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Self-Similarity in High-Speed Packet Traffic:

Analysis and Modeling of Ethernet Traffic

Measurements
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Abstract. Traffic modeling of today’s communication networks is a prime
example of the role statistical inference methods for stochastic processes
play in such classical areas of applied probability as queueing theory or
performance analysis. In practice, however, statistics and applied proba-
bility have failed to interface. As a result, traffic modeling and per-
formance analysis rely heavily on subjective arguments; hence, de-
bates concerning the validity of a proposed model and its predicted
performance abound.

In this paper, we show how a careful statistical analysis of large sets
of actual traffic measurements can reveal new features of network
traffic that have gone unnoticed by the literature and, yet, seem to have
serious implications for predicted network performance. We use hun-
dreds of millions of high-quality traffic measurements from an Ethernet
local area network to demonstrate that Ethernet traffic is statistically
self-similar and that this property clearly distinguishes between cur-
rently used models for packet traffic and our measured data. We also
indicate how such a unique data set (in terms of size and quality) (i) can
be used to illustrate a number of different statistical inference methods
for self-similar processes, (ii) gives rise to new and challenging problems
in statistics, statistical computing and probabilistic modeling and (iii)
opens up new areas of mathematical research in queueing theory and
performance analysis of future high-speed networks.

Key words and phrases: Self-similarity, long-range dependence, Hurst
effect, R /S analysis, variance-time analysis, periodogram-based estima-
tion, traffic modeling for high-speed networks, queueing theory.

1. INTRODUCTION

1.1 From Megabit to Gigabit Networks:
LAN, MAN and BISDN

Local area networks (LAN’s) were introduced in

the mid-1970’s to interconnect data processing
equipment (host computers, file servers, PC’s,
workstations, terminals, printers, plotters etc.) in
office or R & D environments, or within university
departments. The Ethernet was an early LAN tech-
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nology (for a detailed description of the Ethernet
technology, see [47]), and it remains one of the most
popular in use today. Among the features that make
Ethernets so successful are ease of maintenance
and administration, ease of network reconfigura-
tion (stations can be moved—disconnected from one
point and reconnected at another—without the need
to take down the whole network), access by a sin-
gle, passive medium that is shared by all host
stations and the absence of a central controller
allocating access to the channel. From today’s per-
spective, two of the major disadvantages of Ether-
nets are their relatively slow speed of 10 Mbit/s
and their limited range (their physical span is lim-
ited to a few kilometers, i.e., to a small campus, a
single building or to just one floor of a building).
The increasing availability of high-performance
workstations with sustained I/0 bus bandwidths of
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100 Mbit/s or more, supercomputers and parallel
machines is a driving force toward higher speed
LAN’s (so-called gigabit LAN’s) with at least 100
times more bandwidth than today’s Ethernets. The
success and large number of existing LAN’s (of the
order of hundreds of thousands) is a major cause for
the current proliferation of metropolitan area net-
works (MAN’s), that is, systems capable of intercon-
necting different LAN’s within a limited geographic
area of about 100 km (e.g., university campus or a
small community).

Due to the increasing demand for MAN’s and
gigabit LAN’s, and given the technological progress
in the areas of transmission and switching, the
current trend in telecommunication has beer mov-
ing away from the existing service-specific net-
works (i.e., separate networks for voice, data and
video) toward a single, service-independent, flexible
and efficient network, the so-called broadband inte-
grated services digital network (BISDN). The trans-
fer mode traditionally used in telephone networks
is circuit communication, where a dedicated circuit
is provided for the complete duration of a connec-
tion. In contrast, BISDN is based on a high-speed
packet communication methodology that enables all
services to be transported and switched in a com-
mon digital form, namely, as fixed-sized 53-octet
packets. Clearly, packet communication is more
complex than circuit communication since it gener-
ates traffic spanning vastly different time scales
(from microseconds to seconds and minutes).

In the absence of practical experience with giga-
bit networks, the challenge for today’s traffic engi-
neers is to gain an understanding of the likely
characteristics of future BISDN traffic. Due to the
already existing need, LAN interconnection ser-
vices are expected to become an immediate and
major BISDN application. Therefore, understand-
ing the characteristics of LAN traffic such as Ether-
net traffic can provide valuable insight into the
time dynamics of realistic future BISDN and other
gigabit network traffic scenarios. It will help guide
future choices of appropriate traffic models, which
/in turn will be used as inputs to.queueing systems
in order to assess problems related to the economic
design, control and performance of future networks.

This paper uses statistical techniques to arrive at
an Ethernet traffic model. In doing so, it deliber-
ately diverges from the usual approach in tele-
communication systems, where traffic models are
typically judged by how well they predict the
performance of the queueing model alone, and al-
most never by how well the model fits actual traffic
data in a statistical sense. In fact, in the related
literature on teletraffic models, one rarely finds a
validation of a given model against actual data; at

the same time, comparisons of Monte Carlo simula-
tions of a given model with one’s analytic computa-
tions abound. As discussed in [44], in teletraffic
practice, the choice and validation of most queueing
models depend heavily on the modeler’s intuitive
understanding of the application at hand and on
extramathematical considerations. Most arguments
concerning the validity of the underlying models
and the resulting performance predictions stem
from this subjective quality of the modeling. Here,
instead, a detailed analysis of actual traffic data
drives the conclusion—that Ethernet traffic is sta-
tistically self-similar.

1.2 Self-Similarity and Long-Term Correlations
in Teletraffic

Self-similar processes were introduced by Kol-
mogorov [26]. They were brought to the attention of
statisticians and probabilists by Mandelbrot and
his co-workers in the late 1960’s and early 1970’s.
Intuitively, their attractive feature is that they look
the same at different scales. This property suggests
(see [38)) the existence of a multilevel hierarchy of
underlying mechanisms (in the case at hand, one
per time scale) whose combined effect is the same
as that of self-similarity. While it is tempting to
invoke such a hierarchical structure to account for
self-similarity in nature, it is not easy to demon-
strate its physical reality (see, however, [8] for
self-similar models of hierarchical variation in a
textile context and [6] in a physical context). A
rather different construction that also attempts to
provide a phenomenological explanation for the ob-
served self-similarity in a given data set and that is
especially appealing in the teletraffic context con-
sidered in this paper can be found in [36] and will
be discussed in more detail in Section 5.

In terms of stochastic modeling, self-similar pro-
cesses or their increment processes are almost ex-
clusively used in situations where the modeler tries
to account for the presence of long-term correla-
tions in a parsimonious manner (see Section 2). As
is cogently discussed in [18], it seems to be the rule
rather than the exception that long time series of
absolute measurements violate the assumption of
independence or short-range dependence. Due to
their by now well-documented omnipresence in
many naturally occurring empirical records, statis-
tical methods for data with long-range dependence
are slowly making their way into the mainstream
(e.g., see [3].

The presence of long-term correlation in traffic
measurements taken from communication systems
other than Ethernet LAN’s (e.g., certain types of
video traffic) has recently been demonstrated in [4]
and [13]. In the case of the Ethernet data, our
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analysis below clearly shows that self-similar mod-
els fit Ethernet LAN data better than conventional
traffic models, all of which ignore the presence of
long-term correlations in the data. It is already
possible to arrive at this conclusion through simple
plots of the traffic over a range of different time
scales; simple Dback-of-the-envelope calculations
based on the scaling behavior observed in these
plots even yield a rough estimate of the degree of
self-similarity. We know of no examples in the liter-
ature of empirical records where the use of a self-
similar model becomes evident simply by plotting
the raw data on a number of different time scales,
the obvious reason being the absence of really large
and high-quality data sets (typically, data sets from
other disciplines reported in the literature contain
a few hundreds or a few thousands of observations).
Furthermore, for the Ethernet data, computation-
ally fast graphical methods for estimating the de-
gree of self-similarity in a given set of data turn out
to be extremely accurate due to the extraordinarily
large number of available observations. Finally,
both size and quality of the traffic data allow for
computationally intensive but statistically rigor-
ous estimation methods which result in a clear
and coherent picture of the self-similar nature of
Ethernet traffic.

The most striking result of our analysis of the
Ethernet traffic measurements is that, in a statisti-
cal sense, one can clearly distinguish the measured
Ethernet data from data predicted by practically all
the stochastic models for packet traffic currently
considered in the literature, including Markov-
modulated Poisson processes [20], fluid-flow models
[1], ARMA models, TES processes [24] and packet-
train models [25]. While it is becoming common
knowledge among statisticians that ignoring long-
range dependence can have drastic consequences
for many statistical inference methods (see [18] or
[3D, only direct arguments, detailing the impact on
network performance, will convince the teletraffic
community of the value of self-similar traffic mod-
els for performance analysis. However, queueing
. analysis with self-similar input processes repre-
sents a new area of research and is likely to require
a new set of mathematical tools. Thus, while practi-
cally no analytic results are available at this time,
some simulation results (using traces of actual Eth-
ernet traffic; see [11]) and approximate analytic
results (see [43]) do already exist and indicate that
the performance of queueing models with self-simi-
lar input processes is drastically different from the
performance predicted by traditional models. We
refer to [30] and [32] for a discussion of some of the
network-related implications of these observed dif-
ferences.

1.3 Traffic Measurements

In this paper, we concentrate exclusively on the
data analysis and modeling aspects of the Ethernet
traffic measurements. To this end, we use very high
quality, high time-resolution Ethernet LAN traffic
data collected by Leland and Wilson [29]. The moni-
toring system used to collect the data for the pre-
sent study was custom-built in 1987-1988, records
all packets seen on the Ethernet under investiga-
tion with accurate time stamps (to about 100 us)
and can do so for week-long runs without interrup-
tion. (A packet consists of a header followed by a
variable number of bytes.) For a detailed descrip-
tion of the monitor, including extensive testing of
its capacity and accuracy, see [29]. There is no
intrinsic limitation on the amount of traffic that
can be collected. For example, in the case at hand, 1
to 2 days of uninterrupted monitoring of the Ether-
net cable typically resulted in about 27 million
packets filling a single 2.4-Gbyte 8-mm tape. These
traffic measurements are of unusual quality. Be-
cause of their size, they require data analytic meth-
ods that go beyond the traditional approaches (see
Section 3). We also illustrate how the existence of
such data sets gives rise to new and challenging
problems in statistical computing, for example,
real-time parameter estimation (see Section 4).

The traffic measurements analyzed in this paper
were collected at the Bellcore Morris Research and
Engineering Center (MRE). The network environ-
ment in this center is probably typical of a research
or software development environment where work-
stations are the primary machines on people’s desks.
Table 1 gives a summary description of the traffic
data. We consider four sets of traffic measure-
ments, each one representing between 20 and 40
consecutive hours of Ethernet traffic and each one
consisting of tens of millions of Ethernet packets.
The data were collected on different intracompany
LAN networks at different periods in time over the
course of approximately four years, exhibiting a
number of different network utilizations and host
populations. For each of the four sets of traffic
measurements, we identified what are considered
“typical” low (L), medium (M) and high (H) activity
hours and whether the data measure bytes (B) or
packets (P). For example, AUG89.LB is a time se-
ries of length 360,000, each observation represent-
ing the number of bytes per 10 milliseconds. The
sum of all these observations equals 224,315,439
bytes per hour. The time series AUG89.LP is of the
same length but represents the number of packets
per 10 milliseconds; a total of 652,909 packets were
observed during this low-traffic hour.

With the resulting data sets, we are able to inves-
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TABLE 1
Qualitative description of the sets of Ethernet traffic measurements used in the analysis in Section 4
Traces of Ethernet Traffic Measurements
total number total number Ethernet
Measurement Period data set of bytes of packets utilization

AUGUST 1989 total (27.45 hours) 11,448,753,134 27,901,984 9.3%
Start of trace: low hour AUGS89.LB 224,315,439 5.0%
Aug. 29, 11:25am (6:25am-7:25am) AUGS89.LP 652,909
End of trace: normal hour AUGS89.MB 380,889,404 8.5%
Aug. 30, 3:10pm (2:25pm-3:25pm) AUG89.MP 968,631

busy hour AUG89.HB 677,715,381 15.1%

(4:25pm-5:25pm) AUGS89.HP 1,404,444
OCTOBER 1989 total (20.86 hours) 14,774,694,236 27,915,376 15.7%
Start of trace: low hour OCT89.LB 468,355,006 10.4%
Oct. 5, 11:00am (2:00am-3:00am) OCT89.LP 978,911
End of trace: normal hour OCT89.MB 827,287,174 18.4%
Oct. 6, 7:51am (5:00pm-6:00pm) OCT89.MP 1,359,656

busy hour OCT89.HB 1,382,483,551 30.7%

(11:00am-12:00am) OCT89.HP 2,141,245
JANUARY 1990 total (40.16 hours) 7,122,417,589 27,954,961 3.9%
Start of trace: low hour (Jan. 11, JAN90.LB 87,299,639 1.9%
Jan. 10, 6:07am 8:32pm-9:32pm) JAN90.LP 310,038
End of trace: normal hour (Jan. 10, JAN90.MB 182,636,845 4.1%
Jan. 11, 10:17pm 9:32am-10:32am) JAN90.MP 643,451

busy hour (Jan. 11, JAN90.HB 711,529,370 15.8%

10:32am-11:32am) JAN90.HP 1,391,718
FEBRUARY 1992 total (47.91 hours) 6,585,355,731 27,674,814 3.1%
Start of trace: low hour (Feb. 20, FEB92.LB 56,811,435 1.3%
Feb 18, 5:22am 1:21am-2:21am) FEB92.LP 231,823
End of trace: normal hour (Feb. 18, FEB92.MB 154,626,159 3.4%
Feb. 20, 5:16am 8:21pm-9:21pm) FEB92.MP 524,458

busy hour (Feb. 18, FEB92.HB 225,066,741 5.0%

11:21am-12:21am) FEB92.HP 947,662

tigate features of the observed traffic (e.g., self-
similarity) that persist across the network as well
as across time, irrespective of the utilization level
of the Ethernet and of the network topology. Al-

though only one LAN could be monitored at any "

one time (making it impossible to study correla-
tions in the activity on different LAN’s) and all data
were collected from LAN’s in the same company
(making it not representative of all LAN traffic), we
believe that some of the characteristics uncovered
by our analysis of the data in Table 1 are likely to
be present in non-Ethernet LAN traffic and in many
high-speed networks of the future.

The traffic was mostly from services that use the
Internet protocol (IP) suite for such capabilities as
remote login or electronic mail, and the network file
system (NFS) protocol for file service from servers
to workstations. For example, the first two data
sets were collected from a typical workgroup or

laboratory network which was isolated from the
rest of the Bellcore network by a router (see Figure
1). At the time of collection of the first data set, the
laboratory consisted of about 140 people, most of
whom had diskless Sun-3 class workstations on
their desks. The network in the laboratory con-
sisted of two cable segments (see Figure 1) sepa-
rated by a bridge, implying that not all traffic
within the laboratory could be seen by the monitor.
The hosts on this network consisted of worksta-
tions, their file servers and a pair of minicomput-
ers. Only a small number of hosts used reduced
instruction set (RISC) processors. However, by the
time the second data set was collected, an extensive
upgrade of the Sun-3 class machines to RISC-based
machines had taken place, as well as a small in-
crease in the number of hosts (from about 120 to
about 140). This upgrade explains the large differ-
ence in traffic volume in the first two data sets. For
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FiG. 1. Network from which the August and October 1989 measurements were taken.

a more detailed description of the four data sets in
Table 1, see [32].

2. STOCHASTIC MODELING OF
SELF-SIMILAR PHENOMENA

2.1 A Picture is Worth a Thousand Words

For 27 consecutive hours of monitored Ethernet
traffic from the August 1989 measurements (first
row in Table 1), Figure 2a—e depicts a sequence of
simple plots of the packet counts (i.e., number of
packets per time_unit) for five different choices of
time units. Starting with a time unit of 100 seconds
(Figure 2a), each subsequent plot is obtained from
the previous one by increasing the time resolution
by a factor of 10 and by concentrating on a ran-
domly chosen subinterval (indicated by a darker
shade). Recall that the time unit corresponding to
the finest time scale is 10 milliseconds (Figure 2e).
In order to avoid the visually irritating quantiza-
tion effect associated with the finest resolution level,
plot (e) depicts a “jittered” version of the number of
packets per 10 milliseconds, that is, a small amount
of noise has been added to the actual arrival rate.
Observe that with the possible exception of plot (a),
which suggests the presence of a daily cycle, all
plots are intuitively very “similar” to one another
(in a distributional sense), that is, Ethernet traffic
seems to look the same in the large (minutes, hours)
time scales as in the small (seconds, milliseconds).
In particular, notice the absence of a natural length
of a “burst”: at every time scale ranging from mil-
liseconds to minutes and hours, bursts consist of

bursty subperiods separated by less bursty subperi-
ods. This scale-invariant or “self-similar” feature of
Ethernet traffic is drastically different from both
conventional telephone traffic and from stochastic
models for packet traffic currently considered in the
literature. The latter typically produce plots of
packet counts which are indistinguishable from
white noise after aggregating over a few hundred
milliseconds, as illustrated in Figure 2 with the
sequence of plots (a’)-(e’); this sequence was ob-
tained in the same way as the sequence (a)—(e),
except that it depicts synthetic traffic generated
from a comparable (in terms of average packet size
and arrival rate) compound Poisson process. (Note
that while the choice of a compound Poisson process
is admittedly not very sophisticated, even more
complicated Markovian arrival processes would
produce plots indistinguishable from Figure 2a’-e’.)
Figure 2 suggests the use of self-similar stochastic
processes for traffic modeling. The presentation be-
low of the concept of self-similar processes closely
follows [7] and [4]; see also [46].

2.2 Definition of Self-Similar Processes

Let X=(X,:¢t=0,1,2,...) be a covariance sta-
tionary (sometimes called wide-sense stationary)
stochastic process with mean u, variance o? and
autocorrelation function r(k), 2=0,1,2,.... In
particular, we assume that X has an autocorrela-
tion function of the form

(¢H) r(k) ~k PL(k) ask — x,

where 0 < B < 1 and L, is slowly varying at infin-
ity, that is, lim, ,, L,(#x)/Ly(¢) = 1 for all x>0
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Fic. 2. Indication of self-similarity: Ethernet traffic ( packets per time unit) on five different time scales (a)—(e); for comparison,
synthetic traffic from an appropriately chosen compound Poisson model on the same five different time scales (a')—(e’). (Different gray
levels are used to identify the same segments of traffic on the different time scales.)

[examples of such slowly varying functions are
L,(¢) = const. and L,(¢) = log(¢)]. For each m =
1,2,8,..., let X = (X{™: k=1,2,3,...) denote
a new time series obtained by averaging the origi-
nal series X over nonoverlapping blocks of size m;
that is, for each m = 1,2,3,..., X(™ is given by

Xlgm) = 1/’n()(km—m+l + o +ka)>
k=1,2,3,....

Note that for each m the aggregated time series
X defines a covariance stationary process; let

(2)

r™ denote the corresponding autocorrelation func-
tion.

The process X is called (exactly) self-similar with
self-similarity parameter H = 1 — B/2, if, for all
m=123,..., 1/mA(X,, .1+ +X,.), k=
1,2,3,..., has the same finite-dimensional distri-
butions as X. It is (exactly second-order) self-simi-
lar with self-similarity parameter H = 1 — 8/2 if
for all m =1,2,3,...,1/m™(X,,, i1+ - +Xp0)
has the same variance and autocorrelation as X. In
terms of the aggregated processes X ™), this means
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that, for all m =1,2,3,..., var(X™) =o?’m™#

and

@) rm(k) = r(k) = 1/282(1kI*"P),
k=0,1,2,...,

where 82(f) denotes the second central difference
operator applied to a function f, that is, 8 2(fk) =
f(k + 1) — 2f(k) + f(k — 1). An example of an ex-
actly self-similar process with self-similarity pa-
rameter H is fractional Gaussian noise (FGN) with
1/2 < H < 1, that is, the increment process of
fractional Brownian motion with parameter H, in-
troduced by Mandelbrot and Van Ness [39].

The process X is called (asymptotically second-
order) self-similar with self-similarity parameter
H=1-p/2if

rim(k) - 1/282(k%F)
as m—oo, k=0,1,2,....

)

Thus, an asymptotically self-similar process has the
property that, for large m, the corresponding aggre-
gated time series X™ have a fixed correlation
structure, solely determined by B; moreover, due to
the asymptotic equivalence (for large k) of differ-
encing and differentiating, r™ agrees asymptoti-
cally with the correlation structure of X given by
(1). The fractional autoregressive integrated mov-
ing-average processes or fractional ARIMA(p, d, q)
with 0 <d < 1/2 are examples of asymptotical-
ly second-order self-similar processes with self-
similarity parameter H = d + 1/2. (For more de-
tails, see [17] and [21].)

Intuitively, the most striking feature of (exactly
or asymptotically) self-similar processes is that their
aggregated processes X" possess a nondegener-
ate correlation structure as m — . This behavior
is in stark contrast to the more conventional
stochastic models, all of which have the property
that their aggregated processes X tend to sec-
ond-order pure noise (as m — «), that is

B) r™(k) -0, asm > o, k=1,2,3,....

Note that we have chosen the above definitions of
self-similarity over the mathematically more conve-
nient definition of a self-similar continuous-time
stochastic process X = (X,: ¢ > 0) with mean zero
and stationary increments, namely, for all a > 0,

6) X, =ad"X,,

where equality is understood in the sense of equal-
ity of the finite-dimensional distributions, and the
exponent H is the self-similarity parameter. Defi-
nitions (4) and (5) have the advantage that they do
not obscure the connection with standard time se-
ries theory, and they reflect the fact that we are
mainly interested in large m’s (time “scales”); here

we are less concerned about deviations from self-
similarity for m — 0. From a modeling perspective,
the crucial point is that both the discrete-time and
the continuous-time definitions involve a wide range
of time scales. One advantage of definition (6) in
the presence of large data sets is that it allows for a
quick heuristic method for estimating the self-simi-
larity parameter H from simple plots like the ones
in Figure 2; if the original time series X represents
the number of Ethernet packets per 10 milliseconds
[plot (e)], then plots (a)—(d) depict segments of the
aggregated time series representing the number of
packets per 100 seconds, 10 seconds, 1 second and
0.1 second, respectively. All of the plots (a)-(e) in
Figure 2 look “similar,” suggesting a more or less
identical nondegenerate autocorrelation function for
all of the aggregated processes. In fact, a naive
inference from the successive plots (a)—(e) in Figure
2 (subtracting the sample mean of X and using
simple statistics such as range and histogram)
yields H-values of about 0.8 for relation (6). In
contrast, plots (a’)—(e’) in Figure 2 show the pure
white noise behavior of the aggregated processes
generated from the synthetic Poisson batch traffic
model: identical but degenerate autocorrelation
structures for the X(™s (for m > 100).

2.3 Properties of Self-Similar Processes

2.3.1 Long-range dependence and the Hurst ef-
fect. A stochastic process satisfying relation (1) is
said to exhibit long-range dependence (see, e.g., [3],
[7], [27] or [49D). In Mandelbrot’s terminology,
long-range dependence is also called the Joseph
effect, referring to the “seven fat years and seven
lean years” in the Biblical story of Joseph. Thus,
processes with long-range dependence are charac-
terized by an autocorrelation function that decays
hyperbolically as the lag increases. Moreover, it is
easy to see that (1) implies ¥, r(k) = . This non-
summability of the correlations captures the intu-
ition behind long-range dependence, namely, that
while high-lag correlations are all individually
small, their cumulative effect is important and gives
rise to features which are drastically different from
those of the more conventional (i.e., short-range)
dependent processes. The latter are .characterized
by an exponential decay of the autocorrelations,
that is, r(k) ~ p*,as B > », 0 < p < 1, resulting in
a summable autocorrelation function 0 < X, r(k) <
o, Also note that the nonsummability of the corre-
lations is needed in order to guarantee a nonde-
generate correlation structure of the aggregated
processes X ™ as m — .

When working in the frequency domain, long-
range dependence manifests itselfin a spectral den-
sity that obeys a power law near the origin. In fact,
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equivalently to (1) (under weak regularity condi-
tions on the slowly varying function L,), there is
long-range dependence in X if

(@) fO) ~A"7Ly(A) as A >0,

where 0 < y <1, L, is slowly varying at 0 and
f(A) = T,r(k)e’** denotes the spectral density
function. Thus, from the point of view of spectral
analysis, long-range dependence implies that f£(0)
= ¥, r(k) = », that is, it requires a spectral density
which tends to + = as the frequency A approaches 0
(“1/f-noise”). On the other hand, short-range de-
pendence is characterized by a spectral density
function f(A) which is positive and finite for A = 0.

From our earlier discussion, it follows that both
fractional Gaussian noise processes (with 1/2 <
H < 1) and fractional ARIMA(p,d,q) processes
(with 0 < d < 1/2) exhibit long-range dependence.
The parameters H and d, respectively, measure
the degree of long-range dependence and can be
estimated from empirical records (see Section 3).
Heuristically, long-range dependence manifests it-
self in the presence of cycles of all frequencies and
orders of magnitude, displays features suggestive of
nonstationarity and has been found to be relevant
in economics, in hydrology and geology and in
telecommunication (for references, see [3], [7], [18]
and [48)).

Historically, the importance of self-similar pro-
cesses as defined in Section 2.2 lies in the fact that
they provide an elegant explanation and interpreta-
tion of an empirical law that is commonly referred
to as Hurst’s law or the Hurst effect. Briefly, for a
given set of observations (X,: £ = 1,2,..., n) with
sample mean X(n) and sample variance S2(n), the
rescaled adjusted range or the R /S-statistic is given
by ’

R(n)/S(n)
8) =1/S8(n)[max(0,W,,W,,...,W,)
—min(0, W,, W,,...,W)I,

. with W, = (X, + X, + -+ +X,) — kX(n), k =
1,2,...,n. Hurst [22, 23] found that many na-
turally occurring time series appear to be well
represented by the relation

)] E[R(n)/S(n)] ~cn® asn — o,

with Hurst parameter H > 0.5, and ¢ a finite posi-
tive constant that does not depend on n. On the
other hand, if the observations X, come from a
short-range dependent model, then Mandelbrot and
Van Ness [39] showed that

(10) E[R(n)/S(n)] ~ dn®%

as n — o,

where d is a finite positive constant, independent
of n. The discrepancy between (9) and (10) is gen-
erally referred to as the Hurst effect or Hurst
phenomenon.

2.3.2 Slowly decaying variances. From a statisti-
cal point of view, the most salient feature of self-
similar processes as defined in Section 2.2 is that
the variance of the arithmetic mean decreases more
slowly than the reciprocal of the sample size; that
is, it behaves like n~? for some B € (0, 1), instead
of like n~! for the processes whose aggregated
series converge to second-order pure noise. For our
discussion below, we assume for simplicity that the
slowly varying functions L, and L, in (1) and (7),
respectively, are asymptotically constant. Cox [7]
showed, in fact, that a specification of the autocor-
relation function satisfying (1) [or, equivalently,
of the spectral density function satisfying (7)]
is the same as a specification of the sequence
(var(X‘™): m > 1) with the property

11 var(X™) ~am™® asm — o,

where a is a finite positive constant independent of
m, and 0 < B < 1; in fact, the parameter 8 is the
same as in (1) and is related to the parameter y in
(7) by B =1 — 7. On the other hand, for covariance
stationary processes whose aggregated series X (™
tend to second-order pure noise [i.e., (5) holds], it is
easy to see that the sequence (var(X™): m > 1)
satisfies

12) var(X™) ~ pm 1

where b is a finite positive constant independent of
m.

The consequences of the slowly decaying vari-
ances var(X™) for classical statistical tests and
confidence or prediction intervals can be disastrous
(e.g., see [3], [19] and [28]), since the usual stan-
dard errors (derived for conventional models) are
wrong by a factor that tends to infinity as the
sample size increases.

as m — o,

2.3.3 Parsimonious modeling. Since we are al-
ways dealing with finite data sets, it is in principle
not possible to decide whether the asymptotic rela-
tionships (1), (3), (4) and so on hold. For processes
that are not self-similar in the sense that their
aggregated series converge to second-order pure
noise [property (5)], the correlations will eventually
decrease exponentially, continuity of the spectral
density function at the origin will eventually show
up, the variances of the aggregated processes will
eventually decrease as m~! and the rescaled ad-
justed range will eventually increase as n%5. For
finite sample sizes, distinguishing between these
asymptotics and the ones corresponding to self-
similar processes is, in general, problematic.
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In the present context of Ethernet measure-
ments, we typically deal with time series with
hundreds of thousands of observations and are,
therefore, able to employ statistical and data ana-
Iytic techniques which are impractical for small
data sets. Moreover, with such sample sizes, parsi-
monious modeling becomes a necessity due to the
large number of parameters needed when trying to
fit a conventional process to a “truly” self-similar
model. Modeling, for example, long-range depen-
dence with the help of ARMA processes is equiva-
lent to approximating a hyperbolically decaying au-
tocorrelation function by a sum of exponentials.
Although always possible, the number of parame-
ters needed will tend to infinity as the sample size
increases, and giving physically meaningful inter-
pretations for the parameters becomes more and
more difficult. In contrast, the long-range depen-
dence component of the process can be modeled by
a self-similar process with only one parameter. Fi-
nally, from a modeling perspective, it would be very
unsatisfactory to use for a single empirical time
series two different models, one for a short se-
quence, another for a long sequence.

3. INFERENCE FOR SELF-SIMILAR
PROCESSES

3.1 Statistical Methods for Testing for
Self-Similarity

From a theoretical point of view, slowly decaying
variances, long-range dependence and a spectral
density of the form (7) are different manifestations
of one and the same property of the underlying
covariance stationary process X, namely, that X
is (asymptotically or exactly second-order) self-
similar. Subsequently, we can approach the prob-
lem of testing for and estimating the degree of
self-similarity from three different angles: (i) analy-
sis of the variances of the aggregated processes

X (ii) time-domain analysis based on the R/S-.

statistic; (iii) periodogram-based analysis in the fre-
quency domain. This subsection provides a brief
description of the corresponding statistical and
graphical methods (for more details, see [4] and the
references therein); their use in analyzing the Eth-
ernet data will be illustrated in Section 3.2. For a
similar analysis that uses different data sets from
Table 1, see [31].

3.1.1 Variance—time plots. We have seen in Sec-
tion 2.3 that for self-similar processes the variances
of the aggregated processes X™, m =1,2,3,...,
decrease linearly (for large m) in log-log plots
against m with slopes arbitrarily flatter than —1
[see (11)]. On the other hand, none of the short-
range dependent processes commonly considered in

the teletraffic literature yield a power law for the
variances of the form (11); this behavior can be
approximated for some transient period of time by
short-range dependent models with a large number
of parameters, but the variance of X(™ will even-
tually decrease linearly in log—log plots against m
with a slope equal to —1 [see (12)]. The so-called
variance—time plots are obtained by plotting
log(var( X (™)) against log(m) (“time”) and by fitting
a simple least squares line through the resulting
points in the plane, ignoring the small values for
m. Values of the estimate B of the asymptotic slope
between —1 and 0 suggest self-similarity, and an
estimate for the degree of self-similarity is given by
H=1-p/2

Clearly, variance-time plots are not reliable for
empirical records with small sample sizes. How-
ever, as we will demonstrate below, with sample
sizes of the magnitude of the Ethernet traffic data
sets, “eyeball tests” such as the variance—time plots
become highly useful and give a rather accur-
ate picture about the self-similar nature of the
underlying time series and about the degree of
self-similarity.

3.1.2 R/S analysis. The objective of the R/S
analysis of an empirical record is to infer the degree
of self-similarity H (Hurst parameter) in relation
(9) for the self-similar process that presumably gen-
erated the record under consideration. In practice,
R/S analysis is based on a heuristic graphical
approach (originally described in detail in [40]) that
tries to exploit as fully as possible the information
in a given record. The following graphical method
has been used extensively in the past. Given a
sample of N observations (X,: £ =1,2,3,...,N),
one subdivides the whole sample into K nonover-
lapping blocks and computes the rescaled adjusted
range R(t;, n)/S(¢;, n) for each of the new “starting
points” ¢, =1, t,=N/K+1, t;=2N/K+1,...
which satisfy (¢, — 1)+ n <N. Here, the R/S
statistic R(¢;, n)/S(¢;, n) is defined as in (8) with
W, replaced by W, ., — W,, and S*(¢;,n) is the
sample variance of X, ., X; ,5,..., X; .. Thus, for
a given value (“lag”) of n, one obtains many sam-
ples of R/S, as many as K for small n and as few
as 1 when n is close to the total sample size N.
Next, one takes logarithmically spaced values of n,
starting with n = 10. Plotting log(R(¢;, n)/S(¢;, n))
versus log(n) results in the rescaled adjusted range
plot (also called the pox diagram of R/S). When
the parameter H in relation (9) is well defined, a
typical rescaled adjusted range plot starts with a
transient zone representing the nature of short-
range dependence in the sample, but eventually
settles down and fluctuates in a straight “street” of
a certain slope. Graphical R/S analysis is used to
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determine whether such asymptotic behavior ap-
pears supported by the data. In the affirmative, an
estimate H of the self-similarity parameter H is
given by the street’s asymptotic slope (typically
obtained by a simple least squares fit), which can
take any value between 1/2 and 1.

With respect to the effectiveness of R/S analysis
as a function of the sample size, similar comments
as in Section 3.1.1 apply. For practical purposes,
the most useful and attractive feature of the R/S
analysis is its relative robustness against changes
of the marginal distribution. This feature allows
for practically separate investigations of the self-
similarity property of a given empirical record and
of its distributional characteristics.

3.1.3 Periodogram-based analysis with aggre-
gation. While variance—time plots and pox plots
of R/S are very useful tools for identifying self-
similarity (in a mostly heuristic manner), the
absence of any results for the limit laws of the
corresponding statistics make them inadequate
when a more refined data analysis is required (e.g.,
confidence intervals for the degree of self-similarity
H, model selection criteria and goodness-of-fit tests).
In contrast, a more refined data analysis is possible
for maximum likelihood type estimates (MLE) and
related methods based on the periodogram. In par-
ticular, for Gaussian processes X = (X,: k =
0,1,2,...), Whittle’s approximate MLE has been
studied extensively (see [52], [2], [12] and [9]) and
is defined as follows. Let f(x; 0) = 0,2f(x;(1, 1)) be

the spectral density of X with 6 = (g2, 1) ="

(02 H,0,,...,0,), where H = (y + 1)/2 [with y as
in (7)] describes the degree of self-similarity and
03, ..., 0, model the short-range dependence struc-
ture of the process. As the scale parameter, we use
the variance g2 of the innovation ¢ in the infinite
AR-representation of the process, that is, X; =
Li.194,X; ; + g, with o,” = var(g)). Note that this
implies

(13) Jlog(f(x;(1,7))) dx = 0.

The Whittle estimator 7 of 7 minimizes

o I(x)
(14) Q(n) =[ ad dx,

—af(x;(1,n)

where I(-) denotes the periodogram of X defined
by

2

(15) CI(x) = (27n)"!

2

n

ijx
> Xe
Jj=1

and the estimate of g, is given by

™ I(x)
A2 _
(16) g’ = f_,,f(x;(l,*?;)) dx.

Then nY/2(f — ) is asymptotically normally dis-
tributed if (X;);,; can be written as an infinite
moving average process. For Gaussian processes, 6
has the same asymptotic distribution as the MLE
and is asymptotically efficient. For other peri-
odogram-based methods, see, for example, [14], [15]
and [45].

In the context of periodogram-based methods,
problems of robustness due to (i) deviations from
Gaussianity and (ii) deviations from the assumed
model spectrum are commonly encountered. Trans-
forming the data so as to obtain approximately the
desired marginal (normal) distribution is generally
considered a viable method to overcome (i). For
problem (ii), there are several proposals in the liter-
ature, including estimating H from the peri-
odogram ordinates at low frequencies only, or
bounding the influence of I(x) at high frequencies.
In the presence of large data sets, an alternative
and more direct method for tackling (ii) uses the
method of aggregation (see Section 2.2): if (X)), ; is
a Gaussian process satisfying (7), then

mk

mHL=12(m) y
an i=(j-Dm+1

j=1,2,3,...,[n/ml],

(Xi - E[X;]);

converges (in distribution) to fractional Gaussian
noise as m — [ L(-) is a slowly varying function at
infinity]. The same holds true if X, = u + G(Y)),
where (Y}); ., is a Gaussian process satisfying (7),
E[G(Y)] =0, E[G*(Y)] < » and E[G(Y)Y;] # 0.
Hence, for sufficiently large m, fractional Gaussian
noise is a good model for the aggregated X™ so
that we can apply a maximum likelihood type esti-
mator for fractional Gaussian noise.

Combined, Whittle’s approximate MLE approach
and the aggregation method give rise to the follow-
ing operational procedure for obtaining confidence
intervals for the self-similarity parameter H. For a
given time series, consider the corresponding aggre-
gated processes X™ with m = 100,200, 300,...,
where the largest m-value is chosen such that the
sample size of the corresponding series X™ is not
less than about 100. For each of the aggregated
series, estimate the self-similarity parameter H ™
via a discretized version of (14) (replace the integral
by a Riemann sum), where f(x;(1, H™)) denotes
the spectral density of fractional Gaussian noise.
This procedure results in estimates H™ of H™
and corresponding, say, 95%-confidence intervals of
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the form H™ + 1.9685m, where G is given by
the central limit theorem for 6 mentioned earlier.
Finally, we plot the estimates H™ of H™ to-
gether with their 95%-confidence intervals versus
m. Such plots will typically vary a lot for small
aggregation levels, but will stabilize after a while
and fluctuate around a constant value, our final
estimate of the self-similarity parameter H. Once
stabilization is observed, we choose for our confi-
dence interval the one with the smallest value for
m, because the size of the confidence intervals in-
creases in m (the more we aggregate, the fewer
observations).

3.2 The Self-Similar Nature of Ethernet Traffic

3.2.1 Ethernet traffic over a one-day period. We
first consider the August 1989 snapshot of Ethernet
traffic (row 1 in Table 1) and analyze the three
subsets AUG89.LB, AUG89.MB and AUGS89.HB.

log10(r/s)
2

o 1 2 3 4 5
log10(d)
(a)

log10(periodogram)
4

4 3 2 -1 o0

log10(frequency)
©

Each sequence contains 360,000 observations, and
each observation represents the number of bytes
sent over the Ethernet every 10 milliseconds. Fig-
ure -3 depicts (a) the pox plot of R/S, (b) the
variance—time curve and (c) the periodogram plot,
corresponding to the sequence AUG89.MB. The pox
plot of R/S (Figure 3a) shows an asymptotic slope
that is distinctly different from 0.5 (lower dotted
line) and 1.0 (upper dotted line) and is easily esti-
mated (using the “brushed” points) to be about
0.79. The variance-time curve (Figure 3b), which
has been normalized by the sample variance of the
whole sequence, shows an asymptotic slope that is
clearly different from — 1 (dotted line) and is easily
estimated to be about —0.40, resulting in a practi-
cally identical estimate of the Hurst parameter H
of about 0.80. Finally, looking at the periodogram
plot corresponding to the time series AUG89.MB,
we observe that although there are some pro-
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Fic. 3. (a) Pox plot of R/S; (b) variance—time plot; (c) periodogram plot of sequence AUG89.MB. The asymptotic slopes are readily
estimated (using the “brushed” points) to be about —0.79 in (a) and —0.40 in (b), and (using the lowest 10% of all frequencies) about
—0.64 in (c). Plot (d) gives the estimates of the Hurst parameter H for the sequence AUG89.MB as a function of the aggregation level m
(O variance—time plot, * pox plot of R/S estimate, O periodogram plot estimate).
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nounced peaks in the high-frequency domain of the
periodogram, the low-frequency part is characteris-
tic for a power-law behavior of the spectral density
around zero. In fact, by fitting a simple least squares
line using only the lowest 10% of all frequencies,
we obtain a slope estimate ¥ = 0.64 which results
in a Hurst parameter estimate of about 0.82. Thus,
together the three graphical methods suggest that
the sequence AUG89.MB is self-similar with self-
similarity parameter H = 0.80. Moreover, Figure
3d indicates that the normal hour Ethernet traffic
of the August 1989 data is, for practical purposes,
(exactly) self-similar: it shows the estimates of the
Hurst parameter H for selected aggregated time
series derived from the sequence AUG89.MB, as a
function of the aggregation level m. For aggrega-
tion levels m = 1,5, 10,50, 100, 500, 1000, we plot
the Hurst parameter estimate H™ [based on the
pox plots of R/S (*), the variance-time curves (O),
and the periodogram plots (O)] for the aggregated
time series X(™ against the logarithm of the ag-
gregation level m. Notice that the estimates are
extremely stable and practically constant over the
depicted range of aggregation levels 1 < m < 1000.
Because the range includes small values of m, the
sequence AUG89.MB can be regarded as (exactly)

self-similar. Thus, in terms of their second-order
statistical properties, the aggregated series X,
m > 1, can be considered to be identical and
produce, therefore, realizations that have similar
overall structure and look very much alike. This
observation agrees with the visual assessment of
plots (a)-(e) in Figure 2 made earlier. Similar re-
sults are obtained for the sequences AUG89.LB and
AUGS89.HB, and for the corresponding packet-count
processes AUG89.LP, AUG89.MP and AUGS89.HP.
Together, these observations show that Ethernet
traffic over approximately a 24-hour period is self-
similar, with the degree of self-similarity depending
on the utilization level of the Ethernet (increasing
as the utilization increases).

3.2.2 Ethernet traffic over a four-year period.
Figure 4 shows a sample result of the MLE-based
estimation method mentioned in Section 3.1.3 when
combined with the method of aggregation. For each
of the four sets of traffic measurements described
in Table 1, we use the time series representing the
packet counts during normal traffic conditions
(i.e.,AUG89.MP, OCT89.MP, JAN90.MP and
FEB92.MP)and consider the corresponding aggre-
gated time series X with m = 100, 200,

10
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Fic. 4. Periodogram-based MLE estimate H™ of H (—) and 95%-confidence intervals (-++), as a function of the aggregation level m,

for sequence AUG89.MP; m = 300 is an appropriate aggregation level for sequence AUG89.MP, yielding a point estimate H =

£(300) —

0.90 and a 95%-confidence interval [0.85,0.95]. For comparison, we also added to the plot the estimates of H based on the variance-time

plot (-+-+-) and the R /S-based estimate of H (---).
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300, ...,1900, 2000 (representing the packet counts
per 1 2 .,20 seconds, respectively). We plot the
Hurst parameter estimates H™ of H™ obtained
from the aggregated series X ™), together with their
95%-confidence intervals, against the aggregation
level m. The resulting plot for the time series
AUGS89.MP is given in Figure 4 (the plots for the
other time series are very similar and are not given
here) and shows that the values of H™ are quite
stable and fluctuate only slightly in the 0.85 to 0.95
range throughout the aggregation levels consid-
ered. The same holds for the 95%-confidence inter-
val bands, indicating strong statistical evidence for
self-similarity of the time series AUG89.MP with a
degree of self-similarity of about 0.90. The rela-
tively stable behavior of the Hurst parameter esti-
mates H™ for the different aggregation levels m
also confirms our earlier finding that Ethernet traf-
fic during normal traffic hours can be considered to
be exactly self-similar rather than asymptotically
self-similar. For exactly self-similar time series, de-
termining a single point estimate for H and the
corresponding 95%-confidence interval is straight-
forward and can be done by visual inspection of
plots such as the one in Figure 4 (see below). Notice
that in Figure 4, we added two lines corresponding

.

0.8 —

0.7

Hurst Parameter Estimates and 95%-Cl
|

0.6 —

0.5

to the Hurst parameter estimates obtained from
the pox diagrams of R/S and the variance—time
plots, respectively. These lines fall well within the
95%-confidence interval bands, which shows that
for these long time series considered here, graphi-
cal estimation methods based on R/S or
variance—time plots can be expected to be very
accurate.

In addition to the four normal hour packet data
time series, we also applied the combined MLE-
aggregation method to the other traffic data sets
described in Table 1. Figure 5 depicts all Hurst
parameter estimates (together with the 95%-
confidence interval) for each of the 12 packet data
time series. (A similar plot, not shown here, was
also obtained for the 12 time series representing
the number of bytes per 10 milliseconds.) We also
included in this summary plot the Hurst parameter
estimates obtained through the R/S analysis (*)
and variance-time plots (O) in order to indicate
the accuracy of these “graphical” estimators when
compared to the statistically more rigorous Whittle
estimator (@). Figure 5 shows convincingly the
self-similar nature of Ethernet traffic, irrespective
of when and where the data were collected during
the four years of measurements: the value of H

AUGS89

OCT89

JANSO

Measurement Period

Fic. 5. Summary plot of estimates of the Hurst parameter H for all low-, medium- and high-traffic packet data sets of the measurement
periods given in Table 1 (@ periodogram-based MLE estimate and the corresponding 95%-confidence interval; O point estimate of H
based on the asymptotic slope of the variance-time plot; * point estimate of H based on the asymptotic slope of the pox plot of R /S).
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may change, but none of the 95%-confidence inter-
vals comes even close to covering the value H =
0.50, the value of the Hurst parameter that charac-
terizes stochastic models for packet traffic cur-
rently considered in the literature. These findings
not only apply to internal traffic consisting of all
packets on a LAN, but also to remote or external
Ethernet traffic (all IP packets with a source or
destination address that is not on any of the Bell-
core networks), and external TCP traffic, the por-
tion of external traffic using the transmission con-
trol protocol (TCP) and IP.

Note that all the results in this section have been
obtained by treating the Ethernet packets essen-
tially as black boxes, that is, we only counted the
number of packets and/or bytes per time unit but
did not look into the packet header fields or distin-
guished packets based on their source or destina-
tion addresses or based on particular applications.
As a result, drawing conclusions about which net-
work design issues and/or network usage features
are likely to result in the different observed values
of the Hurst parameter for the different data sets
displayed in Table 1 is somewhat speculative at
this stage; further work that requires looking into
the header field of every Ethernet packet is cur-
rently in progress (see also Section 5) and is likely
to shed more light on this question. However, some
intuitive arguments for why the H-value varies
from data set to data set can already be given at
this stage. For example, a quick look at Figure 5
reveals an obvious difference between the low-traffic
hours of the pre-1990 data (i.e., August 1989 and
October 1989) and the later measurements (January
1990 and February 1992). In order to explain this
difference, it is important to know that while the
pre-1990 measurements consist of mostly host-to-
host workgroup traffic, the later measurements are
predominantly from router-to-router traffic. Al-
though this change does not appear to alter drasti-
cally the self-similarity parameter of the data sets
corresponding to the typical normal or busy hours,
it clearly affects the H-values of the low-traffic
hours. Intuitively, low period router-to-router traf-
‘fic consists mostly of machine-generated packets
which tend to form a smoother arrival stream than
low period host-to-host traffic which is typically
produced by a smaller than average number of
actual Ethernet users, for example, researchers
working late hours.

4. SELF-SIMILAR TRAFFIC MODELING
AND HIGH-PERFORMANCE COMPUTING

As we have seen in Section 3, exactly self-similar
models such as fractional Gaussian noise (or some
nonlinear transformation of fractional Gaussian

noise) or asymptotically self-similar models such as
fractional ARIMA processes can be used to fit
hour-long traces of Ethernet traffic very well. Their
successful application to packet traffic modeling
relies on (i) having readily available statistical
methods for “real-time” parameter estimation for
these processes, (ii) being able to generate quickly
long traces of synthetic observations from these
processes and (iii)) demonstrating network-related
implications of self-similarity which, when not ac-
counted for, lead to mediocre or unacceptable net-
work performance. While all three items open up
new areas of research in statistics, statistical com-
puting and applied probability—queueing theory,
respectively, in this section we specifically address
the problem of real-time parameter estimation for
very large sets of self-similar data and the question
of efficiently generating long traces of synthetic
data from self-similar models.

4.1 Parameter Estimation and Distributed
Computing

Fractional Gaussian noise is characterized by its
mean u, variance o2 and Hurst parameter H.
Each of these three parameters has an obvious
physical interpretation. When there are indica-
tions of a particular short-range dependence struc-
ture in the traffic measurements, asymptotically
self-similar models such as the fractional ARIMA( p,
d, q) can be more appropriate; that is, by adding a
few parameters (typically one or two), it is not only
possible to fit the low-frequency components in the
data but also to capture the contributions of the
high-frequency components. Parameter estimation
techniques are known in both cases but the statisti-
cally rigorous methods often turn out to be compu-
tationally too intensive in order to be feasible for
large data sets.

However, recent work by Beran and Terrin
[5] shows how existing parameter estimation
techniques for self-similar data can be adapted
and result in fast (“real-time”) parameter esti-
mation methods even for very long time series. For
example, instead of estimating the Hurst par-

ameter H from the whole series (X,..., X)),
divide the series into % subseries (Xi,..., X)),
(Xi"“l"“’Xzi)""’(X(kA—l)i+1?“‘)in)) 1> O, k=

[n/i]. Estimate each H;, j=1,...,k, using exist-
ing techniques (e.g., via the Whlttle estlmate) and
deﬁne the “grand” estimate H of H to be equal to

=1/k ZH Beran and Terrin show that, as n —
o0 such that i/n—y>0, n'/2(H — H) has the
same asymptotic distribution as the Whittle esti-
mator based on the whole series. Moreover, they
show that, for Gaussian processes, H is asymptoti-
cally efficient. Obviously, the procedure suggested
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by Beran and Terrin allows for real-time parameter
estimation for very long time series, given an
appropriate computing environment consisting
of a high-speed communication network of high-
performance workstations and mass storage disk
arrays. This result also holds if there are additional
parameters besides H and if the estimation method
is combined with the aggregation technique of Sec-
tion 3.2. We are currently in the process of imple-
menting and experimenting with the Beran—Terrin
method in an experimental high-performance com-
puting environment that is available at Bellcore.
Apart from making parameter estimation for very
large self-similar data sets computationally feasi-
ble, the procedure proposed by Beran and Terrin
also provides a method for checking whether H
(and possibly additional parameters) remains con-
stant over the whole time series. The problem of
deciding whether inhomogeneities in H over time
are real (due to actual changes in the dependence
structure in the data) or are due to randomness is
very delicate because even optimal estimates of H
turn out to vary considerably when calculated for
disjoint parts of a long-range dependent time
series. In order to assess quantitatively how much
the estimates of H can vary when estimated from
different portions of the data, Beran and Terrin
obtained the joint asymptotic distribution of the
Whittle estimates of H based on the % disjoint
subseries. More precisely, in order to test the hy-
pothesis H,: H = H, for the whole series, against
the alternative H,: H # H,, that is, among the
%k subseries with corresponding H-parameters
H,,..., H,, there exists at least one pair j # i such
that H; # H;, define the test statistic T, , ;=
Y(H;, — H)*[6%i]7", where G is given by a gener-
alization of the central limit theorem for Whittle’s
estimator (see [5]). Beran and Terrin then show

asymptotically y2-distributed with 2 — 1 degrees of

freedom. Hence we reject H,, at the level of signifi-

cance «, lf T1,2,...,k > Xk2-—1;a’ Where Xk2—1;a iS the
upper (1 — a)-quantile of the y2-distribution with
k — 1 degrees of freedom.

. We illustrate the procedure for testing for a con-
stant H-parameter using the series AUG89.MB.
More precisely, in order to reduce the amount of
computation, we consider the corresponding aggre-
gated time series X1%? of length 3600 depicted in
Figure 6, representing the number of bytes per
second during the normal-traffic hour of the August
1989 data set. Figure 6 also shows the different
ways we partitioned the data into disjoint subsets,
together with the Whittle estimate of H for each
corresponding subset. Finally, for every partition,
the corresponding P-values are given at the right

side of the figure and show that, for all but two
partitions, the null hypothesis of a constant H-value
is never rejected, with P-values larger than 0.20.
Also notice that while the H-estimates fluctuate
quite a bit for the finest partition (i.e., 10 nonover-
lapping 10-minute blocks), these fluctuations are
well within the allowed range and decrease as the
number of blocks in the partition gets smaller. We
applied this procedure also to the other data sets
described in Table 1, especially to those which re-
sulted in estimated Hurst parameters close to 1.
When finding an H-estimate close to 1, it is gener-
ally advised to analyze the time series further
in order to ensure that the high degree of self-
similarity is genuine and cannot be explained by
elementary arguments. With the exception of the
sets FEB92.MP and FEB92.MB, all sequences ap-
pear to be adequately modeled using a constant
H-value.

4.2 Generating Synthetic Sequences
and Parallel Computing

It is important to be able to generate synthetic
data sequences that exhibit features similar to the
measured traffic when doing practical work. While
exact methods for generating synthetic traces from
fractional Gaussian noise and fractional ARIMA
models exist (see [41] and [21], respectively), they
are, in general, only appropriate for short traces
(about 1000 observations). For longer time series,
short memory approximations have been proposed
such as the fast fractional Gaussian noise by Man-
delbrot [37]. However, such approximations also
often become inappropriate when the sample size
becomes exceedingly large.

Here, we briefly mention two methods for gener-
ating asymptotically self-similar observations. To
our knowledge, both methods are new, although in
both cases, the underlying theoretical results have
been known for quite some time. The first method
exploits a convergence result obtained by Granger
[16], who showed that when aggregating many sim-
ple AR(1)-processes, where the AR(1) parameters
are chosen from a beta distribution on [0, 1] with
shape parameters p and g, then the superposition
process is asymptotically self-similar with self-
similarity parameter H = (3 — ¢)/2. This method
is obviously tailor-made for parallel computers, and
producing a synthetic trace of length 100,000 on a
MasPar MP-1216, a massively parallel computer
with 16384 processors, takes about 3—5 minutes. In
contrast, Hosking’s method to produce 100,000 ob-
servations from a fractional ARIMA(O, d,0) model
requires a few hours of CPU time on a Sun SPARC-
station 2.

The second method is based on a construction
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Number of Bytes/Time Unit

0.9 076 078 __0.75 0.9 084 074 082 _0.81 0.76 (0.02)
085 _077 078 085 _0.86 _0.82 0.8 0.79 0.8 (0.30)
0.87 0.77 0.86 0.81 0.79 0.82 ©0.22)
0.83 0.79 0.86 0.81 0.8 (0.63)
0.83 0.83 0.82 0.81 ©.89)
0.77 0.86 0.79 (0.08)
0.81 0.84 0.8 ©57)
0.81 0.8 ©0.75)
[ T T l I T 1
(o] 10 20 30 40 50 60

Time (in Minutes)
Time Unit = 1 Sec

FiG. 6. Testing the hypothesis that H is constant for the time series X% corresponding to the sequence AUG89.MB: indicated are the
different ways of partitioning the data into disjoint blocks, together with the resulting H-estimate for each block and the P-value (in

parentheses) for each partition.

originally introduced in an economic context by
Mandelbrot [36]. Appropriately normalized, the su-
perposition of an increasing number of i.i.d. renewal
reward processes (each one exhibiting heavy-tailed
interrenewal times with index 1 < a < 2, i.e., inter-
renewal times with infinite variance) over an every
increasing time horizon converges (in the sense of
. the finite-dimensional distributions) to fractional
Brownian motion with self-similarity parameter
H = (3 - a)/2 (see also [50]). Again, letting each
processor of a massively parallel machine gener-
ate a simple renewal reward process, we see that
Mandelbrot’s construction of fractional Brownian
motion is also ideally suited for parallel computers.
Implementations of and experimentations with this
method are currently under way.

5. DISCUSSION

The main finding of our statistical analysis of
hundreds of millions of high-quality, high time-

resolution Ethernet LAN traffic measurements
is that Ethernet LAN traffic is statistically self-
similar. Some sequences are asymptotically self-
similar and others can be regarded, for practical
purposes, as exactly self-similar. The self-similarity
property allows us to distinguish clearly between
the packet traffic models currently considered in
the literature and our measured data. These re-
sults, however, are both disturbing and stimulat-
ing. Indeed, the collection, analysis and modeling of
traffic data taken from high-speed communication
networks and the subsequent use of the proposed
models for performance analysis involve multiple
disciplines. The data analyst must work closely
with teletraffic engineers and experts in computers
and applied probability. The results of this paper
can be disturbing to the teletraffic engineer, for
they question traditional traffic models and thus
cast doubt on predicted network performance that
are based on queueing models with statistically
questionable input processes. On the other hand,
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the fact that self-similarity is ubiquitous in our
measured data and cannot be captured by conven-
tional traffic models gives rise to stimulating new
research problems in statistics, statistical comput-
ing, stochastic modeling and queueing theory.

Data analysts are rarely confronted with data
sets of the size and quality of the Ethernet LAN
traffic measurements considered in this paper.
These new types of data sets are likely to stimulate
the development of statistical methods that can
take advantage of high-performance computing en-
vironments. Two such examples are discussed in
this paper: fast parameter estimation techniques
for large sets of self-similar data and quick genera-
tion methods of long traces of synthetic data from a
self-similar model. In terms of stochastic modeling
of self-similar phenomena, the use of self-similar
stochastic processes or their increment processes
seems to be the most natural approach. However,
there are also some recent promising attempts,
mostly of an experimental nature, for describing
the “fractal” nature of our measured data with the
help of packet interarrival time distributions with
infinite means (see [51]) or using deterministic non-
linear chaotic maps (e.g., see [10]). For queueing
and performance analysis, all these approaches pose
completely new and very challenging problems
which are likely to require a new set of mathemati-
cal tools. Ultimately, in the context of teletraffic, it
is the predicted performance of appropriately cho-
sen queueing systems that will decide about
the relevance or irrelevance of self-similar arrival
processes.

Finally, there is the ever-present question about
a physical “explanation” for the observed self-simi-
larity property in a given data set. To this end, we
recall a construction by Mandelbrot [36] as ex-
pounded in Taqqu and Levy [50] (see also [33)),
originally cast in an economic framework involving
commodity prices (see also Section 4.2). In the
context of Ethernet LAN traffic, Mandelbrot’s
construction provides an intuitively appealing
argument for the visually obvious (see Figure 2a—e)
and statistically significant (see Figure 5) self-simi-
larity property of the aggregate traffic in terms of
the behavior of individual Ethernet users. In its
simplest form, Mandelbrot’s result states that if an
individual traffic source goes through “active” peri-
ods [during which it generates packets (or bytes) at
regular intervals] and “inactive” periods (when no
packets are generated) and if the lengths of the
active and inactive periods are ii.d. (and indepen-
dent from one another) and have infinite variance
(or, using Mandelbrot’s terminology, exhibit the
Noah effect), then aggregating many such sources
produces traffic that is self-similar in the limit (as
the number of sources increases). This convergence

result relies heavily on the Noah effect, which as-
sumes that with nonnegligible probability the ac-
tive and inactive periods can last a very long time.
In light of the way a typical Ethernet host (work-
station user, file server, router) contributes to the
overall traffic on an Ethernet, this seems to be a
plausible property. We plan to extract individual
user traffic from the aggregate traffic data in Table
1 in order to investigate the validity of the infinite-
variance assumption. However, as reported in [42],
evidence in support of the Noah effect in packet
traffic measurements already exists! In this con-
text, it should also be mentioned that this is not the
first study in the area of telecommunications that
demonstrates the presence of the Joseph effect
(long-range dependence) and Noah effect in actual
traffic data. In fact, Mandelbrot himself (see [34]
and [35]) introduced these concepts in his analysis
of error clustering in analog transmission channels.
It is safe to expect that the Joseph and Noah effects
will play an increasingly important role in the traf-
fic modeling work of tomorrow’s gigabit networks.
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