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Impact of Bootstrap on the
Estimating Functions
Subhash R. Lele

Abstract. Estimating functions form an attractive statistical methodology
because of their dependence on only a few features of the underlying
probabilistic structure. They also put a premium on developing methods
that obtain model-robust confidence intervals. Bootstrap and jackknife ideas
can be fruitfully used toward this purpose. Another important area in which
bootstrap has proved its use is in the context of detecting the problem
of multiple roots and searching for the consistent root of an estimating
function. In this article, I review, compare and contrast various approaches
for bootstrapping estimating functions.
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1. INTRODUCTION

Estimating functions (Godambe, 1960; Godambe
and Kale, 1991) have proved to be an extremely useful
methodology in applied as well as theoretical statistics.
Two of the main attractions of this methodology are
(1) its dependence on only a few features (e.g., the
mean and the variance) of the underlying probability
model (Godambe and Thompson, 1984) and (2) ease
of handling nuisance parameters. Estimating functions
yield estimators that are not strongly model dependent.
A natural issue that arises is that of obtaining the
standard errors and the confidence intervals that are
not strongly model dependent as well. Bootstrap and
jackknife techniques (Efron and Tibshirani, 1993) are
the natural candidates for obtaining such standard
errors and confidence intervals.

To facilitate further discussion, I introduce the fol-
lowing notation. Let Y1, Y2, . . . , Yn denote the se-
quence of random variables following some probability
distribution. This may be a sequence of i.i.d. random
variables or a sequence of independent but not identi-
cally distributed random variables or it might even con-
ceivably be a sequence of stationary or nonstationary
dependent variables. Let θ denote the feature of this
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probabilistic structure that we are interested in estimat-
ing using the observed data. For example, we might
be interested in the mean, the variance, the regression
parameters or the dependence parameters. In the esti-
mating function context, we construct a function of the
random variables and the parameter of interest such
that its expected value is zero. Let us denote this func-
tion by g(Y , θ). In principle, there may be several
different probabilistic structures under which the esti-
mating function has expected value zero. This yields
the celebrated robustness against the model specifica-
tion as pointed out by Godambe and Thompson (1984).
I do not specify all the regularity conditions here; the
reader may refer to Heyde (1997), for example, for
the theoretical underpinnings of estimating function
theory.

In many practical situations, an estimating func-
tion can be expressed as a sum of component esti-
mating functions. Let us call such estimating func-
tions linear estimating functions. Thus, g(Y , θ) =∑n

i=1 gi(Y(i), θ), where Y(i) denotes a subset of the
observations. For example, in the regression context
Y(i) = (Yi,Xi), whereas in the first order autoregres-
sion case, Y(i) = (Yi, Yi−1). Because this is a sum of
random variables, we usually can apply the weak law
of large numbers as well as the central limit theo-
rem, after proper standardization, to these sums. In-
verting the Normal distribution thus obtained provides
approximate confidence intervals for the parameter es-
timates (Godambe and Thompson, 1999; Rajarshi and
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Godambe, 2001). Estimation of the variance of this as-
ymptotic distribution without full specification of the
underlying parametric model is, then, the crux of
the problem.

The issue of model-robust confidence intervals was
first addressed by Royall (1986), who provided an
analogue of the observed Fisher information in the
estimating function context when the data are indepen-
dent. The jackknife technique was extended to estimat-
ing functions, particularly in the context of dependent
data, in Lele (1991a); see also Künsch (1989) for sim-
ilar developments. It was obvious that an extension of
the bootstrap technique for estimating functions would
come along. Lele (1991b) suggested one such exten-
sion. The main idea in Lele (1991a, b) was to use the
sequence of estimating functions, gi in the above nota-
tion, rather than the original observations for jackknif-
ing and bootstrapping. Later Hu and Zidek (1995) and
Hu and Kalbfleisch (2000) developed this idea theoret-
ically and showed its applicability in various important
situations. In the following section, I briefly describe
various approaches to bootstrapping estimating func-
tions and also compare, contrast and extend them.

2. BOOTSTRAPPING ESTIMATING FUNCTIONS:
CONTRASTS AND COMPARISONS

Perhaps the most straightforward and natural ap-
proach to bootstrapping estimating functions is to treat
the estimating functions gi evaluated at the estimated
parameter as independent, identically distributed ran-
dom variables and use them as the basis for resampling.
This approach was followed by Hu and Zidek (1995)
and Hu and Kalbfleisch (2000), who used the bootstrap
only in the independent data context. Their algorithm,
in a single parameter context, can be described as fol-
lows:

2.1 Multinomial Sampling-Based Algorithm

STEP 1. Solve the equation
∑n

i=1 gi(Y(i), θ) = 0
to obtain the estimate θ̂ . Let Zi = gi(Yi, θ̂), i = 1,2,

. . . , n.

STEP 2. Obtain a sample of size n, with re-
placement, from Z1,Z2, . . . ,Zn. Let us denote it by
Z∗

1 ,Z∗
2 , . . . ,Z∗

n .

STEP 3. Obtain a Studentized bootstrap estimating
function, namely,

S∗
t = V ∗−1/2

n∑

i=1

Z∗
i , where V ∗ = 1

n

n∑

i=1

(Z∗
i − Z̄∗)2.

STEP 4. Repeat Steps 2 and 3 B number of times
to obtain the bootstrap distribution of S∗

t .

This distribution is inverted to obtain the confidence
interval for the parameter. The lower limit is given by
the solution of the equation S∗

t (1 − α/2) = St (y, θ)

and the upper confidence limit is given by the solution
of the equation S∗

t (α/2) = St(y, θ).
The main difference between bootstrapping estimat-

ing functions and the classical bootstrap is that in the
classical bootstrap, we are interested in estimation of
the distribution of the estimator, whereas in the esti-
mating function bootstrap, we are interested in esti-
mating the distribution of the normalized sum of the
estimating functions. This distribution is then inverted
to find the corresponding distribution of the parameter.
One important advantage of this procedure is that of
parameterization invariance as pointed out by Hu and
Kalbfleisch (2000). A second advantage is that we need
to solve only two equations and need not obtain the so-
lution for every bootstrap sample.

Hu and Kalbfleisch (2000) strongly argued in fa-
vor of bootstrapping estimating functions rather than
the estimator. They provided theoretical as well as
practical justification for such a claim. The algorithm
provided above mimics the classical bootstrapping
algorithm, which I term the multinomial bootstrap al-
gorithm. It is well known in the classical bootstrap lit-
erature (Wu, 1986) that extending this idea to either
independent but not identically distributed random
variables (e.g., in the regression setup) or the depen-
dent data situation (both stationary and nonstation-
ary situations such as time series or spatial models)
is quite difficult. For stationary stochastic processes,
one possibility is to generalize Künsch’s blockwise
bootstrap idea to estimating functions (Rajarshi and
Godambe, 2001). In this case, we maintain the or-
der of the estimating functions and construct blocks
of consecutive estimating functions. We can then pre-
tend that these blocks are independent and identically
distributed random variables and resample them us-
ing the above algorithm. However, this is not nec-
essarily a practical idea. A large amount of data is
needed to have enough blocks, each block being large
enough by itself. This idea also does not generalize
to clustered data such as those obtained in longitudi-
nal studies or small area estimation problems in survey
sampling. The blockwise bootstrap idea also does not
apply when the underlying process is nonstationary.
The second problem with this idea is that, in the re-
gression situation, the coverage is obtained uncondi-
tionally on the covariates rather than conditionally on
the covariates.
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Wu (1986) specifically addressed the second prob-
lem with the multinomial bootstrap algorithm in the
regression context and suggested what is sometimes
called Wu’s wild bootstrap. Liu (1988) provided some
extensions and theoretical justification for Wu’s boot-
strap. Lele (1991b) suggested an extension of Wu’s
bootstrap to the dependent data situation using esti-
mating functions. In the following section, I briefly de-
scribe this approach when the data are independent but
not identically distributed.

2.2 Wu’s Bootstrap Algorithm Extended to
Estimating Functions

STEP 1. Solve the equation
∑n

i=1 gi(Y(i), θ) = 0
to obtain the estimate θ̂ . Let Zi = gi(Yi, θ̂), i = 1,2,

. . . , n.

STEP 2. Generate independent, identically distrib-
uted random variables t1, t2, . . . , tn from a distribution
such that E(t) = 0, var(t) = 1 and E(t3) = 1. Obtain
Z∗

i = Ziti .

STEP 3. Obtain a Studentized bootstrap estimating
function, namely,

S∗
t = V ∗−1/2

n∑

i=1

Z∗
i , where V ∗ = 1

n

∑
(Z∗

i − Z̄∗)2.

STEP 4. Repeat Steps 2 and 3 B number of times
to obtain the bootstrap distribution of S∗

t .

This distribution is inverted to obtain the confidence
interval for the parameter as in the previous algorithm.
The main difference between the two algorithms is in
Step 2. The proof given in Liu (1988) can be mimicked
to prove that this bootstrap corrects the same order
terms as in the multinomial bootstrap. I applied Wu’s
bootstrap and the multinomial bootstrap to the example
used by Hu and Kalbfleisch (2000) to compare the
cutoff points obtained by these two algorithms to
those obtained by the parametric bootstrap. Overall, it
appears that Wu’s bootstrap is somewhat closer to the
parametric bootstrap than the multinomial bootstrap.

Godambe (1985) provided the foundations of infer-
ence for stochastic processes using the estimating func-
tion approach. Godambe and Heyde (1987) considered
the class of estimating functions where although the
data are dependent, the estimating functions are un-
correlated with each other. In such a situation, Lele
(1991a) provided a jackknife approach for obtaining
asymptotic standard errors and Lele (1991b) provided
an extension of Wu’s bootstrap. Essentially the algo-
rithm described above remains the same but the se-
quence of ti ’s is generated in such a fashion that the

third mixed moments are nonzero. However, this ex-
tension provides only a partial correction.

For stationary dependent data, we can combine
Wu’s bootstrap with blockwise bootstrap in such a
fashion that, at least theoretically, we can obtain the
full second order correction as in the usual bootstrap.
The algorithm described below can be used in the
clustered data situation (after all, clusters are blocks
of observations, albeit of different length) as well as in
the case of nonstationary dependent data.

2.3 Wu’s Blockwise Bootstrap for Estimating
Functions Algorithm

STEP 1. Solve the equation
∑n

i=1 gi(Y(i), θ) = 0
to obtain the estimate θ̂ . Let Zi = gi(Yi, θ̂), i = 1,2,

. . . , n.

STEP 2. Split the sequence of estimating functions
in Mn blocks of size mn, each block consisting of
consecutive estimating functions. Let us denote these
blocks by G1,G2, . . . ,GMn .

STEP 3. Generate independent, identically distrib-
uted random variables t1, t2, . . . , tMn from a distribu-
tion such that E(t) = 0, var(t) = 1 and E(t3) = 1.
Obtain G∗

i = Giti . That is, each estimating function
within a block is multiplied by the same t . Put these
perturbed blocks together in the original order.

STEP 4. Obtain a Studentized bootstrap estimating
function, namely,

S∗
t = V ∗−1/2

n∑

i=1

Z∗
i , where V ∗ = 1

n

∑
(Z∗

i − Z̄∗)2.

STEP 5. Repeat Steps 3 and 4 B number of times
to obtain bootstrap distribution of S∗

t .

This algorithm can be used successfully in various
other situations as well. For example, Prasad (2002)
has provided an application in small area estimation
and linear mixed models.

2.4 Multiple Parameters

If the bootstrap distribution is obtained based on
estimators rather than estimating functions, the equa-
tions typically have to be solved repeatedly. This may
pose a substantial computational problem, especially in
the multiparameter case. However, the bootstrap based
on estimating functions involves solving the equations
only once. The confidence contours correspond to in-
verting a score test based on estimating functions (Hu
and Kalbfleisch, 2000). Consider the approximate piv-
otal quantity Q(y, θ) = ST

t (y, θ)St (y, θ). We can then
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obtain the distribution of this quadratic form using the
bootstrap and hence the estimate of its 100(1 − α)%
percentile qα . The bootstrap confidence region is then
obtained by C1−α(y) = {θ :Q(y, θ) < qα}. He and Hu
(2002) suggested using a one parameter at a time algo-
rithm in such a situation. However, solving one equa-
tion at a time does not guarantee the correct solution
unless the estimating function has a unique root. He
and Hu also resorted to simply computing the estima-
tor and using its empirical distribution rather than the
inversion described earlier.

3. MULTIPLE ROOTS AND OTHER
COMPUTATIONAL ISSUES

The above algorithms work well when there exists
a unique root to the estimating function. However,
in many situations there are multiple roots to the
estimating function. Some attempts have been made
using the bootstrap to throw light on this issue.

3.1 Multiple Roots Problem

One of the major obstacles in the application of es-
timating function theory is the existence of multiple
roots to the estimating function. See Small, Wang and
Yang (2000) for an extensive discussion of this prob-
lem. If the estimating function is obtained from the
likelihood, Wald (1949) showed that the root corre-
sponding to the global maximum is the correct one.
However, it is well known that a likelihood-type func-
tion corresponding to a given estimating function may
not exist (Li and McCullagh, 1994). In those situations
where such a function exists, Li (1996) showed that the
root corresponding to the minimax point of this func-
tion is the correct root. However, to show that a root is
a minimax point, it seems we have to find all the roots
of the equation. This can be quite tricky, if not impos-
sible, in the multiparameter situation. Markatou, Basu
and Lindsay (1998) used the bootstrap to investigate
the space of the roots of estimating functions. Hav-
ing obtained a good understanding of this space, the
problem of choosing the correct root still remains. The
main idea behind choosing the “correct” root is to see
which root is most consistent with the data. The con-
sistency of the root with the data can be tested in many
ways. A goodness of fit test is one possibility. An-
other possibility, suggested by Small, Wang and Yang
(2000), is in terms of the approximate pivotal quantity
Q(y, θ) = ST (y, θ)V −1S(y, θ). Suppose the underly-
ing estimating functions are information unbiased, that

is, E(ggT ) = −E((d/dθ)g). Then, a nonbootstrap-
based estimator of V −1 is given by

I (θ̂) = 1

n

n∑

i=1

d

dθ
gi(θ̂).

Consider the bootstrap distribution of Q∗(y, θ) =
S∗T (y, θ)I (θ)S∗(y, θ) evaluated for each root. Since
the distribution of this quadratic form is χ2

p only at
the consistent root, we can test for the correctness
of the root based on how close the bootstrap distrib-
ution is to the χ2

p distribution. Generalization of this
idea to noninformation unbiased estimation is, as yet,
not available.

3.2 One-Step Estimation and Bootstrap

If we insist on using the estimator rather than es-
timating function to obtain the bootstrap distribution,
we can simplify computation substantially by apply-
ing the one-step estimation procedure. We can use the
original estimator as the initial value in the Newton–
Raphson algorithm to solve the bootstrapped estimat-
ing functions. Lipsitz, Dear and Zhao (1994) suggested
this improvement in the context of jackknifing estimat-
ing functions.

4. AN APPLICATION OF BOOTSTRAPPING TO THE
MANTEL–HAENSZEL ESTIMATOR

Wu (1986) pointed out that the bootstrap for regres-
sion based on the pairs (Xi, Yi) provides unconditional
coverage that integrates over the variability of the co-
variates. However, there are situations where one may
want to obtain confidence intervals that are correct
“conditionally” on the observed covariate values. I will
not go into the philosophical argument about which
one is the right answer. The main issue that I want
to point out is that the multinomial bootstrap adapted
to estimating functions provides “unconditional” an-
swers, whereas the adaptation of Wu’s wild bootstrap
provides conditionally correct answers. As an exam-
ple, I will describe an application of bootstrapping es-
timating functions to obtain inferences for the Mantel–
Haenszel estimator of common odds ratio.

I will paraphrase, in very rough and lay terms, the
biological situation in the following discussion. More
detailed discussion and background information was
provided by Boyce, Lele and Johns (2003). Because
the original article is still unpublished and for the
sake of propriety, I report the analysis of the data set
that is not corrected for several known confounding
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factors. This does not affect the illustrative aspect of
the example.

The whooping crane (Grus americana) is an endan-
gered bird species. These birds typically lay two eggs
and usually both eggs hatch, but at the end of the sea-
son, in most years, only one chick survives. To help
increase the stock, the park service decided to remove
one egg from the nests and let some other species of
crane incubate that egg. In this fashion, at the end of the
season there are two chicks instead of only one. One of
the plausible evolutionary reasons for laying two eggs
is that it is an insurance policy against bad environmen-
tal conditions. The question naturally arises: would the
strategy of removing an egg have a detrimental effect
on the probability of a chick surviving from the one-
egg nest?

The available data have the following general struc-
ture. Whooping cranes nest in several areas in the
northern parts of Alberta. Within each area, an egg was
removed from some of the nests and others were left
unperturbed. At the end of the season, the presence or
absence of a chick in each nest was noted. Thus, corre-
sponding to each area we have a 2 × 2 table: number of
control nests where the egg was not removed and num-
ber of treatment nests where egg was removed. The re-
sponse is the presence or absence of a chick in each of
these nests. This experiment was conducted over sev-
eral years. We modelled the data using logistic regres-
sion, namely,

log
P(presence|X = x)

P(absence|X = x)
= α + βx,

where X = 1 if an egg was removed and X = 0
if the nest was unperturbed. We are interested in
estimating the common odds ratio β . Clearly the
intercept parameter α depends on the spatial location
as well as the year of collection. The Mantel–Haenszel
estimator of the common odds ratio is obtained by
solving the estimating equation

K∑

k=1

1

n··k
(n11kn22k − βn12kn21k) = 0,

where K is the total number of 2 × 2 tables. Based
on 56 tables, the estimate of the common odds ratio
was 2.86. The 90% confidence interval using boot-
strapping of the estimating functions (Wu’s wild boot-
strap) is (1.85, 4.44). The confidence interval based
on Royall’s robust variance estimator (Royall, 1986)
and normal approximation is given by (1.72, 4.01).
It seems that bootstrapping incorporates the skewness

of the distribution effectively. The difference between
Wu’s wild bootstrap and the multinomial bootstrap is
insignificant and hence the issue of conditioning does
not seem critical in this particular data set. The estimate
and the associated confidence interval indicate that re-
moving an egg might, in fact, be beneficial to the sur-
vival of the chick. This result, although counterintuitive
at first glance, in fact, can also be supported using bio-
logical and evolutionary arguments.

5. SUMMARY

Estimating functions provide an effective way to
conduct statistical inference without specifying the full
probability structure. Bootstrap methods are an effec-
tive way to obtain model independent standard errors
and confidence intervals for parameters of interest.
A combination of the two methodologies has begun in
earnest only recently. There are many possible ways in
which this methodology can be extended. Application
of saddlepoint approximations in conjunction with the
bootstrap is an interesting approach that has not been
explored in the estimating function context. Adaptation
of various corrections to bootstrap intervals in the con-
text of estimating functions is also an interesting open
problem. Bootstrap methods might also have a role to
play in solving the thorny issue of detection of multiple
roots and selection of the correct root.
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