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Abstract. This article discusses the impact of the bootstrap on sample
surveys and introduces some of the main developments of the bootstrap
methodology for sample surveys in the last twenty five years.
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1. INTRODUCTION

A crucial part of statistical inference is the assess-
ment of variability in estimators of unknown para-
meters, which has a direct impact on measuring the
uncertainty in parameter estimation, comparing the ef-
ficiencies of different estimators and/or sampling de-
signs and constructing inference procedures such as
confidence sets. In sample surveys, for example, it is
a common practice to report parameter estimates in a
tabular form along with their variance estimates (or es-
timates of coefficient of variation). In statistical liter-
ature, there exist two general approaches in assessing
variability. One is the traditional analytic approach and
the other one is data resampling, which requires a large
amount of computation and has seen a steady growth
along with the fast developments in computing facili-
ties.

Since the publication of the first research article
about the bootstrap (Efron, 1979), the bootstrap has be-
come the most important and popular data resampling
method. There is no doubt that the success of the boot-
strap relies on the research developments over the last
25 years that not only made the bootstrap a sophisti-
cated tool applicable to nearly all areas of statistical
analysis, but also greatly advanced the theory of data
resampling methods. This article discusses the reasons
why the bootstrap is an important tool in sample sur-
veys (Section 2) and introduces the main developments
of the bootstrap methodology for survey applications
(Sections 3–5).

Jun Shao is Professor of Statistics, Department of Sta-
tistics, University of Wisconsin, Madison, Wisconsin
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2. THE BOOTSTRAP IN SAMPLE SURVEYS

Let X be the observed dataset, θ be an unknown pa-
rameter of interest and θ̂ = θ̂ (X) be a chosen estimator
of θ . In the analytic approach, the variability of θ̂ is as-
sessed by first deriving an explicit theoretical formula
that approximates the distribution of θ̂ or its character-
istics such as the variance. If the derived theoretical for-
mula contains some unknown quantities, then they are
substituted by some estimates based on X. For exam-
ple, one may show that θ̂ is approximately normal with
mean θ and an unknown asymptotic variance v that can
be estimated using X. The bootstrap method, however,
works in a different manner. Suppose that we can esti-
mate the statistical model that produces X and generate
a number of bootstrap datasets, X∗1, . . . ,X∗B , from the
estimated model. The bootstrap method assesses the
variability of θ̂ by the variability among the bootstrap
estimates θ̂∗b = θ̂ (X∗b), b = 1, . . . ,B . Thus, the boot-
strap method replaces theoretical derivations in the an-
alytic approach by the generation of X∗1, . . . ,X∗B and
repeated computations of θ̂∗b = θ̂ (X∗b), b = 1, . . . ,B .
In many situations, researchers have shown that the an-
alytic approach and the bootstrap method produce ap-
proximately the same results and, therefore, the choice
between these two approaches depends on the feasibil-
ity of their implementation.

Although in most cases the validity of the bootstrap
is established by showing that the conditional distribu-
tion of θ̂∗b given X is approximately the same as the
distribution of θ̂ , the explicit theoretical formula re-
quired by the analytic approach (such as the asymptotic
variance v) is not needed in applying the bootstrap.
When the derivation of the explicit theoretical formula
is much more complicated than showing the existence
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of such a formula (which is usually enough for the va-
lidity of the bootstrap), the bootstrap is preferred since
the required computations are typically routine and can
be handled by a powerful computer. To illustrate this
point and the attractiveness of the bootstrap in survey
problems, we consider the following two examples.

EXAMPLE 1. Consider the estimation of the pover-
ty line (low-income cutoff) of the population in the
study of income shares or wealth distribution. For
the ith sampled family, let zi be the expenditure
on necessities, yi be the total income and xit , t =
1, . . . , T , be variables such as urbanization category
and family size. Then

log zi = γ1 + γ2 log yi +
T∑

t=1

βtxit + error,(1)

where the γ ’s and β’s are unknown parameters. Let
γ0 be the overall proportion of income spent on
necessities. Then the poverty line θ can be defined as
the solution of

log[(γ0 + 0.2)θ] = γ1 + γ2 log θ +
T∑

t=1

βtx0t(2)

for a particular set of x01, . . . , x0T (Mantel and Singh,
1991). Suppose that the regression parameters in (1)
are estimated by the least squares estimators γ̂j and
β̂t and γ0 is estimated by z̄/ȳ, where z̄ and ȳ are the
sample means of the zi’s and yi’s, respectively. Then
a natural estimator θ̂ of θ is the solution of (2) with
γj and βt replaced by γ̂j and β̂t , respectively. Let
Xi = (zi, yi, log zi, logyi, xi1, . . . , xiT ) and let X̄ be
the sample mean of Xi ’s. Then θ̂ = g(X̄) for an
implicit differentiable function g. Applying Taylor’s
expansion and the central limit theorem, one can
show that θ̂ is approximately normal with mean θ

and variance [∇g(µ)]′V (X̄)∇g(µ), where ∇g is the
vector of partial derivatives of g, µ = E(X̄) and
V (X̄) is the variance–covariance matrix of X̄. To apply
the analytic approach, one has to derive a formula
for ∇g, which is complicated. This is not only because
g is implicitly defined, but also because the γ̂t ’s
and β̂t ’s are functions (of sample means of log zi ,
logyi , xi1, . . . , xiT ) whose derivatives are messy when
T is large. To apply the bootstrap, one just needs
to repeatedly compute g(X̄∗b), b = 1, . . . ,B , where
X̄∗b is the same as X̄ but based on the bth bootstrap
dataset. Note that any algorithm used to compute the
original g(X̄) can be used to compute g(X̄∗b). The
empirical distribution of g(X̄∗b), b = 1, . . . ,B , is a

valid approximation to the distribution of θ̂ as long
as g is continuously differentiable, since its limit is the
same as that of θ̂ (Bickel and Freedman, 1984). But
the explicit form of ∇g is not needed in applying the
bootstrap.

EXAMPLE 2. A unique feature of survey data is
the existence of a large proportion of nonrespondents.
Imputation is commonly applied to compensate for
nonresponse. We consider the Current Employment
Survey (CES) conducted monthly by the U.S. Bureau
of Labor Statistics. The main variables are the number
of employees, the number of nonsupervisory workers
and the hours and earnings of workers on nonagricul-
tural establishment payrolls. Population employment
counts are obtained once a year (month 0) from un-
employment insurance administrative records. In any
particular month, imputation for nonresponse using re-
ported data from previous months generally provides
more efficient survey estimators than ignoring nonre-
spondents and adjusting survey weights. Starting from
month 1, nonrespondents are imputed using the follow-
ing imputation method proposed by Butani, Harter and
Wolter (1997). Let yE

t,i be the number of employees of
the ith sampled unit at month t . If yE

t,i is a nonrespon-
dent, then it is imputed by

ỹE
t,i = ỹE

t−1,i

∑
j∈Rt

wjy
E
t,j∑

j∈Rt
wjy

E
t−1,j

,

where ỹE
t−1,i = yE

t−1,i if yE
t−1,i is a respondent and is

an imputed value otherwise, the wj ’s are the survey
weights (see Section 4) and Rt is the set of all reporting
units for months t and t − 1. If yW

t,i (the number of
nonsupervisory workers) is a nonrespondent, then it is
imputed by

ỹW
t,i = ỹW

t−1,i ỹ
E
t,i/ỹ

E
t−1,i ,

where ỹW
t−1,i is defined similarly to ỹE

t−1,i . If yH
t,i (the

number of hours worked) is a nonrespondent, then it is
imputed by

ỹH
t,i = ỹH

t−1,i ỹ
W
t,i

ỹW
t−1,i

∑
j∈Rt

wjy
H
t,j /

∑
j∈Rt

wjy
W
t,j∑

j∈Rt
wjy

H
t−1,j /

∑
j∈Rt

wjy
W
t−1,j

,

where ỹH
t−1,i is defined similarly to ỹE

t−1,i . Finally, if
yP
t,i (the weekly gross pay) is a nonrespondent, then it

is imputed by

ỹP
t,i = ỹP

t−1,i ỹ
H
t,i

ỹH
t−1,i

∑
j∈Rt

wjy
P
t,j /

∑
j∈Rt

wjy
H
t,j∑

j∈Rt
wjy

P
t−1,j /

∑
j∈Rt

wjy
H
t−1,j

,
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where ỹP
t−1,i is defined similarly to ỹE

t−1,i . After im-
putation, weighted averages of imputed data are used
to estimate monthly totals of the four variables. It can
be seen that the estimated totals at month t are dif-
ferentiable functions of various weighted averages of
data from months 0,1, . . . , t − 1, t , but the forms of
these functions are very messy, because imputed val-
ues in months 1, . . . , t − 1 are carried over to impute
nonrespondents in month t . Thus, deriving an explicit
variance formula (using Taylor’s expansion) for an esti-
mated total is very complicated. The application of the
bootstrap method in this case is straightforward, except
that each bootstrap dataset X∗b should be reimputed
using the imputation method for the original dataset
(see Section 5). Hence, applying the bootstrap requires
many computations, but the complicated derivations
for explicit variance formulas can be avoided. Another
example of this kind can be found in Section 5.

In the CES, the nonresponse rate is about 20–40%
and about 60% of the nonrespondents in a given month
may become available one or several months later. At
month t , reported data for month s < t (which were
not reported at month s) are used in the imputation
procedure for nonrespondents at month t . This adds
another complication to the analytic approach, but has
no effect on applying the bootstrap as long as each
bootstrap dataset is imputed using exactly the same
imputation algorithm as that for the original dataset.
We may view this as a robustness property of the
bootstrap, against changes in the imputation procedure.

Easy implementation and the robustness property de-
scribed in Example 2 are probably the reasons that the
bootstrap method has become popular in many survey
agencies such as the U.S. Census Bureau, the U.S. Bu-
reau of Labor Statistics and Statistics Canada. On the
other hand, some special features of survey problems
have had an impact on the development of the bootstrap
methodology. In the 1980’s, research on the bootstrap
for sampling without replacement and for stratified
sampling with many small-size strata was very active
and resulted in many different ways of generating boot-
strap datasets. In the 1990’s, attention was given to the
application of the bootstrap to data with imputed non-
respondents. These developments together with other
stimulating research on the bootstrap (e.g., the research
on bootstrap confidence intervals and bootstrapping
dependent data) made the bootstrap a more complete
methodology for statistical inference.

There exist other data resampling methods that as-
sess the variability of θ̂ by θ̂∗b = θ̂ (X∗b), b = 1, . . . ,B ,

but differ from the bootstrap in the construction of
X∗1, . . . ,X∗B . Two data resampling methods having
a long history of application in sample surveys are
the jackknife and balanced repeated replication (BRR).
The jackknife constructs X∗b by deleting some units
in X, whereas the BRR forms X∗1, . . . ,X∗B as proper
subsets of X that have some balancedness property.
Unlike the bootstrap data, X∗1, . . . ,X∗B for the jack-
knife or the BRR are not constructed randomly. As a
result, the jackknife and the BRR can be applied to
approximate the first and second moments (bias and
variance) of θ̂ , but not the distribution of θ̂ . The jack-
knife is known to have problems in approximating vari-
ances of not very smooth estimators such as the sample
quantiles, whereas the construction of balanced subsets
X∗1, . . . ,X∗B with a reasonable size B may be difficult
to implement in the BRR. The bootstrap is more flexi-
ble in implementation and can be applied to different
estimators (smooth or nonsmooth) or different prob-
lems (variance estimation or distribution estimation) so
that a single resampling method can be used for various
problems. Furthermore, special features in the sam-
pling process of X can often be built into the bootstrap
sampling process of X∗b (e.g., data with imputed val-
ues or data sampled without replacement) and, there-
fore, the bootstrap is more natural and much easier to
understand than the other resampling methods.

3. WITHOUT-REPLACEMENT BOOTSTRAP

In sample surveys, the original dataset X is often
sampled without replacement from a finite population.
Let n be the sample size (the number of sampled units
in X) and let N be the population size (the number of
units in the finite population). The ratio n/N is called
the sampling fraction. Intuitively, if the sampling frac-
tion is negligible, then the distribution of θ̂ = θ̂ (X) un-
der sampling without replacement is almost the same
as that under sampling with replacement. Technically,
we need to specify an asymptotic framework so that
we can describe the negligibility of n/N in a limiting
sense. We assume that the finite population under study
is a member of a sequence of finite populations indexed
by ν = 1,2, . . . . Thus, our sample X = Xν is a sample
of size nν from the νth finite population of size Nν , but
the index ν in X, n, and N will be suppressed for sim-
plicity of notation. As ν → ∞, both n and N increase
to ∞ and the sampling fraction is negligible if and only
if n/N → 0.

Consider the case where X = {X1, . . . ,Xn} is a sim-
ple random sample without replacement from a finite



194 J. SHAO

population with N units, where Xi is a d-vector of ob-
servations. Without loss of generality, we assume that
the finite population is {X1, . . . ,Xn,Xn+1, . . . ,XN }.
Let X̄ = n−1 ∑n

i=1 Xi be the sample mean and let µ =
N−1 ∑N

i=1 Xi be the unknown population mean. From
the sampling theory (Bickel and Freedman, 1984),
X̄ is asymptotically (as ν → ∞) normal with mean µ

and covariance matrix

�wo = 1

n

(
1 − n

N

)
1

N − 1

N∑
i=1

(Xi − µ)(Xi − µ)′.

If sampling is with replacement, then X̄ is asymptoti-
cally normal with mean µ and covariance matrix

�w = 1

nN

N∑
i=1

(Xi − µ)(Xi − µ)′.

Note that �wo and �w are asymptotically the same if
and only if n/N → 0.

Let X∗ be a bootstrap sample generated from X; that
is, X∗ is a simple random sample from X. Suppose
that X∗ = {X∗

1, . . . ,X∗
n} is of size n and sampled

with replacement. Then, conditional on X, the sample
mean X̄∗ = n−1 ∑n

i=1 X∗
i is asymptotically normal

with mean X̄ and covariance matrix

�̂w = 1

n2

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

Note that X̄ is asymptotically the same as µ and �̂w

is asymptotically the same as �w. Hence, if X is
sampled with replacement and a large number of
bootstrap estimates X̄∗b, b = 1, . . . ,B , are obtained,
then the empirical distribution of X̄∗b , b = 1, . . . ,B ,
provides an asymptotically valid approximation to the
distribution of X̄. On the other hand, if X is sampled
without replacement and bootstrap sampling is with
replacement, then the empirical distribution of X̄∗b,
b = 1, . . . ,B , does not provide an asymptotically valid
approximation to the distribution of X̄ when n/N �→ 0,
since �wo and �w are not asymptotically the same.

Ideally, one should generate a bootstrap sample by
taking a simple random sample without replacement
from X1, . . . ,Xn, where the bootstrap sampling frac-
tion is the same as the original sampling fraction n/N .
Such a bootstrap procedure results in a bootstrap sam-
ple size much smaller than n, which may not be desir-
able. Gross (1980) and Chao and Lo (1985) proposed
the following without-replacement bootstrap method.
Assume for simplicity that N = kn with an integer k.

We first create a pseudo-population of size N by repli-
cating X1, . . . ,Xn exactly k times and then generate a
bootstrap sample X∗ by taking a simple random sam-
ple of size n without replacement from the pseudo-
population. Note that the bootstrap sampling size and
sampling fraction are the same as the original sampling
size and sampling fraction, respectively. If X̄∗ is the
bootstrap sample mean based on X∗ generated based
on this without-replacement bootstrap, then, condi-
tional on X, X̄∗ is asymptotically normal with mean X̄

and covariance matrix

�̂wo = 1

n

(
1 − n

N

)
N

n(N − 1)

n∑
i=1

(Xi − X̄)(Xi − X̄)′,

which is asymptotically the same as �wo. Thus, the
empirical distribution of X̄∗b , b = 1, . . . ,B , provides
an asymptotically valid approximation to the distribu-
tion of X̄.

More sophisticated without-replacement bootstraps
can be found in Bickel and Freedman (1984) and Sitter
(1992a, b).

4. BOOTSTRAPPING STRATIFIED SAMPLES WITH
SMALL STRATUM SIZES

Stratified sampling with small stratum sizes is a
popular sampling design in modern sample surveys.
Suppose that the finite population under study has been
stratified into H strata with Nh population units in
the hth stratum. For each h, nh ≥ 2 units are sampled
from stratum h using some probability sampling,
independently across the strata. Let S denote the set
of indices of the sampled units and let P denote the
set of indices of the population units. We assume that
survey weights wi , i ∈ S, are constructed according
to the sampling design so that, for any set of values
{yi : i ∈ P },

E

(∑
i∈S

wiyi

)
= ∑

i∈P

yi,

where E is the expectation with respect to S. Note that
Ŷ = ∑

i∈S wiyi is the so-called Horvitz–Thompson
estimator of the population total Y = ∑

i∈P yi .
We consider the case where all nh are small, that is,

the nh’s are bounded by a fixed positive integer, but
H is large. (Technically, we assume that H → ∞ as
ν → ∞, where ν is the index for the finite population;
see Section 3.) Let n = ∑

h nh and N = ∑
h Nh. Then

n/N is the overall sampling fraction. Since the nh’s
are bounded, n/N is usually negligible (n/N → 0)
and, therefore, we may ignore the sampling fractions
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even if the sampling within each stratum is without
replacement.

Within each stratum, it is difficult to generate a
bootstrap sample according to the original probability
sampling design, especially when nh is small. Making
use of the survey weights, one may simplify the
bootstrap procedure by generating a simple random
sample from the observed values. Let Sh be the set of
indices of the sampled units in stratum h (

⋃
h Sh = S).

A straightforward application of the standard bootstrap
is to generate a simple random sample S∗

h of size nh

with replacement from Sh and define the bootstrap
sample to be S∗ = ⋃

h S∗
h , where S∗

h , h = 1, . . . ,H ,
are independently generated. The bootstrap Horvitz–
Thompson estimator of Y is

Ŷ ∗ = ∑
i∈S∗

wiyi.(3)

Let E∗ and V∗ be the bootstrap expectation and vari-
ance, respectively, with respect to the bootstrap sample
(conditional on S). It is easy to show that E∗(Ŷ ∗) = Ŷ .
By the central limit theorem, the conditional distribu-
tion of Ŷ ∗ approximates that of Ŷ if V∗(Ŷ ∗) is approx-
imately the same as the sampling variance of Ŷ .

In the mid-1980’s, however, researchers found that
this standard bootstrap method produces invalid boot-
strap estimates when the nh’s are bounded. This can be
explained as follows. From the theory of sample sur-
veys, an approximately valid estimator of the variance
of Ŷ is

v = ∑
h

nhs
2
h,

s2
h = 1

nh − 1

∑
i∈Sh

(
wiyi − 1

nh

∑
j∈Sh

wjyj

)2

.

Since S∗
h is a simple random sample of size nh with

replacement from Sh,

V∗(Ŷ ∗) = ∑
h

nhV∗(wi∗yi∗) = ∑
h

(nh − 1)s2
h,

where i∗ denotes a unit in S∗
h and the last equality

follows from

V∗(wi∗yi∗) = 1

nh

∑
i∈Sh

(
wiyi − 1

nh

∑
j∈Sh

wjyj

)2

= (nh − 1)s2
h

nh

.

(4)

From these formulas, we conclude that the variability
of the bootstrap estimator Ŷ ∗ is much too small

compared with the variance of Ŷ . If nh = 2 for all h, for
example, v = 2VS∗(Ŷ ∗). This problem does not exist if
all the nh’s are large (minh nh → ∞).

Several modified bootstrap procedures have been
proposed to circumvent this problem since the mid-
1980’s. They can be grouped into the following three
types.

The Use of Different Bootstrap Sample Sizes

McCarthy and Snowden (1985) proposed using
nh − 1 as the bootstrap sample size in the hth stratum.
If S∗

h is a simple random sample of size nh − 1 with
replacement from Sh and Ŷ ∗ in (3) is replaced by

Ỹ ∗ = ∑
h

nh

nh − 1

∑
i∈S∗

h

wiyi

[note that the factor nh/(nh − 1) is added to reflect
the fact that the bootstrap sample size in stratum h is
nh − 1, not nh], then E∗(Ỹ ∗) = Ŷ and

V∗(Ỹ ∗) = ∑
h

n2
h

(nh − 1)2
(nh − 1)V∗(wi∗yi∗)

= ∑
h

nhs
2
h = v

[by (4)]. Hence, this bootstrap procedure is an asymp-
totically valid method in assessing the variability of Ŷ .
Sitter (1992a) proposed a mirror-match bootstrap pro-
cedure that extends McCarthy and Snowden’s.

The Rescaling Bootstrap

Rao and Wu (1988) proposed the following rescaling
of the original bootstrap. Let S∗

h be a simple random
sample of size mh with replacement from Sh. Replace
Ŷ ∗ in (3) by the rescaling bootstrap estimator

Ỹ ∗ = ∑
h

[√
mh

nh − 1

nh

mh

∑
i∈S∗

h

wiyi

+
(

1 −
√

mh

nh − 1

) ∑
i∈Sh

wiyi

]
.

Then, for any mh, E∗(Ŷ ∗) = Ŷ and

V∗(Ỹ ∗) = ∑
h

mh

nh − 1

n2
h

m2
h

mhV∗(wi∗yi∗)

= ∑
h

nhs
2
h = v

[by (4)]. Note that the bootstrap sample size can be
the same as the original sample size, that is, mh = nh.
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When mh = nh − 1, the rescaling bootstrap reduces
to McCarthy and Snowden’s. When nh > 2, Rao and
Wu (1988) suggested mh ≈ (nh − 2)2/(nh − 1) by

matching the third-order moments of Ŷ and Ỹ ∗.

The Repeated Half-Sample Bootstrap

The previous two types of modified bootstrap require
either rescaling or a bootstrap sample size different
from nh, which causes a problem when applying the
bootstrap to survey data with imputed nonrespondents.
Saigo, Shao and Sitter (2001) proposed the following
repeated half-sample bootstrap that uses the bootstrap
sample size nh and does not require rescaling.

First, consider an even nh. Let S̃∗
h be a simple

random sample of size nh/2 without replacement
from Sh. Let the bootstrap sample in stratum h be S∗

h =
S̃∗

h ∪ S̃∗
h , which indicates why this bootstrap method is

called the repeated half-sample bootstrap. Then

E∗
( ∑

i∈S∗
h

wiyi

)
= E∗

(
2

∑
i∈S̃∗

h

wiyi

)
= ∑

i∈Sh

wiyi

and

V∗
( ∑

i∈S∗
h

wiyi

)
= V∗

(
2

∑
i∈S̃∗

h

wiyi

)

= n2
hV∗

(
1

nh/2

∑
i∈S̃∗

h

wiyi

)

= 2nh

(
1 − 1

2

)
s2
h = nhs

2
h,

where the third equality follows from the theory of
sampling without replacement.

Next, consider an odd nh.

(i) If S̃∗
h is a simple random sample of size (nh −

1)/2 without replacement from Sh and we define the
bootstrap sample in stratum h to be S∗

h = S̃∗
h ∪ S̃∗

h ∪
{i∗}, where i∗ is a single unit selected at random
from S̃∗

h , then the size of S∗
h is nh, E∗(

∑
i∈S∗

h
wiyi) =∑

i∈Sh
wiyi and V∗(

∑
i∈S∗

h
wiyi) = (nh + 3)s2

h.

(ii) If S̃∗
h is a simple random sample of size (nh −

1)/2 + 1 without replacement from Sh and we define
the bootstrap sample in stratum h to be S∗

h = S̃∗
h ∪

S̃∗
h − {i∗}, where i∗ is a single unit selected at random

from S̃∗
h , then the size of S∗

h is nh, E∗(
∑

i∈S∗
h
wiyi) =∑

i∈Sh
wiyi and V∗(

∑
i∈S∗

h
wiyi) = (nh − 1)s2

h.

Thus, if we use method (i) with probability 1/4
and method (ii) with probability 3/4 in forming the
bootstrap sample S∗

h , the resulting bootstrap estima-
tor has the desired property that E∗(

∑
i∈S∗

h
wiyi) =∑

i∈Sh
wiyi and V∗(

∑
i∈S∗

h
wiyi) = nhs

2
h.

If bootstrap samples are independently generated
across strata according to the previously described
method (for even and odd nh’s), then the bootstrap
estimator Ŷ ∗ defined by (3) satisfies E∗(Ŷ ∗) = Ŷ and

V∗(Ŷ ∗) = ∑
h

nhs
2
h = v.

Therefore, the repeated half-sample bootstrap is as-
ymptotically valid in assessing the variability of Ŷ .
Some simulation results can be found in Saigo, Shao
and Sitter (2001).

5. BOOTSTRAPPING IMPUTED DATA

As we described in Example 2, nonresponse often
occurs in surveys and imputation is commonly applied
to compensate for nonresponse. Let XI be the dataset
with imputed nonrespondents. If θ̂ = θ̂ (X) is an ap-
proximately unbiased estimator of a parameter θ in
the case of no nonresponse, then typically the impu-
tation method is designed so that θ̂I = θ̂ (XI ) has ap-
proximately the same mean as θ̂ . The variability of θ̂I ,
however, is typically larger than that of θ̂ , because of
nonresponse and imputation. If we treat XI as the ob-
served dataset and apply any of the bootstrap proce-
dures described in the previous sections to obtain a
bootstrap dataset X∗

I , then the variability of the boot-
strap estimator θ̂ (X∗

I ) is smaller than that of θ̂I , since
the imputation process is ignored. This was noted by
Efron (1994) and Shao and Sitter (1996) and they pro-
posed reimputing the bootstrap dataset X∗

I in the same
way as the original dataset was imputed (assuming that
a response indicator is attached to each unit so that
nonrespondents in X∗

I can be identified) and assessing
the variability of θ̂I based on the re-imputed bootstrap
dataset X∗

II = (X∗
I )I . Does the conditional distribution

of θ̂ (X∗
II) provide a valid approximation to the distribu-

tion of θ̂I ? The answer depends on the method used to
impute nonrespondents, the sampling design (whether
the nh’s are large) and the type of bootstrap procedure.

We now summarize the results that have been estab-
lished since the mid-1990’s. For simple random sam-
pling, Efron (1994) showed that the standard bootstrap
procedure together with reimputing bootstrap datasets
produces a valid approximation to the distribution
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of θ̂I . The same result was established in Shao and
Sitter (1996) for stratified sampling with large nh’s
(minh nh → ∞).

The situation of stratified sampling with some small
nh’s (which is considered in Section 4), however, is
more complicated. As we discussed in Section 4, the
standard bootstrap does not produce valid approxima-
tions when some nh’s are small. One of the three types
of modified bootstrap described in Section 4 has to be
used. Shao and Sitter (1996) pointed out that the sec-
ond type of modified bootstrap in Section 4, the rescal-
ing bootstrap proposed by Rao and Wu (1988), does
not work for data with imputed values. The success of
the first type of modified bootstrap (i.e., McCarthy and
Snowden’s bootstrap that uses nh − 1 as the bootstrap
sample size in stratum h) depends on the type of im-
putation procedure. In general, imputation procedures
can be classified into two types. The first type is de-
terministic imputation; that is, given the observed data
(and auxiliary data), imputed values are nonrandom.
Mean imputation, ratio imputation and regression im-
putation are examples of deterministic imputation. The
second type is random imputation, which imputes non-
respondents by random values generated from some
conditional distributions given the observed data (and
auxiliary data). The simplest example of random impu-
tation is imputing nonrespondents by a random sample
drawn from the respondents. Another example, random
regression imputation, is given in Example 3.

Shao and Sitter (1996) showed that McCarthy and
Snowden’s bootstrap procedure together with reimput-
ing bootstrap datasets produces a valid approximation
of the distribution of θ̂I when imputation is determinis-
tic. For random imputation, however, Saigo, Shao and
Sitter (2001) showed that McCarthy and Snowden’s
bootstrap procedure together with reimputing boot-
strap datasets overestimates the variability of θ̂ , be-
cause the bootstrap sample size in stratum h is nh − 1,
not the original sample size nh. The overestimation is
serious only when some nh’s are very small, accord-
ing to the simulation results in Saigo, Shao and Sitter
(2001). The case nh = 2 is, however, an important spe-
cial case in stratified sampling. This motivates the de-
velopment of the third type of modified bootstrap in
Section 4, the repeated half-sample bootstrap, which
together with reimputing bootstrap datasets produces a
valid approximation of the distribution of θ̂I , regardless
of whether the imputation is random or not and whether
nh is small or not (Saigo, Shao and Sitter, 2001).

To appreciate the importance of using random impu-
tation and, again, the attractiveness of using the boot-
strap to replace theoretical derivations required by the
analytic approach, we consider the following example.

EXAMPLE 3. Let S be a stratified sample from
a population P as described in Section 4 and let
Xi , i ∈ P , be a q-dimensional vector of variables
of interest. In addition to the population totals of
components of Xi , suppose that we are also interested
in estimating the population correlation coefficients
between any pairs of components of Xi . Let xij and
xik be, respectively, the j th and kth components of Xi .
When there is no nonresponse, a standard estimator
of the correlation coefficient between the j th and kth
components is the sample correlation coefficient∑

i∈S wi(xij − x̄j )(xik − x̄k)

[∑i∈S wi(xij − x̄j )
2 ∑

i∈S wi(xik − x̄k)
2]1/2 ,(5)

where x̄j = ∑
i∈S wixij /

∑
i∈S wi is the estimated

population mean of the j th component. A Taylor
expansion variance estimator for the estimator in (5)
can be derived, although the derivation is complicated
(for the simple random sample case, this derivation
is an exercise given in Serfling, 1980, Problem 6 on
page 136).

When there are nonrespondents, we consider regres-
sion imputation based on the following model:

Xi = B ′Zir + V
1/2
i Ei and

P (Ai = A|Xi,Zi) = P (Ai = A|Zi), i ∈ P ,
(6)

where Zi is a vector of auxiliary variables (covariates),
B is a matrix of unknown parameters, Vi is a diagonal
matrix whose elements are known functions of Zi ,
Ei is a random vector independent of Zi with mean 0
and unknown covariance matrix � and Ai is a vector
of response indicators of Xi . The first condition in (6)
is a typical assumption of a multivariate regression
model between Xi and Zi and the second condition
in (6) means that the response indicators for Xi are
conditionally independent of Xi , given Zi . In practice,
model (6) may not hold for all units in P , but may hold
for units in Pt ⊂ P with

⋃
t Pt = P , in which case

B and � may depend on t and imputation is carried out
within each Pt . For simplicity, we assume model (6)
holds for all units in P . Note that model (6) can still be
used even if there is no covariate Zi .

Let B̂ be the weighted least squares estimator of B

based on the respondents. Let ν ⊂ {1, . . . , q} denote the
set of indices corresponding to missing components.
For any vector c, let cν be the subvector containing
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components of c indexed by the integers in ν. A deter-
ministic regression imputation method imputes Xiν by
B̂ ′

νZi , where B̂ν is the submatrix containing columns
of B̂ indexed by the integers in ν. After imputation, pa-
rameter estimators are obtained by using standard es-
timation formulas for the case of no nonresponse and
treating imputed values as observed data. For exam-
ple, the correlation coefficient between the j th and kth
components is estimated by using formula (5) with
nonrespondents replaced by imputed values. Although
this deterministic regression imputation produces ap-
proximately unbiased estimators for the population
means of components of Xi , it does not provide an ap-
proximately unbiased estimator for the correlation co-
efficient (Shao and Wang, 2002).

A random regression imputation method that pro-
duces approximately unbiased estimators for both pop-
ulation means and correlation coefficients is proposed
in Shao and Wang (2002). For any q × q matrix C and
two subsets ν1 and ν2 of {1, . . . , q}, let Cν1ν2 be the
submatrix containing rows of C indexed by the inte-
gers in ν1 and columns of C indexed by the integers
in ν2. The random regression imputation method im-
putes Xiν by

B̂ ′
νZi + (V νν

i )1/2[�̂ννc

(�̂νcνc

)−1

· (V νcνc

i )−1/2(Xiνc − B̂ ′
νcZi) + Ẽi

]
,

where νc = {1, . . . , q} − ν,

�̂ =
∑

i∈R wiV
−1/2
i (Xi − B̂ ′Zi)(Xi − B̂ ′Zi)

′V −1/2
i∑

i∈R wi

,

R is the set of indices for which Xi has no missing
components and, given the observed data, the Ẽi’s
are independent random vectors with mean 0 and
covariance matrix �̂ − �̂ννc

(�̂νcνc
)−1�̂ννc

.
It can be seen that the estimator given by (5) with

nonrespondents imputed by random regression impu-
tation is a function of various weighted averages, al-
though the form of this function is very complicated.
Thus, the repeated half-sample bootstrap with reimpu-
tation can be applied in assessing the variability of this

estimator. On the other hand, deriving an explicit theo-
retical formula for the variance of this estimator is ex-
tremely complicated.
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