

3.1 An Example where the Imputer Assumes More
than an Analyst

Let (z;,1;),i=1,...,n, be a simple random sample
from an essentially infinite population, where z is a
covariate taking values O or 1, and y is a continuous
measure. For simplicity, assume the population vari-
ances of y for both subclasses defined by z are known
to be 1. Suppose the z;’s are fully observed, but some
y;’s are missing, and the missing data are missing at
random (i.e., the missing-data mechanism does not
depend on the unobserved y;’s; see Rubin, 1976). In
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addition, suppose that the quantity of interest to an
analyst, 6, is the population mean of y for the sub-
class defined by z = 1. The multiple imputation of
missing y;’s, however, was performed by an imputer
who had assessed that the two subclasses have the
same population mean and thus decided to ignore z
in the imputation model. Specifically, suppose the
imputation model is the posterior predictive density
derived from

(B.LD (y1,---,Yn | 1) ~iia. Ny, 1) and f(p) x 1,

where f(u) is the prior density for 4. The analyst is
presented with the multiply imputed data set, but
is not informed of the imputation model nor of the
imputer’s assessment that the two subclasses have
the same mean.

Let y; and n; be the sample mean and sample size
of y within the subclass defined by z = j, j = 0, 1.
In an unconventional but handy notation, the excla-
mation mark “!” and the question mark “?” will be
used as subscripts to denote the observed and the
unobserved counterparts of a quantity, respectively.
Thus, 7, and n, are, respectively, the average and the
number of all observed ys, 7, | and n; , are the coun-
terparts for subclass z = j, and n; 7 = n; — n;  is the
number of missing observations for subclass z = 7,
j =0,1. In addition, let R be the missing-data indi-
cator: R; = 1if y; is observed and R; = 0 otherwise.
Furthermore, for simplicity of presentation, all sam-
ple sizes {n;,n;+,j = 0,1} are treated as fixed in
the following randomization-based calculations [see,
however, Rubin (1995) for the implications of this
conditioning]. -

Under the above setting, the standard complete-
data procedure for estimating 6 is Peom = [¥,n b,
and the corresponding incomplete-data procedure is
Pobs = [g1,,,n7)]. With m multiple imputations,
the analyst can also apply P.om to each completed-
data set, and then use the standard combining rules
(2.4.2)—~(2.4.5) to obtain P,, = [0,,,T,,]. The limit of
P, as m — 00, is given by Poo = [0oo, Tiol, where, as
is easy to verify under model (3.1.1),

>ie1%i[Riyi + (1 - Ry

0. =
= Z?:ﬁri
_ nlyn_ + n
= m Y1,1 Y
and
1
Too = — + Boo,
n1
with
Bw= lim B, = %! <1+ E)
m — 00 nl n!

It is easy to verify that P, is uncongenial to P,

that is, Po, % Poys, except in two trivial cases:
(@) ny,2/n1 — 0 and (b) ng,1/n; — 0.

The reason for having uncongeniality in this exam-
pleis quite clear from the Bayesian perspective, since
any Bayesian model congenial to the analysis proce-
dure must explicitly include the covariate z, and thus
cannot be congenial to the imputation model (3.1.1).
An obvious choice of a congenial model for the anal-
ysis procedure is

(3 1 2) (yi | 1171',9, 90) ~ind N(m,0+ (1 — .’L'.i)eo, 1)
h and f(8,0y) 1.

The difference between (3.1.2) and (3.1.1), as bases
for imputation, is whether each subclass is allowed to
have its own mean parameter. Under the imputation
model (3.1.1), the imputations for the missing y;’s
with z = 1 were drawn from:

(yilzi=1,Ri=0,p) ~iza N, 1)

(3.1.3) with u~ N(7,n7),

where 7, and n,, as defined before, are the average
and the number of all observed y,’s regardless of their
z values. In contrast, under the congenial model
(3.1.2), the imputations for the missing y;’s in the
subclass z = 1 would have been drawn from

(yilzi=1,R;=0,6) ~iiq. N(6,1)

(3.1.4) with 6~ N(g; ,n7}),

thatis, only the observed y’s with z = 1 would be used
for the posterior distribution of the mean parameter.

An investigation of two trivial cases will make the
issue of congeniality even more clear. In case (a),
there is essentially no missing data inside the sub-
class z = 1, implying an effective (and obvious) con-
geniality for that subclass. Under (b), there is essen-

' tially no observed data outside the subclass z = 1,

implying 3, ~ 7 , and n; ~ ny,), and thus (3.1.3) and
(3.1.4) are congenial. It is worthwhile to point out
that if (a) or (b) holds, then the imputation model
(3.1.1) is not strictly valid because the missing y’s
are not missing completely at random (Rubin, 1976),
although it is effectively correct for imputing missing
y'swithz =1,

In the presence of inferential uncongeniality, the
question of both theoretical and practical interest is
which procedure, P, or P, provides better statisti-
cal inference. Clearly, when the imputation model is
incorrect, an invalid inference is expected from P,
as with any inference based on incorrect assump-
tions. If the imputer’s assessment of equal subclass
means is incorrect, then 6, is not consistent for ¢
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except in the two trivial cases. This shows the dan-
ger of using a less general imputation model (e.g.,
ignoring covariates), as shall be further discussed
in Section 6.1. Section 5 suggests a set of weighted
combining rules (when the number of imputations is
large) for correcting invalid inferences due to defects
in imputation models.

If the imputer’s assessment is correct, that is, the
two subclasses do have the same population mean,
then this extra information has been built into the
imputation, but is not known to the analyst (other-
wise, the analyst would utilize this information in the
analysis procedure). As a consequence, Eoo is more
efficient than the estimator from Pobs,fobs = U1, 1,
which is the uniformly minimum variance unbiased
(UMVU) estimator of 8 with the incomplete data un-
der the analyst’s (congenial) model (3.1.2). This is
what Rubin (1995) calls superefficiency, extending
the classical meaning of this term to allow extra in-
formation through imputation. The superefficiency
holds here because

— 1 N1 1M1.9? n% ?
Vo = V(lso) = — 11,1 FQI T
ny m n

1 ~
< — = V(aobs)a
Ny,

where the variance calculations can be viewed either
as randomization-based or frequentist model-based.

Since the imputer’s extra information cannot be
incorporated explicitly in the analyst’s procedure, the
inference from P, is less than ideal if it is judged
without reference to the separation of the imputation
and the analysis phases. First, 8, is still not the
most efficient estimator, which is 7;. Second, T, from
P., overestimates the variance of 8., except in the
two trivial cases because

2 ni 2 N1
Voo = Too = —— [ —= | [ == ).
== () (5

, This overestimation of variance is what has been crit-
icized (Fay, 1991, 1992; Kott, 1992), although the is-
sue of inefficiency seems more interesting. This is
particularly because, even with the overestimation,
T, is stillless than V(8,ps); the general theory for this
inequality will be given in Section 4.4. Consequently,
for any given nominal level 1 — o, the correspond-
ing confidence interval from P, has at least 1 — «
coverage but with a width that is less than that of the
corresponding interval from P.,s, which has exactly
1—« coverage (accepting the normal approximation).
Given the choice between two such confidence inter-
vals, it seems hard to justify, from an applied point
of view, choosing the one from P.,s. Even Neyman’s

(1934) original definition of confidence intervals sup-
ports the use of the one from P, (see Rubin, 1995,
for more details).

3.2 An Example where the Imputer Assumes Less
than an Analyst

The possible danger of misleading potential ana-
lysts with less general imputation models has been
well addressed (see Section 6.1), and thus it is of more
practical interest to examine the uncongeniality in
cases where an imputation model is more general
than potential analysis procedures. Reversing the
roles of the models in the previous example provides
an informative case.

Suppose now that the imputer uses model (3.1.2).
Under this model, missing y;’s with z; = 1 are
imputed by draws from

(yi|zi=1,Ri =0,8) ~i1q. N, 1)
with § ~ N (g, n11),

and missing y;’s with z; = 0 by

(yi| s =0,R; =0,600) ~iia. N(6o,1)
with 6o ~ N (7o, 1,ng 1)-

In addition, assume that the analyst wishes to es-
timate the mean of the whole population (aggre-
gated by the two subclasses), denoted by p. Thus,
if all yq,...,y, were observed, the analyst’s proce-
dure would be Peom, = [7,n~!]. The corresponding
repeated-imputation inference with m = oo is de-
noted by P, = [, Vool, Where

— ni_ o
3.2.1) oo = —=Y1,0 %~ "To, 1

and . .
(32.2) vy = (ﬂ) 1. <@> 1
n/ ni n/ no

To check congeniality, we first need to identify

' the analyst’s procedure for analyzing the incomplete

data without imputation. There are (at least) two
possible incomplete-data procedures for the analyst;
both procedures provide identical results with com-
plete data. First, if the values of z are unknown to the
analyst or the analyst assumes (explicitly or implic-
itly) that the missing data are missing completely at
random, then a natural procedure is P = [7),n] h,
that is, using the sample average of all observed y to
estimate the population mean. Notice that 7, can be
rewritten as

ni1_ no,1_

3.2.3 Yy = —= + — ,
( ) 7 ™ Y1, ™ Yo,1
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that is, it weights the two observed subclass means
by the observed subclass proportions (i.e., n;,1/m,
j = 0,1). Second, suppose the z’s are known to the
analyst, who does not know whether the two sub-
classes share the same mean, and who also judges
that the two subclasses may have different response
rates. Then a sensible procedure to the analyst,
in contrast to (3.2.3), is to weight the two observed
subclass means by the sampled subclass proportions
(i.e., nj/n, j = 0,1). This leads to, numerically, the
same procedure as P, that is, (3.2.1) and (3.2.2).

With the first incomplete-data procedure, model
(8.1.1) is a congenial model for the analysis proce-
dure. When the second incomplete-data procedure
is used, the imputation model (3.1.2) itself is a con-
genial model to the analysis procedure. The uncon-
geniality and superiority of the repeated-imputation
inference in this example is well demonstrated by
considering the following two scenarios: (i) the miss-
ing data are missing completely at random; and (ii)
the two subclasses have different population means
and the missing data are missing at random but not
completely at random, that is, the probability of non-
response varies with the covariate . Under (i), both
incomplete-data procedures provide valid inferences,
which are in fact asymptotically equivalent, because
the observed subclass proportions agree asymptoti-
cally with the sampled subclass proportions and thus
MVeo — 1. Under (ii), only the second incomplete-
data procedure provides a valid inference, because
the estimate from the first incomplete-data proce-
dure, 7, of (3.2.3), is inconsistent when the observed
subclass proportions disagree asymptotically with
the sampled subclass proportions. Since Py, is iden-
tical to the second incomplete-data procedure, the
repeated-imputation inference is valid and asymp-
totically efficient under both (i) and (ii), even though
the imputation model was derived under (ii). The
uncongeniality between P., and P, under (ii) is
thus a consequence of the validity of the repeated-
imputation inference.

What is illustrated above is a powerful feature of
the multiple-imputation approach when the imputa-
" tion model is valid—it automatically provides valid
inferences without requiring the analyst to identify
the correct nonresponse mechanisms [e.g., to distin-
guish between (i) and (ii)], and thus the analyst does
not even have to know the variables that determine
the nonresponse mechanism [e.g., z in (ii)]. In fact,
the analyst’s second incomplete-data approach can-
not be applied directly when z is unknown to the
analyst, but by performing repeated-imputation in-
ference the analyst obtains the same inference with-
out knowing z. The benefits to the analyst rest on
the efforts of the imputer, for whom correctly model-
ing the nonresponse mechanisms is the main objec-

tive rather than an extraneous burden. If the impu-
tation model is incorrectly specified, for example, if
model (3.1.2) is used when the nonresponse mech-
anism is in fact not ignorable, then P, will not be
valid, just as P, is invalid when (i) is violated. The
validity of assumptions is fundamental to any infer-
ence, and thus it is always of great concern. Cre-
ating multiple imputations for public-use data files
magnifies this concern, because the validity of the
imputation model affects virtually all of the subse-
quent analyses. This issue will be further discussed
in Section 6.1.

4. FREQUENTIST THEORY
4.1 Judging the Quality of Imputation Models

The examples in Section 3 illustrate that in the
presence of uncongeniality, it is vital to recognize
that disagreement between the repeated-imputation
analysis and the (best possible) incomplete-data
analysis does not automatically invalidate the
repeated-imputation inference. Quite to the con-
trary, (substantial) disagreements between these two
analyses often raise questions about the incomplete-
data analysis, because it may suffer from serious
nonresponse biases (as well as inefficiency) when
the analyst has less information about the nonre-
sponse mechanism than the imputer has. The (bet-
ter) quality of the imputer’s model can easily be quan-
tified in the Bayesian framework, but the attempt
here is to quantify it from frequentist perspectives.
Since the randomization (design-based) perspective
is the one most accepted by survey practitioners, all
moment calculations used below are under such a
perspective, as in Rubin (1987, Chapter 4), unless
otherwise stated. In particular, all such calculations
regard X and Y and the planned sample size as fixed.
All the following descriptions can easily be presented
(in fact, more straightforwardly) within a frequentist
model-based perspective, treating the observations
as draws from a superpopulation model.

To provide valid imputation inferences, an impu-
tation model obviously needs to capture the essence
of the true nonresponse mechanism. Rubin (1987,
pages 118-119) provides a formal definition of proper
imputation method, which implies conditional unbi-
asedness of the three quantities (with subscript co)
listed in Definition 3 below; there, the conditional
unbiasedness is with respect to the conditional ran-
domization distribution of the nonresponse indicator
R given the sampling indicator I (and X and Y'). For
the purpose of this paper, which focuses on overall
randomization validity (i.e., averaging over both R
and I), the following weaker version of Rubin’s defini-
tion is enough. The flexibility of this weaker version
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allows us to deal with the issue of uncongeniality.
Recall the notation: g(Ynis | Z,, A) is the imputation
model, Peoy = [9(Z ), U(Z,)] is the analyst’s complete-
data procedure, and P, = [0, Tl is the correspond-
ing repeated-imputation output with m = oo, where
Too = Uy + Boo with Uy, and By, being within-
imputation and between-imputation variances,
respectively. As before, the notation “~” denotes
finite-sample asymptotic equivalency with respect to
the size of the observed data.

DEFINITION 8. Animputation model g is said to be
second-moment proper for P, if the following three
conditions are satisfied:

(i) G and §(Zc) have the same expectation,

Elf. | X,Y] ~ E[6(Z,) | X,Y);

(ii) U estimates the variance of 8(Z.),

ElU | X, Y1~ VIA(Z,) | X,Y];

(iii) By estimates the variance of 8., — 8(Z,),

E[Bos | X,Y] ~ El(@s — 0(Z))% | X, Y.

We emphasize that the concept of second-moment
proper is only with respect to the analyst’s complete-
data procedure, in contrast to the concept of con-
geniality, which is with respect to the analyst’s
complete-data and incomplete-data procedures. An
imputation model, therefore, can be second-moment
proper but still uncongenial to the analysis proce-
dure. The imputation model (3.1.1) is such an exam-
ple when the imputer’s assumption of equal means is
correct; the necessary calculations for verifying (i)—
(iii) for that model are given in Meng (1993).

Being second-moment proper defines the validity
of an imputation model but does not describe its effi-
ciency in the sense discussed below. Given the ana-
" lyst’s complete-data estimator, 8(Z.), its expectations
under different imputation models are the most di-
rect quantities for comparing different imputation
models. Specifically, suppose g;( Ymis | Z:),i=1, 2, are
two imputation models, where Z; and Z, are (pos-
sibly different) observed quantities used for predic-
tions and 8; is the (conditional) expectation of 8(Z.)
under g;. It is intuitive to view 6; as the “best im-
putation” of 8(Z.) under model g;, i = 1,2. Thus, we
would consider g; the better model if 91 is closer to
0(Z ) than 02 is. A standard measure for the “close-
ness” is the mean-squared error, which yields the fol-
lowing criterion. Model g, is said to be better than g,

for 8(Z,) if

E[(6: - 8(2)°|x,Y]
(4.1.1) T
< B[(8 - 02)"| X, Y],

Taking g; to be the imputer’s model g( Yis | Zo, A)
and gy to be the imputation model derived from an
analyst’s congenial model, inequality (4.1.1) leads to
the following criterion for claiming that the imputer
has better knowledge about the missing observations
[more precisely, about the “missing” 8(Z.)] than the
analyst has.

DEFINITION 4. An imputation model g is said to
be better (than the analyst’s congenial imputation
model) for 8(Z,) if

E[(Boo — 8(2.))"| X, Y]

(4.1.2) G
< B[(0(2,) - 6(2.))°| x,Y].

Since the comparison in (4.1.2) is directly between
the two estimators, the repeated-imputation esti-
mator 6, and the incomplete-data estimator oz, ),
(4.1.2) can be defined without requiring one to find a
congenial model for the analysis procedure. In fact,
(4.1.2) even allows 8(Z,) to be inconsistent, such
as when the analyst’s assumption about the non-
response mechanism is incorrect. The comparison
between confidence intervals from P,, and from P,
will be made in Section 4.4 under condition (4.1.2),
which holds when the imputer does a better impu-
tation job than the secondary analyst can do, a com-
mon situation in practice. The verification of (4.1.2)
for the example of Section 3.1 when the imputer’s as-
sumption is correct also follows from the calculations
provided in Meng (1993).

4.2 Repeated-Imputation Variance Decomposition
Rule

A key formula in conducting repeated-imputation
inferences is the variance combining rule given in
(2.4.8), which decomposes the total variance into
the sum of the within-imputation variance and the
between-imputation variance. Both Fay (1992) and
Kott (1992) questioned the validity of this decompo-
sition. In particular, Fay provides an example to
show that the Bayesian derivation behind this de-
composition may not apply to non-Bayesian variance
calculations, and Kott, using essentially the same
example as in Section 3.1, illustrates that the over-
estimation of a repeated-imputation variance is due
to the existence of an extra cross term in the decom-
position. The main theoretical development here at-
tempts to clarify these issues by establishing three



MULTIPLE-IMPUTATION INFERENCES UNDER UNCONGENIALITY 549

results that are mathematically trivial but statisti-
cally informative and important. As emphasized in
Section 2.2, the term sampling variance or sampling
mean-squared error used below is defined under the
randomization perspective, but the arguments ap-
ply with analogous definitions from the frequentist
model-based perspective.

First, the decomposition can be derived not only
from the Bayesian perspective, but also from the like-
lihood and the randomization perspectives. The key
assumption here is that the analyst’s complete-data
estimator must be self-efficient, a condition that will
be defined shortly, but basically prevents the ana-
lyst from using statistically ill-constructed estima-
tors. Second, even in the presence of uncongeniality,
the decomposition still holds as long as one does not
assume that, in the absence of missing data, the im-
puter has extra information to improve the efficiency
of the analyst’s self-efficient estimator. Third, in
cases where the imputer does have such extra infor-
mation, the decomposition provides a conservative
estimate of the sampling variance of the repeated-
imputation estimator. However, this conservative
estimator itself is still less than the sampling vari-
ance of the analyst’s incomplete-data estimator, as
long as the imputation model is better in the sense
of Definition 4. Consequently, a confidence interval
from P, is more efficient than the corresponding one
from P, with the same nominal level in the sense
that the former is shorter but has greater coverage
than the latter.

When the analyst’s procedure is congenial to the
imputation model, the decomposition (2.4.3), from
the Bayesian perspective, as seen in Section 2.4, is a
direct application of the well-known identity

Vi (81 20) = B¢ V(61 22)| Zo]
4.2.1)
+V; [Ef CIPA |Zo] ,

where all posterior calculations are with respect to
the same model, that is, the analyst’s (congenial)
model f. A slight generalization of (4.2.1) provides
the insight that leads to analogous decompositions
from other perspectives. Let 6;(Z.) = E;(6 | Z,) and
let 8(Z.) be an arbitrary estimator of §. For simplic-
ity, 6 is assumed to be a scalar. Then

E; [(9 - 5(Zc))2|Zo]
(4.2.2) = B;[(6- 9;(2))"| 2]
+ By [(05(20 - 020)°| 7]

which reduces to (4.2.1) when g(Zc) =FE¢l60| Z,]. Iden-

tity (4.2.2) states that gf(Zc) is Bayesianly most-
efficient in the sense that it minimizes the pos-
terior mean-squared error: Ef[(0 — 0;(Z.))?|Z,)
= mingyz,)E¢[(6 — b(Z.))? | Z,]. This observation im-
mediately suggests analogous decompositions from
non-Bayesian perspectives, as presented next.

4.3 Frequency Validity of the Decomposition Rule

The following lemma provides insight into when
the variance decomposition holds under frequentist
calculations. Proofs of all the theoretical results ap-
pear in the Appendix.

LEMMA 1. Let 8y and 8; be two estimators of 6.
Then

(4.3.1) EI0; — 6% = E[8y — 6] + E[6; — 8,)2

if and only if
E[B, — 612
(4.3.2) ) . . 2
= _oon<11/\n<ooE[()\91 +(1—X)bo) — 9] )

where the expectation is either over a randomization
mechanism with 6 being an unknown finite popu-
lation characteristic, or over a posited (frequentist)
model with 8 being an unknown model parameter.

Taking 6 = 8(Z.) and ; = 6(Z,) in (4.8.1) justifies
the desired variance (more precisely, mean-squared
error) decomposition from non-Bayesian perspec-
tives, because the first term on the right-hand side
represents the variance of the estimator if there
were no missing data, and the second term measures
the extra variability due to missing data. The only
requirement here is that the complete-data estima-
tor 6(Z.) is most efficient, not among all possible es-
timators, but only among mixtures of itself and the
incomplete-data estimator 6(Z,). It is easy to argue
that this requirement is satisfied in practice. Rarely

~ would an analyst use an estimation procedure 6(-)

that allows for improved efficiency beyond applying
the procedure to the whole data set by mixing this
estimator #(Z.) with an estimator 6(Z,) from apply-
ing it to part of the data set, especially when the
mechanism creating that part of the data carries no
information about 6 once the data are obtained. Put
in a different way, if such a mixture does exist, then
the analyst’s complete-data procedure is statistically
misguided and should be replaced by using the most
efficient mixture as the complete-data procedure (or
estimator). This desirable requirement of the ana-
lyst’s procedure will be called self-efficiency.

DEFINITION 5. Let W, be a data set, and let W,
be a subset of W, created by a selection mechanism.



550 X.-L. MENG

A statistical estimation procedure 8(.) for 6 is said to
be self-efficient (with respect to the selection mecha-
nism) if there is no ) € (~o0, 0o) such that the mean-
squared error of NO(W,) + (1 — MOW,) is less than
that of 0(W ).

An example of a self-inefficient procedure is the
estimation of a population mean by only taking the
sample mean of a randomly selected half of the avail-
able samples; it is obvious that no one would know-
ingly use such a procedure for complete-data analy-
ses (except, perhaps, for cross-validation).

In the presence of uncongeniality, the repeated-
imputation estimator 0, is different from 9( Z,). Con-
sequently, 9, in Lemma 1 is taken to be 0o, With
8o = 6(Z.) unchanged. The implicit assumption here
is that both 8, and 8(Z,) are consistent estimators
of 8, implying that both the analyst’s complete-data
procedure and the imputer’s model lead to valid es-
timates. Unlike situations with congenial models, it
is possible now that the imputer’s extra information,
incorporated in 050, can make a mixture of 65 and
0(Z ) more efficient than 0(Z ), even if the analyst’s
procedure is self-efficient. Section 3.1 presents such
an (artificial) example.

The scenario of having extra efficiency beyond
6(Z,) from the imputer’s information, however, is un-
likely to occur in reality because the imputer’s ex-
tra resources typically help to predict missing val-
ues, but are not helpful in creating more efficient
estimators (compared to the analyst’s self-efficient
estimators) when there are no missing data. This
is especially true from the randomization perspec-
tive; both the analyst and the imputer can create
their own models and claim better model-based ef-
ficiency according to their chosen models, but they
share the same randomization mechanism (though
the nonresponse mechanism part is typically un-
known) and thus have a common base for comparing
randomization-based efficiency (imputer’s extra data
from sources other than the current survey can be

treated as part of X). Consequently, we may assume -

that 8(Z,) is still the most efficient estimator among
the mixture class {\fo, +(1 — MB(Z,), —00 < A < 00},

The example in Section 3.2 is such an illustration.

This indicates that, despite the uncongeniality, the
fundamental decomposition for repeated-imputation
variance still holds in most practical cases.

4.4 Confidence Validity of the Decomposition Rule

The example in Section 3.1 shows that, when the
decomposition does not provide the correct variance,
it overestimates. The question of interest is then
whether this is a general case, which would imply
that the decomposition is confidence-valid, mean-
ing that the corresponding confidence intervals will

have at least the claimed coverages (Neyman, 1934;
Rubin, 1995). The following lemma provides insight
into when the decomposition will be conservative.

LEMMA 2. Take the same setting as in Lemma 1.

Then

(4.4.1) EI[B; — 6] < E[8y — 6] + E[0; — 8,)2

if and only if
E[9, — 612
(4.4.2) . ~ ~ 2
= _oonililSOE[(x\el + (1= N8) - 6] .

Taking 6; = 0 and 8y = 8(Z.), Lemma 2 states
that as long as there is no negative A that makes the
corresponding mixture more efficient than 8(Z.), the
decomposition will be conservative. Again (4.4.2) is
typically true in practice under the scenarios being
discussed. Since the imputer’s information comes
in through 0., one may try to improve the effi-
ciency of oz, ;) by mixing it with 0, say, by using
30%0 5, +70%0(Z ). A negative )\, however, would im-
ply weighting 0z, ), which does not carry the im-
puter’s extra information, by more than 100% and
then giving a negative weight to. 0o to maintain con-
sistency [e.g., —30%0 + 130%8(Z,)]. This scenario
seems implausible in practice. Consequently, an im-
putation model will be called information irregular
for 9 if such a negative A does exist. In other words,
we have the following definition.

DEFINITION 6. The imputation model g will be
called information regular for estimating 6 us-
ing the self-efficient estimator 6(-), if there is no
negative A\ such that the mean-squared error of
Moo + (1 — N(Z,) is less than that of 8(Z,).

It would be interesting to find a real scenario in
which there exists an information-irregular imputa-
tion model. The same argument for the conservatism
of the variance decomposition rule also applies to
rare cases in which the response behavior carries ex-
trainformation about § beyond the observations, that
is, even in these cases the decomposition is very un-
likely to be liberal.

Given the conservatism of the decomposition, the
next question of interest is how the overestimated
variance compares to the sampling variance of 8(2,),
the analyst’s incomplete-data estimator. Such a com-
parison will determine which interval estimate, the
one from P, or the one from P, is more efficient.
The following lemma answers this question.

LEMMA 3. Let §(ZC), §(Zo) and 0. be as defined
before, where the analysis procedure is self-efficient.



MULTIPLE-IMPUTATION INFERENCES UNDER UNCONGENIALITY 551

Then

—_ ~

B[ (820 - 6)°|X,Y | + B[ (0 - 820)* X, Y]

“48 B|(62,) - 6)"|X,Y]

if and only if (4.1.2) holds, that is, if and only if the
imputation model is better for 8(Z,). The analogue
also holds under the frequentist model-based pers-
pective.

This result states that the desired inequality
(4.4.3) is equivalent to the fact that the imputer’s as-
sessment about the missing 6(Z.) is better than that
from the analyst.

Under a second-moment proper imputation model,
the three lemmas above lead to a general frequentist-
based result on the validity of repeated-imputation
inference and its superiority over incomplete-data
analyses. Each lemma can be applied separately un-
der different circumstances, as illustrated above. The
following summary is presented for concreteness.
This result, from an efficiency point of view, accompa-
nies and strengthens the randomization-based justi-
fication provided in Rubin (1987), Chapter 4.

MAIN RESULT. Suppose the following condi-
tions hold: R

(a) The analyst’s complete-data estimator ¥(Z,) is
self-efficient.

(b) The imputer’s model is information regular for
estimating 0 using 8(Z.).

(c) The imputer’s model is second-moment proper
with respect to the analyst’s complete-data procedure
Peom. )

(d) The imputer’s model is better for g(Zc).
Then the following hold:

(i) The repeated-imputation estimator is consistent
for 8, and is at least as efficient as the analyst’s
incomplete-data estimator.

(ii) For any nominal level, the corresponding
repeated-imputation confidence interval has at
least the nominal coverage, but has at most

' the same width as the confidence interval from
the analyst’s incomplete-data procedure with the
same nominal coverage.

No condition above regulates the analyst’s assess-
ment about the nonresponse mechanism, and thus
the analyst’s incomplete-data estimator is allowed
to be inconsistent. These conditions describe and
guide good practice for imputation and for complete-
data analyses. The requirement for the analyst is
minimal, especially because it is always desirable to
use self-efficient estimation procedures regardless of
whether or not imputations are involved. In fact,

most of the time analysts will use (asymptotically)
efficient estimators, and thus condition (a) is auto-
matically satisfied. Condition (b) describes the re-
ality regarding the imputer’s extra information on
efficiency, and conditions (c) and (d) simply define
what is a valid and good imputation model. In ad-
dition, since no condition imposes any restrictions
on survey designs or nonresponse mechanisms, all of
the results are completely general and even apply to
cases in which our simplified notation is inappropri-
ate (e.g., sequential surveys, unstable response; see
Rubin, 1987, Section 2.2).

5. EXPLORING DIFFICULT CASES

5.1 The Extended Combining Rules
Using Importance Weights

Exceptions do exist where it is desirable to conduct
studies under nonresponse models (possibly implied
by complete-data models) other than the original im-
putation model. This can occur in at least two situ-
ations: (i) when structures that interest an analyst
were ignored or restricted in the imputation model
(e.g., an indicator for a minority group was not used;
an interaction term was set to zero); (ii) when an
investigator, either an analyst or the imputer, is in-
terested in conducting a sensitivity study for posited
assumptions (e.g., the nonresponse mechanisms). In
such cases, it would be ideal to reimpute the nonre-
sponse under all posited models, but this could be
prohibitive for users in practice. In the absence of
proper imputations, it is generally difficult to con-
duct desired inferences from the existing improper
imputations; correcting defects in the provided data
at an analysis phase is always a complex and un-
pleasant task. The method discussed below is largely
exploratory, with the hope that it will stimulate the
development of practically workable procedures for

dealing with these difficult cases.

A common method for adjusting draws from a
“wrong” model is to use importance weights. This
method can be tried on the current problem. Specifi-
cally, let f(Ymis | Zo, A) be an imputation model that
the investigator desires to use ( f does not depend on
A for analysts), and, as before, let g( Y5 | Z,, 4) be
the imputation model underlying the existing impu-
tations. Let

f(Ymis I ZO,A)

c
g(Ymis l ZoaA)

(511) :R( Ymis) =

be the importance ratio, where C is an arbitrary
(positive) constant that does not depend on Yy (but
can depend on any observed quantities). Now, sup-
pose that besides the 2m completed-data quantities
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IR( Y(l) )

given in (2.4.1), the m scalar quantities R; = mis

l=1,...,m, are also available. Let
R R
1/m Zz 1 R R

Then the proposed extended repeated-imputation es-
timator is the weighted average

_ 1 & ~
o = ;ﬁzwﬂz,
=1

which reduces to (2.4.2) when f and g are congenial.
Similarly, the combining rules (2.4.4) and (2.4.5) are
replaced by their weighted versions,

(5.1.2) wy =

(5.1.3)

—(w 1 &
(5.1.4) Tw = = ZwlUl,

m
(5.1.5) B® = ﬁzwl(m %) (6, -8 "
=1

Directly substituting ﬁ,(:'  for U,, and B for B,

in (2.4.3) would yield

(5.1.6) T =TW 4 (1 + i)Bf;f).

m
Although this T\ provides a congenial variance as-
sociated with () as m — oo, for finite m, it ignores
the extra variability caused by the weights. One sim-
ple remedy (Meng, 1993) is to use

G.L7) T = U(w>+(1+1‘;ns >B<w>

where

(5.1.8) s2 = 1 Z(w, —1)?

is the sampling variance of the weights. With large
m, T and T*) are equivalent. More accurate ap-
prqx1mat10ns are left to subsequent work.

5.2 Justification and Applications of the Extended
Rules

The results from the extended rules, in analogy
to previous notation, will be denoted by iP(“’)
[0W), 7%, with large-m limit P = [FW), T(“’)]
The extended combining rules can be easily justi-
fied by the well-known importance sampling argu-
ment, which yields iP(“” ~ Pos. Importance sam-
pling has been used for inferential purposes in the
literature. For example, in introducing the idea of

configural polysampling, Morgenthaler and Tukey
(1991, Preface) wrote, “...using different weighting
schemes to convert a single set of samples into dif-
ferent sets of weighted samples, therefore allowing
them to serve as ‘samples’ from different populations
(or different configurations).” Replacing “samples”
by “imputations” and “populations” by “nonresponse
mechanisms” provides a precise description of the ex-
tended combining rules.

As an application and illustration, consider the ex-
ample in Section 3.1 when the imputer’s assumption
that the two subclasses share the same mean is in-
correct and thus the repeated-imputation inference
is invalid. The extended rules given in the previous
subsection can be used to correct the invalid infer-
ence. The importance ratio in this case is

(5.2.1)  R(Yimis) = exp{% 22 (g, - 51)2},

which can be evaluated easily on each completed-
data set to yield {®R;, | = 1,...,m} and hence the
desired weights w; = R;/R, | = 1,...,m. The feasibil-
ity of computing the weights is one key component of
the utility of the extended rules in practice, as dis-
cussed in the next subsection.

The extended rules can also be useful even when
proper imputations exist. For example, suppose an
investigator is conducting a sensitivity analysis with
two different models and has m; imputations from
the first model and my imputations from the second
model. Applying the standard combining rules, he
can obtain a repeated-imputation estimator of  un-
der the first model, denoted by ') . By applying the
extended rules, however, he can obtain another esti-
mator of § under the first model by using the impu-
tations from the second model; denote this weighted
estimator by 6{}?. Now a mixture 582 + (1 — 3)§12
will be more efficient than ) itself with suitable
choices of 3. Constructing other types of more effi-

~ cient estimators is also possible.

5.3 Computation of the Importance Weights

Computationally, the extended rules are more com-
plicated than the standard rules because of the
importance weights. Ideally, the weights can be com-
puted and provided by the imputer for common types
of analyses anticipated by the imputer, as shall be
further discussed in Section 6.1. Another almost
equally ideal case is hinted at in (5.2.1). The weight
in (5.2.1) is a simple monotone increasing function
of the difference being adjusted—the difference be-
tween the two subclass means. The simplicity of
(5.2.1) is that, once it is derived and provided, it
can be easily evaluated by the analyst on each im-
puted data set. It is thus useful to search for sim-
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ilar functional forms of weights that adjust for the
differences between certain common types of models
(e.g., differences between nested models). In some
applications, we may not need very precise weights,
especially when m is not large; some simple func-
tional forms may be enough for achieving satisfac-
tory mean-squared errors and for checking whether
using the extended rules makes any real difference
compared to using the standard rules.

In some cases, it is also plausible for the analyst to
compute the weights, if the m (unnormalized) impu-
tation densities

(531 g(Y(l)

s | Zoy,A), 1=1,...,m,

are provided by the imputer (see Section 6.1). Given
the imputation densities, the analyst only needs to
compute the numerators of the importance ratios
given in (5.1.1), which only depend on f. The ar-
bitrary constant C in (5.1.1) simplifies the computa-
tion for either the imputer or the analyst, who can
avoid the incomplete-data computation that would
be required for directly computing f( Yy | Z,, A) or
9(Yis | Zo, A).

Specifically, a Bayesian posterior prediction model
for Ypis is typically derived from a complete-data
specification A(Yyis, Yobs | O, 9)A(¥9), where O are ob-
served quantities other than Y, and h(¥9) is a prior
density for the model parameter ¥. Under such a
model, the desired imputation density, A( Ypis | Yobs,
0), is proportional to A( Ypis, Yobs | O), the normaliz-
ing constant for the posterior density of ¥ given the
complete data

h( Yanis, Yobs | O, 9) A&
h(9 | Yanis, Yops, O) = (Yoais» Yabs | O, 9) A(9)

h(Ymisa Yobs I O)

The calculation of A( Yy;s, Yops | O) is a by-product of
complete-data Bayesian inference for ¥ under h, by
analytic calculation if feasible, or generally by simu-
lation methods for computing normalizing constants.
Recently developed methods (e.g., Meng and Wong,
1993) for computing normalizing constants makes
this computation more stable, as discussed in Meng
(1993). Taking h to be f or g facilitates the de-
sired computation.

6. FURTHER REVIEW AND EXPLORATION

6.1 Recommendations and' Considerations
for the Imputer

The imputer’s task is easy to state but hard to im-
plement: to create multiple imputations for miss-
ing values that properly reflect uncertainty about
these values given all the available information. The

key step here is to construct a probability model for
predicting the missing values, for which Bayesian
prediction is the only sensible general approach.
Bayesian modeling not only provides a coherent way
of utilizing all available information, but also explic-
itly displays the assumptions made in constructing
the model. Sensibly using all available information
has been a key guideline in practice for construct-
ing imputation models and has been emphasized re-
peatedly in the literature (e.g., Rubin, 1987; Rubin,
Schafer and Schenker, 1988; Schafer, 1991a). The ar-
tificial example of Section 3.1 illustrates the danger
ofignoring covariates; Schafer (1991a) gave an exam-
ple in the context of census undercount estimation.

Many surveys, especially large ones, are conducted
to create public-use data files. Consequently, when
creating multiple imputations for such data bases,
the imputer needs to take into account this objective
as part of the imputation purpose. To accommodate a
wide variety of subject-motivated analyses that will
be performed on the imputed data sets, the imputa-
tion model should be as objective and general as the
imputer’s resources allow. This implies that general
and saturated models are preferred to models with
special structures (e.g., models that assume certain
interactions are zero), and imputation models should
also include predictors that are likely to be part of po-
tential analyses even if these predictors are known to
have limited predictive power for the existing incom-
plete observations (Rubin, 1980, 1995; Clogg et al.,
1991; Schenker, Treiman and Weidman, 1988, 1993).
Although it is impossible to enumerate all potential
analyses, the existing literature can help the imputer
to anticipate the analyses likely to be conducted on
the data base. Classifying these analyses allows the
imputer to see what types of variables and structures
(e.g., interactions) should be built into the imputa-
tion model.

Accommodating potential analyses does not neces-
sarily imply that an imputation model has to be in-

* tractably complicated. Common statistical models,

such as hierarchical Bayes models, are often suit-
able for sensible imputation (e.g., Clogg et al., 1991;
Belin et. al., 1993). These models tend to satisfy the
requirement of practical objectivity and generality,
meaning that an imputation model is general enough
to (approximately) include common analytic models
as its submodels. This requirement helps to prevent
potential analyses from being biased by artifacts of
an imputation model, and thus it is a key compo-
nent in constructing second-moment proper imputa-
tion models, as defined in Section 4.1.

“Objectivity and generality” does not, however, im-
ply nonparametric procedures or implicit models,
which usually have strong assumptions inherent in
them besides being generally incoherent. For in-
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stance, a hot-deck method may impute a missing
value directly from possible “donors” using an objec-
tive rule, but it inherits the key assumption that the
nonresponse mechanism is ignorable (Rubin, 1987,
Section 5.1), an assumption that is of critical im-
portance for the validity of subsequent inferences.
With multiple imputation, nonparametric and im-
plicit models that are standard for single imputa-
tion should also be modified and improved to allow
multiple draws that have proper probability struc-
tures. Without explicit probability modeling, the
imputer has little basis to claim that the imputa-
tions are proper under evaluable conditions. Non-
parametric and implicit imputation methods (e.g.,
Bayesian bootstrap) sometimes are useful, largely
because they are convenient approximations to im-
putation methods under explicit Bayesian modeling
(e.g., Rubin, 1987, Chapter 4).

Even when the imputer has made a good effort to
ensure the generality of the imputation model, the
form of the model and its underlying assumptions
should still be reported. Minimally, the report should
identify the types of predictors (e.g., gender, age), es-
pecially those that are not available to the analysts
(e.g., address), and a general description of the im-
putation model. A good example of such reporting
is Clogg et al. (1991). Such a report does not vio-
late any confidentiality constraint and can help the
analyst to judge if the imputation model can be mis-
leading for a particular intended analysis. Based on
the information from classifying common analyses,
the imputer should also consider whether some of
these analyses are obviously uncongenial to the im-
putation model despite the imputer’s effort. If the
uncongeniality is not due to the imputer’s special con-
siderations for modeling existing nonresponse (e.g.,
the imputer had a choice between logistic regression
and probit model, but both are used in common anal-
yses), then the imputer should warn the users and
provide the corresponding importance weights if fea-
sible. In cases in which the imputer needs to display
the uncertainty in modeling nonresponse but cannot

, afford to provide multiple imputations under each of
the posited models, an alternative is to create impu-
tations under a “middle-ground” model and then to
provide importance weights for the rest of the models
for each actual imputation. These scalar importance
weights take minimal space but make it possible for
the analysts to use the extended rules to see the im-
pact of different imputation models on their analyses.

If feasible, the imputer should always compute
and provide the imputation density values defined
in (5.3.1). This is not only necessary for computing
importance weights, but also can be useful for in-
specting the quality of the imputations. Arguably,
an imputation with extremely low density, as may

occur for an “unlucky” imputer, may not be suitable
for release when the number of imputations is very
small (e.g., m = 3). It seems unwise to allow a very
unlikely completed-data set to play repeatedly a ma-
jor role in multiple-imputation inferences, especially
when the imputation model is well constructed. Of
course, only imputing the “likely” values (or, at the
extreme, imputing the mode) leads to underestima-
tion of the uncertainty in the missing values. With a
very small m, how to impute the missing data with
suitable density values may be worth some investi-
gation (it is not an issue of concern with large m).
Caution is needed, however, when comparing den-
sity values for the imputed data sets, as their rela-
tive values vary with monotone transformations of
the continuous missing data. The original scale of
the missing data is an appealing choice, although its
appropriateness needs to be investigated.

6.2 Recommendations and Considerations
for an Analyst

For an analyst, conducting multiple-imputation
inferences removes two major burdens of analyz-
ing incomplete data: the difficulty of modeling
missing-data mechanisms and the computational
complications of incomplete-data analyses. The first
advantage is especially important, because it is typ-
ically beyond the analyst’s capability and responsi-
bility to model the missing-data mechanism sensibly
due to lack of information and understanding about
it. The consequent issue of uncongeniality reveals
a unique feature of multiple-imputation inferences
that has not been studied systematically and is there-
fore unfamiliar to some analysts. Some practical
guidelines for analysts are thus in order. The fol-
lowing is such an attempt, based on the theoretical
and empirical studies summarized in Rubin (1987,
1995) and in this paper.

When using public-use data files, it is generally
wise to trust the imputer’s models for nonresponse
because they represent the best expertise available
to a large agency (e.g., the Census Bureau). Usu-
ally, analysts can also assume that the imputer’s
models satisfy the “practical objectivity and gen-
erality” requirement discussed in Section 6.1. In
these cases, for an analyst using commonly rec-
ommended self-efficient complete-data procedures,
repeated-imputation inferences under standard com-
bining rules are not only valid but also inferentially
better than other analyses, including sophisticated
model-based incomplete-data analyses. In short,
with sensible imputations and complete-data pro-
cedures, it is generally wise for the analyst to use
the standard combining rules, despite the presence
of uncongeniality. The importance of recognizing
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uncongeniality here is that it ensures correct
interpretation of the conclusions from multiple-
imputation inferences, as such inferences also incor-
porate the imputer’s assessments and information,
some of which may not be accessible to the analyst.

When an analyst desires inferential congeniality,
perhaps because a covariate of interest was not used
in the imputation model as revealed from the im-
puter’s report, the extended combining rules can be
useful, especially when the number of imputations
is large. Given the importance weights, either pro-
vided by the imputer or computed by the analyst
when the imputation-density values are provided,
the analyst can also study the difference between the
weighted and unweighted repeated-imputation esti-
mators. Even in the presence of uncongeniality, the
difference between these two estimators may not be
of practical importance (e.g., the difference between
logistic and probit models is unimportant unless the
proportions are very small or very large, as may oc-
cur when studying a rare disease). The variability
among the weights indicates the importance of using
the weights. However, an extreme variability should
perhaps first serve as a warning that, besides the
known difference being adjusted, there are possibly
other fundamental differences between the imputer’s
model and analyst’s (congenial) model. This could be
because one of the models, more likely the analyst’s
model, is far from the “truth” or because there is a
tremendous amount of uncertainty about the nonre-
sponse mechanism. It is typically difficult to distan-
gle these differences without external information,
but the extreme variability among the weights is a
clear reminder of the need to exercise great caution
when drawing inferential conclusions.

6.3 With a Finite Number of Imputations

The issue of uncongeniality is examined in this
paper assuming an essentially infinite number of
imputations. In current imputation practice, m is
often small (e.g.,, m < 5). It is therefore of great
current interest to evaluate the performance of
multiple-imputation methodology, especially under
uncongeniality, with small m. This is, however, a
demanding task. General theoretical evaluations
involve complicated small-sample (i.e., small m) the-
ory. The diversity of imputation models and analysis
procedures implies that empirical studies must in-
vestigate a wide array of combinations. Under stan-
dard combining rules, there has been a noticeable
amount of evaluations and applications of multiple-
imputation methodology with finite, typically small,
m. On the evaluation and methodology side, re-
cent work includes Rubin and Schenker (1986, 1987),
Raghunathan (1987), Weld (1987), Schenker and

Welsh (1988), Schenker, Treiman and Weidman
(1988, 1993), Treiman, Bielby and Cheng (1988),
Zaslavsky (1989), Rubin and Zaslavsky (1989), Meng
(1988, 1990), Rubin and Schafer (1990), Li et al.
(1991), Li, Raghunathan and Rubin (1991), Schafer
(1991b) and Meng and Rubin (1992). Closely related
recent work also includes Tanner and Wong (1987),
Schenker (1989), Wei and Tanner (1990), Schafer and
Schenker (1991) and Efron (1994). On the applied
side, some recent applications are Dorey, Little and
Schenker (1990), Heitjan and Rubin (1990), Taylor
et al. (1990), Clogg et al. (1991), Heitjan and Little
(1991), Belin et al. (1993), Heitjan and Landis (1994),
Raghunathan (1993) and Tu, Meng and Pagano
(1993a, b). More references can be found in the list
provided in Rubin (1995).

For very small m, it is possible that the inference
from multiple imputation is less efficient than that
from an analyst’s incomplete-data analysis, assum-
ing that the incomplete-data analysis is valid. The
extra variability caused by small m not only implies
that 6,, is less efficient than its limit 6., but also
implies that the normal reference distribution used
for constructing confidence intervals, as in the main
result (Section 4.4), should be replaced by ¢-type ap-
proximations (e.g., Rubin, 1987, Chapters 3 and 4)
when constructing confidence intervals from ?,,. In
addition, the performance of the extended combin-
ing rules can be very problematic with small m due
to the use of importance weights; more technical dis-
cussions of such issues are provided in Meng (1993).

The real remedy for the problem of small m, of
course, is to increase m: the more imputations the
imputer can provide, the better the statistical infer-
ences the analysts can obtain. Cost and storage space
are two of the constraints that prevent the production
of a large number of imputations. With a probabil-
ity imputation phase, the major cost is the construc-
tion of a sophisticated imputation model. Once the
model is established, drawing a few more imputa-

" tions may not be very expensive compared to the ini-

tial cost, especially with the rapid development of the
computing environment and imputation algorithms
(e.g., Schafer, 1991b). Of course, more imputations
require more storage space; but the observed portion,
typically the major part, needs to be stored only once
(e.g., Rubin, 1987, Chapter 1). Given the explosion
of today’s computer technology, one can imagine that
in the near future an imputer (e.g., U.S. Census Bu-
reau) would be able to provide, say, 30 imputations in
a machine readable form, which would allow any an-
alyst to select randomly a desired number (e.g., 10)
of imputed data sets for a particular analysis. This
would not only solve the problems caused by very
small m, but would also allow analysts to avoid re-
peatedly analyzing the same few imputed data sets.
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Creating and providing an appropriate number of
good quality imputations requires substantial effort
on the part of the imputer, but the practical payoffs
are potentially tremendous because statistical infer-
ences from public-use data files often have a profound
impact on our society.

7. A CONCLUDING REMARK

Three early ideas largely laid the foundations
of current survey practice: (i) partial investiga-
tion can be better than complete enumeration (e.g.,
Laplace, 1814, pages 100-101; Kiaer, 1895/1896);
(ii) random sampling can be better than purposive
selection (e.g., Bowley, 1906; Neyman, 1934); and
(iii) unequal-probability sampling can be better than
equal-probability sampling (e.g., Tschuprow, 1923;
Neyman, 1934). These ideas are now taken for
granted and can be easily conveyed with intuitive ar-
guments. However, universal acceptance, especially
for the first two, came only after years, even decades,
of resistance and digestion, because they were at first
regarded as counterintuitive and incomprehensible
(Kruskal and Mosteller, 1980; Stigler, 1986, pages
163-169; Bellhouse, 1988). We are witnessing, I be-
lieve, the growth of the fourth peach of this fruitful
collection, namely, (iv) multiply imputed data can be
better than observed data.

APPENDIX: SIMPLE PROOFS

ProOOFs OF LEMMAS 1 AND 2. The proofs of these
two lemmas are essentially the same as the proof
of the well-known theorem characterizing a UMVU
estimator (e.g., Lehmann, 1983, pages 77-78). Both
proofs follow immediately from the following simple
identity:

~ ~ 2
E[(,\e1 +(1 = M) — e]
~ E[fy — 6] - NE[6; — 6]

=\{B[6: - 0)" - E[fo - 6]" - B[, - 8)"}. ©
Proor oF LEMMA 3. Since §(Zc) is self-efficient,
by Lemma 1, the right side of (4.4.3) is equal to
B[(6Z) - 0)*| X, Y] + B[(0Z,) - #2.))"| X, Y.
Thus, (4.4.3) is equivalent to
E[ (0 - 0020)° | X,Y| < B[(0(2) - 820)" | X, Y],

which is (4.1.2). O

PROOF OF THE MAIN RESULT. Condition (c) de-

fines the consistency of 8., and

E[Tw | X,Y] =~ E[((?(ZC) -0)*| x, Y]

+B|(0 - 022))"| X, Y]

The rest follows immediately from the three individ-
ual lemmas. O
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Comment
Robert E. Fay

Meng’s paper usefully addresses one of the limita-
tions of multiple imputation that I raised a few years
ago. The author has introduced the term congenial
to characterize a set of analyses for which the mul-
tiple imputation analysis is most appropriate and
has discussed some of the implications of unconge-
nial analysis.

My own work on missing data has two primary
objectives: A
1. to identify and encourage analysis of the limita-

tions of multiple imputation;
2. to develop better or more appropriate theory.
The papers [ have written and those that I plan often
attempt to address both objectives at once, although
over time I anticipate a focus on the second goal.

Meng’s paper and Rubin (1995) serve the first pur- -

pose by acknowledging one of the difficulties that I
_ pointed out. .

Does Meng’s complex argument lead us to a con-
clusion that, if multiple-imputation variances are in-
consistent, consistent variance estimates are inap-
propriate? I do not think so. Subsequent analyses of
the data, such as hierarchical Bayes models, meta-
analysis and small-domain models, often depend on
good variance estimates.
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As I have attempted to indicate elsewhere, how-
ever, the problem addressed by the author is only one
of the deficiencies of multiple imputation. Another
arises in the context of complex samples, central to
survey research generally and the Census Bureau
specifically. Features of complex designs have effects
on the validity of multiple imputation, generally of
the opposite sort than addressed in the paper. In
other words, the paper celebrates the finding that
multiple imputation intervals are too long when the
multiple imputation variance is inconsistent, but, in
application to complex designs, many multiple impu-
tation intervals are instead too short.

As an example of the current level of misunder-
standing of the implications of complex design, in
discussing their variance estimation for missing data
in the 1990 Post Enumeration Survey (PES), Belin
et al. (1993, page 1153) justify the omission of com-
plex sample considerations from the highly clustered
PES sample. Little’s (1993) questioning of this argu-
ment did not shake the authors’ conviction (Belin et
al., 1993, page 1165). Yet simple Monte Carlo evalua-
tion of the performance of multiple imputation shows
the argument in Belin et al. (1993) to be wrong, ex-
cept under special conditions not clearly stated nor
validated by the authors.

I will continue to await a systematic treatment of
the joint effect of uncongenial estimators and com-
plex samples in the multiple imputation literature.
(I will comment below on how these issues affect the
analysis of public use data specifically.)



