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Comment: Extracting More Diagnostic
Information from a Single Run

Using Cusum Path Plot

Bin Yu

The article by Besag, Green, Higdon and
Mengersen adds to a series of recent papers (Besag
and Green, 1993; Geyer and Thompson, 1992; and
Gelman and Rubin, 1992b) in making Markov chain
Monte Carlo (MCMC) methods accessible to more
statisticians, especially applied statisticians. I am
glad to see that different algorithms are reviewed
in a unified way and many examples are given.
Although the article gives general recommenda-
tions as to which algorithms and sampling scans to
choose, there is not much discussion on the empiri-
cal monitoring of convergence of the Markov chains.
Since the convergence issue is very critical to the
success of MCMC methods, and something close to
my heart, I will make this issue my topic here. In
particular, using the prostate cancer example in
the article by Besag, Green, Higdon and Mengersen
and the Ising model example in Gelman and Rubin
(1992a), I illustrate that the cusum path plot in Yu
and Mykland (1994) can effectively bring out the
local mixing property of the Markov chain.

It had been believed by many MCMC researchers
(including this author) that information solely from
a single run of a Markov chain can be misleading
since, for example, it can get trapped at a local
mode of the target density. Consequently, addi-
tional information beyond that from a single run
has been introduced to the convergence diagnostics.
Gelman and Rubin (1992b) proposed a multiple
chain approach in the MCMC context, followed by
Liu, Liu and Rubin (1992) and Roberts (1992). Yu"
(1994) introduced additional information to a single
run by taking advantage of the unnormalized tar-
get density. In the context of Gibbs samplers, Ritter
and Tanner (1992) and Cui, Tanner, Sinhua and
Hall (1992) suggested diagnostic statistics based on
importance weights, using either multiple chains or
a single chain. A priori bounds on the convergence
rate can be found in Rosenthal (1993) and
Mengersen and Tweedie (1993), but unfortunately
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these theoretical bounds are currently known only
in some very special cases. For other references on
existing diagnostic tools, see the recent and thor-
ough review by Cowles (1994).

On the other hand, Yu and Mykland (1994) sug-
gest that more information can be extracted from a
single run than previously believed. The device is
the cusum path plot, which brings out the local
mixing behavior of the Markov chain in the direc-
tion of a chosen one-dimensional summary statistic,
more effectively than the sequential plot. The cases
where the cusum path plot works well are those
where the mixing behavior is homogeneous across
the sample space. For example, in some multimodal
examples, the reason that the chain gets trapped at
a local mode is because the chain moves around
very slowly, even within one mode, and the cusum
path plot brings out this local mixing speed even
when the sampler is trapped at one mode. As shown
below, the Ising model example of Gelman and
Rubin (1992a) has a slow local mixing property.
One situation in which the cusum path plot fails is
a variant on the witch’s hat (cf. Cui, Tanner, Sin-
hua and Hall, 1992; Yu and Mykland, 1994), where
the chain has a split mixing behavior: fast in one
region and slow in another.

Now we introduce the cusum path plot formally.
Let X,, X,,..., X, be a single run of a Markov
chain, and let T(X) the chosen one-dimensional
summary statistic. Let n, be the “burn-in” time,
and we construct our cusum statistics based on
T(X,,+1),---,T(X,) to avoid the initial bias of the
chain. What we get out of the cusum plot is the
more detailed information we cannot see in the
sequential plot of T(X) which MCMC users have
been plotting all along.

Denote the observed cusum or partial sum as

A

¢
S, = Y [T(Xj)—ﬁ,] fort=n,+1,...,n,

Jj=no+1
where

n

1
p >

=R jony+1

T(X)).
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Fic. 1. Ising model: sequential plots for two runs.

Cusum path plot: Plot {gt} against ¢ for ¢t = n,
+ 1,...,n and connect I:he successive points with
line segments. Since X,S, = 0, the cusum path plot
ends at 0.

The mixing speed of T(X) is reflected in the
smoothness of the cusum plot path, that is, the
more “hairy” the cusum path is, the faster the
mixing speed of T'(X); the smoother the cusum

path, the slower the mixing speed of T(X). More-
over, the bigger the excursion the cusum path plot
takes, the slower the mixing speed. See Yu and
Mykland (1994) for the supporting arguments.

The cusum path plot should be compared to the
“benchmark” cusum path plot, which is the cusum
path plot of an iid sequence of normal random
variables with their mean and variance matched
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Fic. 2. Ising model: first run (solid line, benchmark path; dotted line, Gibbs sampler path).
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Fic. 3. Ising model: second run (solid line, benchmark path; dotted line, Gibbs sampler path).

with the estimated mean and variance of {T(Xj):
J=ng+1,...,n} thatis, for t =n, + 1,...,n, let

A

where Y, ,1,...,Y, is an iid sequence of N(fir, s7.)
random variables with i, as above and sZ being
the sample variance of {T(X)): j = n, + 1,...,n}.

¢
St= Y [YJ - [LY] , By the invariance principle for t}'le‘f partial sums
J=no+1 of weakly dependent process (cf. Philipp and Stout,
PR 1975), the benchmark path approximates, to the
where Ly =(n —ngy) Z Yj, second order, the “ideal” cusum path of an iid
J=netl sequence from the same target distribution. If the
~N
S 1
; -
o
. o
3
S
2000 3000 4000 5000 6000 7000
z(7.1)
-3
oS
-
-3

2000 3000

T Y T

5000 6000 7000
xi(7,1)

Fic. 4. Prostate cancer example: 50-cycle gaps and block updates; sequential plots for z; | and £, ;.
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Fi1G. 5. Prostate cancer example: 50-cycle gaps and block updates; cusum path plots for z;  and &; ; (solid lines, benchmark paths;

dotted lines, Gibbs sampler paths).
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Fi1G. 6. Prostate cancer example: equivalent model with 10-cycle gaps and single component updates; sequential and cusum path plots

for z; 1. In the cusum plot: solid line, benchmark path; dotted line, Gibbs sampler path.
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benchmark cusum path is comparable with the T
cusum path in terms of smoothness of the path and
size of the excursion, then we conclude that the
sampler is mixing well [in the direction specified by
T(X), to be precise]. Otherwise, we conclude that
the sampler is not mixing well, in the direction
specified by 7'(X). When two Markov chains are
compared for the same target distribution, one may
omit the “benchmark” cusum path plot.

Now we are ready to illustrate the use of the
cusum path plot in the Ising model example in
Gelman and Rubin (1992a) and in the prostate
cancer example from the article by Besag, Green,
Higdon and Mengersen. Note that we know that
the mixing speed is slow in the Ising example, and
Besag, Green, Higdon and Mengersen have con-
cluded that there seems no significant multimodal-
ity problem in the prostate cancer example.

For the Ising model, professor Andrew Gelman
kindly provided the two runs which appeared in
Gelman and Rubin (1992a). For n, = 1,000 and
n = 2,000, the sequential and cusum path plots are
in Figures 1-3. Each of the cusum plots shows
clearly that the mixing is slow, while each of the
sequential plots suggests that things have stabi-
lized.

For the prostate cancer example, the authors
kindly offered the simulation data presented in
their paper. For n, = 2,000 and »n = 7,000, we
monitored the 49 log-odds ratios ¢;; and the corre-
sponding reconstructed z;;. The cusum path plots
for all 98 parameters compare well with the bench-
mark plots, indicating good mixing behaviors, con-
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sistent with the claims of Besag, Green, Higdon
and Mengersen. In this note, I include only the
sequential and cumsum plots for two of them: &; ;
and z; ; (Figures 4 and 5). The cusum plots display
comparable paths of the data and the benchmark
paths, in terms of smoothness and exclusion size.
As the authors note in Section 4.2, fast mixing
arises because of the block updates and a large
sampling interval or gap. Note that, since the 0’s,
¢’s and ’s are themselves unidentifiable, it would
be necessary to monitor them via appropriate con-
trasts. It is interesting to point out the effect on the
cusum plots when single component updates are
used and in addition the sampling interval is re-
duced from 50 to 10. Figure 6 shows the results for
a burn-in of 20,000 cycles and data collection over a
further 25,000 cycles. It is clear that the cusum
plots bring out the mixing properties more explic-
itly than the sequential plots, and in order to obtain
valid inference based on MCMC methods, extreme
care is needed with convergence diagnostics.

In conclusion, MCMC users have to explore suffi-
ciently the convergence issue before trusting the
estimates that the Markov chain gives. Among other
diagnostic tools such as sequential plot and auto-
correlation plot, the cusum path plot is a simple
and an effective device to monitor the local mixing
speed of a Markov chain.
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We thank the discussants for their contributions
and insights, and for raising numerous interesting
points. We shall respond to these as best we can,
although obviously there are many questions for
which, as yet, only partial solutions exist. We shall
also try to rectify some misunderstandings that
have arisen as a result of possible ambiguities in
the paper. Our response is organized primarily by
topic, rather than by discussant.

“ON BEING BAYESIAN”

Separation of Concerns

We have pondered Geyer’s call for a separation of
concerns, particularly between philosophy and com-

putational technology, and we agree that the aim is
an attractive one, but have come to a different
conclusion, because in this case there are interac-
tions that are too strong to be discounted. For
example, the agricultural experiment in Section 5
of the paper is concerned with ranking and selec-
tion in comparing 75 varieties of spring barley. We
contend that here it is a point of philosophy that
the Bayesian paradigm provides an approach that
is more useful than (indeed, we would say vastly
superior to) any non-Bayesian approach. However,
even in quite straightforward formulations, it is
exceedingly difficult to implement a fully Bayesian
analysis without MCMC. The simultaneous credi-
ble regions in the paper provide another example,



