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Geographic and Network Surveillance via
Scan Statistics for Critical Area Detection
G. P. Patil and C. Taillie

Abstract. Both statistical ecology and environmental statistics have numer-
ous challenges and opportunities in the waiting for the twenty-first century,
calling for increasing numbers of nontraditional statistical approaches. Both
theoretical and applied ecology are using advancing data analytical and inter-
pretational software and hardware to satisfy public policy and discovery re-
search, variously incorporating geospatial information, site-specific data and
remote sensing imagery. We discuss a declared need for geoinformatic sur-
veillance for spatial critical area detection. We explore, for ecological and
environmental use, an innovation of the circle-based spatial scan statistic
popular in the health sciences.
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1. INTRODUCTION

Ecological and environmental studies are undergo-
ing major changes in response to changing societal
concerns coupled with remote sensing information
and computer technology. Both theoretical and applied
ecology are using more statistical thought processes
and procedures with advancing software and hardware
to satisfy public policy and research, variously incor-
porating geospatial information, sample survey data,
intensive site-specific data and remote sensing image
data. The issues are calling for increasing numbers of
nontraditional statistical approaches (Patil, 1996). Both
statistical ecology and environmental statistics have
numerous challenges and opportunities in the waiting
for the twenty-first century. While much progress has
been made in the past, the future promises even more
rapid developments as sophisticated computing tech-
nology is utilized to apply newly developed statisti-

G. P. Patil is Distinguished Professor and Director,
Center for Statistical Ecology and Environmental Sta-
tistics, Department of Statistics, Pennsylvania State
University, University Park, Pennsylvania 16802
(e-mail: gpp@stat.psu.edu). C. Taillie is Senior Re-
search Associate, Center for Statistical Ecology and
Environmental Statistics, Department of Statistics,
Pennsylvania State University, University Park, Penn-
sylvania 16802.

cal methods to increasingly detailed databases in both
space and time in response to the demands of both pol-
icy and discovery. See, for example, Johnson and Patil
(2004), Myers and Patil (2002, 2004), Patil (2002),
Patil et al. (2004), Patil et al. (2001) and Patil, Johnson,
Myers and Taillie (2000).

In this article, we highlight landscape scales in sta-
tistical ecology, environmental statistics and geospatial
risk assessment. There is a declared need for geoin-
formatic surveillance for geospatial hot-spot detec-
tion. Hot-spot means an anomaly, aberration, outbreak,
elevated cluster, critical resource area and so on. The
declared need may be for monitoring, etiology, man-
agement or early warning in critical societal areas, such
as ecosystem health, water resources and water ser-
vices, stream and transportation networks, persistent
poverty typologies and trajectories, public health and
disease surveillance, environmental justice, biosurveil-
lance and biosecurity, among others. The responsible
factors may be natural, accidental or intentional.

We discuss, for ecological and environmental use,
an innovation of the circle-based spatial scan statis-
tic (Kulldorff, 1997; Patil et al., 2004) popular in
health science. Our innovation employs the notion of
an upper-level-set based scan and is accordingly called
the upper level set scan statistic, pointing to a so-
phisticated analytical and computational system as the
next generation of the present day SaTScan (Kulldorff,
1997; Patil et al., 2004).
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2. CRITICAL AREA DETECTION WITH THE
SPATIAL SCAN STATISTIC

Three central problems arise in geographical sur-
veillance for a spatially distributed response variable.
These are (i) identification of areas having excep-
tionally high (or low) response, (ii) determination of
whether the elevated response can be attributed to
chance variation (false alarm) or is statistically sig-
nificant and (iii) assessment of explanatory factors
that may account for the elevated response. Although
a wide variety of methods have been proposed for
modeling and analyzing spatial data (Cressie, 1991),
the spatial scan statistic (Kulldorff and Nagarwalla,
1995; Kulldorff, 1997) has quickly become a pop-
ular method for detection and evaluation of disease
clusters and is now widely used by many health de-
partments, government scientists and academic re-
searchers (Kulldorff et al., 1998a; Kulldorff et al.,
1998b; Kulldorff, 2001). With suitable modifications,
the scan statistic approach can be used for critical area
analysis in fields other than the health sciences. We de-
scribe some promising developments for generalizing
the spatial scan statistic to make it applicable to many
issues in environmental science.

As in all geospatial surveillance, it is important to
determine whether any variation observed may reason-
ably be due to chance or not. This can be done using
tests for spatial randomness, adjusting for the uneven
geographical population density as well as for age and
other known risk factors. One such test is the spatial
scan statistic, which is used for the detection and eval-
uation of local clusters or hot-spot areas. This method
is now in common use by various governmental health
agencies, including the National Institutes of Health,
the Centers for Disease Control and Prevention and
the state health departments in New York, Connecticut,
Texas, Washington, Maryland, California and New Jer-
sey. Other test statistics are more global in nature, eval-
uating whether there is clustering in general throughout
the map, without pinpointing the specific location of
high or low incidence or mortality areas.

The spatial scan statistic has been implemented in
two statistical software packages. One of these is the
freely available SaTScan software (Kulldorff et al.,
1998b) that was developed by and is distributed by the
National Cancer Institute. The other is the ClusterSeer
software (BioMedware, 2001), a commercial product.

3. SCAN STATISTIC SUCCESS STORIES

The circular spatial scan statistic and the accompa-
nying SaTScan software are widely used by both gov-

ernmental health departments and academic epidemi-
ologists. Some of the past and present applications in-
clude the following:

• New York City Health Department—Daily surveil-
lance for the early detection of disease outbreaks.
During the summer of 2001 it was successfully
used for the early detection of dead bird clusters
to quickly detect local West Nile virus epicenters.
Cluster findings led to preventive measures such as
targeted application of mosquito larvicide. During
the spring of 2001 SaTScan was successfully used as
the early detection tool in a simulated bioterrorism
exercise to train the New York City mayor, his staff
and health department officials in emergency pre-
paredness and conduct. Currently it is used for daily
syndromic surveillance based on 911 emergency
calls and hospital emergency admissions. For ad-
ditional information, see Mostashari, Kulldorff and
Miller (2002).

• Washington State Health Department—Evaluation
of a glioblastoma cluster alarm around Seattle–
Tacoma International Airport. Earlier analyses had
been inconclusive as results depended on geograph-
ical boundaries chosen to define this cancer cluster,
and there were also questions concerning preselec-
tion bias of airport area when testing the difference
in the incidence rate close to the airport versus fur-
ther away from the airport. A SaTScan analysis for
the county as a whole revealed a nonsignificant clus-
ter around the airport, adding weight to other ev-
idence that it was probably a chance occurrence.
For additional information, see VanEenwyk et al.
(1999).

• National Creutzfeldt–Jakob Disease Surveillance
Unit and the Leicester Health Authority, England—
A very small but statistically significant (p = 0.004)
cluster with five cases of Creutzfeldt–Jakob disease
was found in Charnwood, Leicestershire, England.
A detailed local epidemiological investigation iden-
tified specific and unusual butcher shop practices as
the likely cause for this cluster. For additional infor-
mation, see Bryant and Monk (2001), Cousens et al.
(2001) and d’Aignaux et al. (2002).

4. PROPERTIES OF THE SCAN STATISTIC

The scan statistic is a statistical method with many
potential applications, designed to detect a local excess
of events and to test if such an excess can reasonably
have occurred by chance. The scan statistic was first
studied in detail by Naus (1965a, b), who looked at
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the problem in both one and two dimensions. Glaz,
Naus and Wallenstein (2001) recently published a book
summarizing the field, complementing an earlier edited
volume (Glaz and Balakrishnan, 1999). In two or more
dimensions the events may be cases of leukemia, with
an interest to see if there are geographical clusters of
the disease; they may be antipersonnel mines, with
an interest to detect large mine fields for removal;
they could be Geiger counts, with an interest to detect
large uranium deposits; they could be stars or galaxies;
they could be breast calcifications showing up in
a mammogram, possibly indicating a breast tumor;
or they could be a particular type of archaeological
pottery.

Three basic properties of the scan statistic are the
geometry of the area being scanned, the probability
distribution generating events under the null hypoth-
esis and the shapes and sizes of the scanning win-
dow. Depending on the application, different models
are chosen, and depending on the model, the test sta-
tistic is evaluated either through explicit mathemati-
cal derivations and approximations or through Monte
Carlo sampling (Dwass, 1957). Due to inhomogeneous
geographical population densities, there are no known
asymptotic or approximate solutions for most disease
surveillance problems, and Monte Carlo sampling is
then used. Random data sets are generated under the
known null hypothesis, and the value of the scan sta-
tistic is calculated for both the real data set and the
simulated random data sets; if the former is among the
5% highest, then the detected cluster is significant at
the 0.05 level. While computer intensive, the Monte
Carlo approach is quite feasible, and it is possible to
analyze data sets with 10,000+ geographical locations
and 100,000 cases or more.

Multidimensional scan statistics have been studied
for a long time. In terms of the region being scanned,
Naus (1965b), Loader (1991), Alm (1997, 1998) and

Anderson and Titterington (1997) all considered a two-
dimensional rectangle. Alm (1998) also looked at a
three-dimensional rectangular volume. Chen and Glaz
(1996) studied a regular grid of discrete points within
a rectangular area. Turnbull et al. (1990) used an
irregular grid, where points may be anywhere within
an arbitrarily shaped area.

Under the null hypothesis, Naus (1965b), Loader
(1991) and Alm (1997, 1998) looked at a homogeneous
Poisson process, Turnbull et al. (1990) considered an
inhomogeneous Poisson process, and Anderson and
Titterington (1997) considered both types. Chen and
Glaz (1996) considered a Bernoulli model. As for the
scanning window, Naus (1965b), Loader (1991), Chen
and Glaz (1996), Alm (1997, 1998) and Anderson
and Titterington (1997) all considered rectangles. Alm
(1997, 1998) also looked at circles, triangles and other
convex shapes. Turnbull et al. (1990) considered a cir-
cular window centered at any of the grid points making
up the data. The window is, in all cases, of fixed shape
as well as of fixed size in terms of the expected number
of events, with the exception of Loader (1991), who
also considered a variable-size window. Based on the
likelihood ratio test, Kulldorff (1997) presented a gen-
eral mathematical model that includes all these cases,
but even with the use of Monte Carlo sampling it is
not always computationally feasible to evaluate all pos-
sible window locations, sizes and shapes. While we no
longer have to worry about the very difficult mathemat-
ics entailed in finding approximate or asymptotic solu-
tions, we must now worry about efficient algorithms
for evaluating a very large number of windows.

Currently available spatial scan statistic software
has several limitations. First, circles have been used
for the scanning window, resulting in low power for
detection of irregularly shaped clusters (Figure 1).
Alternatively, an irregularly shaped cluster may be
reported as a series of circular clusters. Second, the
response variable has been defined on the cells of a

FIG. 1. Limitations of circular scanning windows: (left) an irregularly shaped cluster—perhaps a cholera outbreak along a winding river
floodplain; small circles miss much of the outbreak and large circles include many unwanted cells; (right) circular windows may report a
single irregularly shaped cluster as a series of small clusters.
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tessellated geographic region, preventing application
to responses defined on a network (stream network,
highway system, water distribution network, etc.).
Finally, reflecting the epidemiological origins of the
spatial scan statistic, response distributions have been
taken as discrete (specifically, binomial or Poisson).
We suggest some ways of addressing these limitations.

5. BASIC THEORY OF THE SCAN STATISTIC

The spatial scan statistic deals with the following
situation. A region R of Euclidian space is tessellated
or subdivided into cells (which will be denoted by
the symbol a). Data are available in the form of
nonnegative counts Ya on cells a. In addition, a “size”
value Aa is associated with each cell a. The cell
sizes Aa are regarded as known and fixed, while the
cell counts Ya are independent random variables. Two
distributional settings are commonly studied:

• Binomial—Aa = Na is a positive integer and Ya ∼
Binomial(Na,pa), where pa is an unknown parame-
ter attached to cell a with 0 < pa < 1.

• Poisson—Aa is a positive real number and Ya ∼
Poisson(λ,Aa), where λa > 0 is an unknown para-
meter attached to cell a.

Each distributional model has a simple interpretation.
For the binomial, Na people reside in cell a and
each has a certain disease independently with probabil-
ity pa . The cell count Ya is the number of diseased peo-
ple in the cell. For the Poisson, Aa is the size (perhaps
area) of the cell a, and Ya is a realization of a Poisson
process of intensity λa across the cell. In each scenario,
the responses Ya are independent; it is assumed that
spatial variability can be accounted for by cell-to-cell
variation in the model parameters.

The spatial scan statistic seeks to identify “hot spots”
or “clusters” of cells that have an elevated response
compared with the rest of the region. Elevated response
means large values for the rates,

Ga = Ya/Aa,

instead of for the raw counts Ya . In other words, cell
counts are adjusted for cell sizes before comparing
cell responses. The scan statistic easily accommodates
other rate adjustments, such as for age or for gender.

A collection of cells from the tessellation should
satisfy several geometrical properties before it can be
considered as a candidate for a hot-spot cluster. First,
the union of the cells should comprise a geographically
connected subset of the region R (Figure 2). Such

FIG. 2. A tessellated region: the collection of shaded cells in the
left diagram is connected and, therefore, constitutes a zone in �;
the collection on the right is not connected.

collections of cells will be referred to as zones and
the set of all zones is denoted by �. Thus, a zone
Z ∈ � is a collection of cells that are connected.
Second, the zone should not be excessively large—
for, otherwise, the zone instead of its exterior would
constitute background. This restriction is generally
achieved by limiting the search for hot spots to zones
that do not comprise more than, say, 50% of the region.

The notion of a hot spot is inherently vague and lacks
any a priori definition. There is no “true” hot spot in the
statistical sense of a true parameter value. A hot spot is
instead defined by its estimate—provided the estimate
is statistically significant. The scan statistic adopts a
hypothesis testing model in which the hot spot occurs
as an unknown zonal parameter in the statement of
the alternative hypothesis. The following is a statement
of the null and alternative hypotheses in the binomial
setting:

H0 :pa is the same for all cells in region R, that is,
there is no hot spot.

H1 : There is a nonempty zone Z (connected union
of cells) and parameter values 0 < p0,p1 < 1 such that

pa =
{

p1, for all cells a in Z,

p0, for all cells a in R − Z,
and p1 > p0.

The zone Z specified in H1 is an unknown parameter
of the model. The full model, H0 ∪ H1 , involves three
unknown parameters:

Z,p0,p1 with Z ∈ � and p0 ≤ p1.

The null model, H0, is the limit of H1 as p1 → p0;
however, the parameter Z is not identifiable in the
limit. If one is searching for regions of low response,
the condition p1 > p0 in the alternative hypothesis is
changed to p1 < p0.

For given Z, the likelihood estimates p0 and p1 and
can be written explicitly, which determines the profile
likelihood for Z:

L(Z) = max
p0,p1

L(Z,p0,p1) = L(Z, p̂0, p̂1).

The difficult part of hot-spot estimation lies in maxi-
mizing L(Z) as Z varies over the collection � of all
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possible zones. In fact �, is a finite set but it is gen-
erally so large that maximizing L(Z) by exhaustive
search is impractical. Two different search strategies
are available for obtaining an approximate solution of
this maximization problem:

1. Parameter-space reduction—replace the full para-
meter space by a subspace �0 ⊂ � of a more man-
ageable size. The profile likelihood L(Z) is then
maximized by exhaustive search across �0. This
works well if �0 contains the MLE for the full � or
at least a close approximation to that MLE. Parame-
ter space reduction is roughly analogous to doing a
grid search in conventional optimization problems.

2. Stochastic optimization methods—these methods
include genetic algorithms (Knjazew, 2002) and
simulated annealing (Aarts and Korst, 1989;
Winkler, 1995). These are iterative procedures that
converge under certain assumptions to the global
optimum in the limit of infinitely many itera-
tions. These procedures are computationally inten-
sive enough that they can be difficult to replicate
many times, particularly when a simulation study
is needed to determine null distributions. For this
reason, stochastic optimization methods will not be
discussed further in this paper. See Duczmal and
Assunção (2004).

The traditional spatial scan statistic uses expanding
circles to determine a reduced list �0 of candidate
zones Z. By their very construction, these candidate
zones tend to be compact in shape and may do a
poor job of approximating actual clusters. The circular
scan statistic has a reduced parameter space that is
determined entirely by the geometry of the tessellation
and does not involve the data in any way. The scan
statistic that we propose takes an adaptive point of
view in which �0 depends very much upon the
data. In essence, the adjusted rates define a piecewise
constant surface over the tessellation, and the reduced
parameter space �0 = �ULS consists of all connected
components of all upper level sets (ULS) of this
surface. The cardinality of �ULS does not exceed the
number of cells in the tessellation. Furthermore, �ULS
has the structure of a tree (under set inclusion), which
is useful for visualization purposes and for expressing
uncertainty of cluster determination in the form of a
hot-spot confidence set on the tree. Since �ULS is
data-dependent, this reduced parameter space must be
recomputed for each replicate data set when simulating
null distributions.

Although the traditional spatial scan statistic is
applicable only to tessellated data, the ULS approach
has an abstract graph (i.e., vertices and edges) as its
starting point. Accordingly, this approach can also be
applied to data defined over a network, such as a
subway, water or highway system. In the case of a
tessellation, the abstract graph is obtained by taking
its vertices to be the cells of the tessellation. Two
vertices are joined by an edge if the corresponding
cells are adjacent in the tessellation. There is complete
flexibility regarding the definition of adjacency. For
example, one may declare two cells as adjacent (i) if
their boundaries have at least one point in common
or (ii) if their common boundary has positive length
or (iii) in the case of a drainage network, if the flow
is from one cell to the next. The user is free to adopt
whatever definition of adjacency is most appropriate to
the problem at hand.

6. UPPER LEVEL SET SCAN STATISTIC

The upper level set scan statistic is an adaptive ap-
proach in which the reduced parameter space �0 =
�ULS is determined from the data by using the empiri-
cal cell rates

Ga = Ya/Aa.

These rates determine a function a → Ga defined over
the cells in the tessellation (more generally the vertices
in an abstract graph). This function has only finitely
many values (levels) and each level g determines an
upper level set

Ug = {a :Ga ≥ g}.
Since upper level sets do not have to be geographically
connected, the reduced list of candidate zones, �ULS,
consists of all connected components of all possible
upper level sets.

A consequence of adaptivity of the ULS approach
is that �ULS must be recalculated for each replicate in
a simulation study. Efficient algorithms are needed for
this calculation. Finding the connected components for
an upper level set is essentially the issue of determin-
ing the transitive closure of the adjacency relation on
the cells in the upper level set. Several generic algo-
rithms are available in the computer science literature
(see Cormen, Leiserson, Rivest and Stein, 2001, Sec-
tion 22.3, for depth first search; Knuth, 1973, page 353;
or Press, Teukolsky, Vetterling and Flannery, 1992,
Section 8.6, for transitive closure).



462 G. P. PATIL AND C. TAILLIE

6.1 Continuous Response Distributions

Our strategy for handling continuous responses is
to model the mean and variance of each response
distribution in terms of the size variable Aα; modeling
is guided by the principle that the mean response
should be proportional to Aa and the relative variability
should decrease with Aa . Just as with the Poisson and
binomial models, we take the Ya to be independent.
The approach is best illustrated for the gamma family
of distributions.

Gamma distribution. We parameterize the gamma
distribution by (k,β), where k is the index parameter
and β is the scale parameter. Thus, if Y is a gamma-
distributed variate,

E[Y ] = kβ and Var[Y ] = kβ2.

Both k and β can vary from cell to cell but additivity
with respect to the index parameter suggests that we
take k proportional to the size variable:

ka = Aa/c,

where c is an unknown parameter but whose value is
the same for all a. This gives the following mean and
squared coefficient of variation:

E[Ya] = βaAa/c and CV2[Ya] = c/Aa.

The hot-spot hypothesis testing model is analogous to
that of the binomial described previously.

Lognormal and other continuous distributions.
A similar approach is applicable to other two-
parameter families of distributions on the positive real
line. Specifically, for the lognormal distribution we
take

E[Ya] = βaAa/c and CV2[Ya] = [c/Aa]d ,

where d is either user-specified (e.g., d = 1) or is
an unknown parameter to be estimated. In terms
of its conventional parameters (µ,σ 2), the first two
moments of the lognormal are

E[Y ] = eµ+σ 2/2 and CV2[Y ] = eσ 2 − 1,

which gives

eµa = Aa/c√
1 + (c/Aa)d

βa and eσ 2
a = 1 +

(
c

Aa

)d

.

These equations explicitly specify the lognormal para-
meters (µ/σ 2) for each a in terms of the unknown pa-
rameters so that the likelihood can be written explicitly
(assuming independence).

Simulating the null distribution to obtain
p-values. Conditional simulation is used to obtain
the null distribution in the cases of the binomial and
Poisson response distributions. One conditions on the
sufficient statistic (under H0) to eliminate the un-
known parameters from the null model. The resulting
parameter-free distributions are hypergeometric and
multinomial, respectively, and are easily simulated.
This is not the case for most continuous distributions.
Accordingly, simulation might be done by replacing
unknown parameters with their maximum likelihood
estimates under H0.

7. FILTERING FOR EXPLANATORY VARIABLES

The scan statistic searches for regions of high re-
sponse relative to a geo-referenced set of prior ex-
pected responses. Thus, a hot-spot map depicts regions
of extreme departure from expectation in the multi-
plicative sense, that is, multiplicative residuals. The
size values Aa , which are proportional to model ex-
pectations, are the link between the response vari-
able and potential explanatory variables. In disease
surveillance, the Aa are routinely adjusted for factors
such as age, gender and population size before begin-
ning the analysis (Bithell, Dutton, Neary and Vincent,
1995; Kulldorff, Feuer, Miller and Freedman, 1997;
Rogerson, 2001; Waller, 2003; Walsh and Fenster,
1997; Walsh and DeChello, 2001). Such standard,
agreed-upon, factors are often unavailable in other ap-
plications in which case the initial analysis may iden-
tify absolute hot spots by setting all Aa equal to unity.
Locations of these highs can provide clues for identify-
ing potential explanatory factors. Next, the size values
are adjusted for these factors and the scan statistic is re-
run with the adjusted sizes. Comparative configuration
of new and old hot spots reveals the impact of these
factors upon the response under study.

Several methods are available for adjusting the Aa .
Suppose, first, that there is only one explanatory
variable X. A nonparametric approach partitions the
X-values into intervals and calculates the mean re-
sponse for each interval. These calculations should uti-
lize all available pertinent data. The adjusted size value
for vertex a becomes

A′
a = ma

m
Aa,

where Aa is the old size value, ma is the mean response
for the interval containing vertex a and m is an overall
mean response. Regression of Y upon X can also
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be the basis for adjustment provided an appropriate
functional relation is identified. Similar approaches
work, in principle, for multiple factors. However, the
“curse of dimensionality” often comes into play and
data sparseness prevents calculation of dependable
local means. Our approach in such cases is to cluster
the data points in factor space. A mean response is then
calculated for each cluster.

8. ILLUSTRATIVE APPLICATIONS IN ECOSYSTEM
HEALTH AND ENVIRONMENT

In this section we briefly discuss three illustrative
applications in ecosystem health and environment.

8.1 Network Analysis of Biological Integrity in
Freshwater Streams

This study employs the network version of the upper
level set scan statistic to characterize biological impair-
ment along the rivers and streams of Pennsylvania and
to identify subnetworks that are badly impaired. The
state Department of Environmental Protection is de-
termining indices of biological integrity (IBI) at about
15,000 sampling locations across the Commonwealth.
Impairment is measured by a complemented form of
these IBI values. Remotely sensed landscape variables
and physical characteristics of the streams are used as
explanatory variables to account for impairment hot
spots. Critical stream subnetworks that remain unac-
counted for after this filtering exercise become candi-
dates for more detailed modeling and site investigation.
See Evans et al. (2003), Hawkins, Norris, Hogue and
Feminella (2000) and Wardrop et al. (2004).

8.2 Mapping of Vegetation Disturbance for
Carbon Budgets

Hot-spot detection can complement existing ap-
proaches to remote measuring and mapping vegetation
disturbance for global change research. Existing data
products either strive to reduce “false alarms” by rely-
ing on multiyear comparisons of matched “best qual-
ity” data (see Strahler et al., 1999; Zhan et al., 1999,
2000) or restrict information to one type of disturbance
(e.g., forest fires). National and global carbon bud-
gets, at time scales relevant to inversion of atmospheric
transport models, require data that are both timelier
and more comprehensive. Carbon management is a key
area of climate change technology and, for manage-
ment of carbon sequestration, vegetation disturbance
needs to be detected in a manner that is timely enough
both to inform management decisions and to provide

feedback on the consequences of management deci-
sions. [See Wofsy and Harriss (2002) for an overview
of existing national approaches to inventorying carbon
stocks.] The study will sample EOS data streams (pri-
marily from MODIS instruments), test proposed hot-
spot algorithms for their potential for support of carbon
management decisions, identify data sources for hot-
spot characterization (e.g., GLAS, ETM+, commercial
hyperspatial) and develop ways of integrating carbon
hot-spot detection and prioritization into national car-
bon inventories and carbon budgets.

8.3 Early Detection of Biological Invasions

Intentional and unintentional introductions of non-
native exotic species have major economic and eco-
logical impacts across the United States. The National
Academy of Sciences estimates the cost of lost crops
and containment measures at $137 billion per year.
Early detection of invasive weedy plants is the only
cost-effective and tractable option for their contain-
ment or eradication. However, systems for synthesiz-
ing on-the-ground observation, spatial data and newly
acquired remotely sensed data are lacking. We will
apply the ULS scan statistic and prioritization tools
to obtain more efficient surveys for invasive species
and to improve the responsiveness of environmental
managers to outbreaks. Japanese stiltgrass has become
established in forests and waterways in the eastern
United States and threatens to significantly reduce for-
est and riparian species diversity and to impede wa-
ter flow in rivers and streams. Often locally established
populations have begun to spread before those popu-
lations have been detected and likelihood of success-
ful management is severely compromised. Coupling
the data resources with the scan statistic represents a
promising approach to preventing the transition of in-
vasive plants from isolated established populations to
spreading ones. See Mortensen, Johnson and Young
(1993), Mortensen, Bastiaans and Sattin (2000) and
Mortensen, Dieleman and Williams (2003).
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