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A Conversation with Emanuel Parzen
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Abstract. Emanuel Parzen was born in New York City on April 21,
1929. He attended the Bronx High School of Science, received an A.B. in
Mathematics from Harvard University in 1949, an M.A. in Mathematics from
the University of California at Berkeley in 1951 and his Ph.D. in Mathematics
and Statistics in 1953, also at Berkeley. He was a research scientist at
Hudson Labs, Physics Department of Columbia University, from 1953
to 1956 and an Assistant Professor of Mathematical Statistics at Columbia
from 1955 to 1956. In 1956, he moved to Stanford University, where he
stayed until 1970, at which time he joined the faculty at the State University
of New York at Buffalo, where he served first as Leading Professor and
Chairman of the Department of Statistics and then as Director of Statistical
Science. In 1978 he moved to Texas A&M University as a Distinguished
Professor, a post he currently holds. He has been a Fellow at Imperial College
London, at IBM Systems Research Institute and at the Center for Advanced
Study in the Behavioral Sciences at Stanford, as well as a Visiting Professor
at the Sloan School of MIT, the Department of Statistics at Harvard and the
Department of Biostatistics at Harvard. In 1959 he married Carol Tenowitz.
They have two children and four grandchildren.

Professor Parzen has authored or coauthored over 100 papers and 6 books.
He has served on innumerable editorial boards and national committees, and
has organized several influential conferences and workshops. He has directed
the research of many graduate students and provided advice, encouragement
and collaboration to students and colleagues around the world. To honor
these contributions, he has been elected a Fellow of the American Statistical
Association, of the Institute of Mathematical Statistics and of the American
Association for the Advancement of Science. In 1994, he was awarded the
prestigious Samuel S. Wilks Memorial Medal by the American Statistical
Association.

The following conversation took place at Texas
A&M on May 17, 2000.

Newton: Manny, you have had a long and distin-
guished career and I have heard you talk many times
about the role of luck and skill in determining success.
Could you talk a little bit about that?

Parzen: Yes, I’d like to. I’ve been very successful
in the education I’ve received and the jobs that I’ve
had, and I can’t believe it is because I’m smarter than
others. I think it is because I am luckier than others.

H. Joseph Newton is Professor, Department of Statis-
tics, and Dean, College of Science, Texas A&M Uni-
versity, College Station, Texas 77843-3143 (e-mail:
jnewton@stat.tamu.edu).

Many people have said to me, “Of course, you’ve been
very lucky.” So the question is, what is luck? I give
a formal definition of luck which is the Yiddish word
Mazel, in which M stands for place, z for time and l for
speech. So, luck is being in the right place at the right
time and saying the right things. There is, however,
a rational element of luck of which people making
choices in their careers should be aware. People in
the academic world often do well, not because they
are smarter than others, but because they have chosen
somehow sexier fields to research. People who have
accomplished much are highly rewarded and esteemed
because what they are doing happens to be at the
frontier of interest. So the issue of luck in academics

357



358 H. JOSEPH NEWTON

is the question of, in general, good taste in the choice
of problems for research.

EARLY LIFE

Newton: Anyone who knows you can immediately
tell that you grew up in New York City. What was your
family like and what impact has New York had on your
life?

Parzen: Let me first talk about coming from New
York. People from New York are different from other
people (it has been pointed out to me) because they
have high self-esteem and high energy. In Texas people
have told me, “You do everything faster than us; you
talk faster, think faster and move faster.” There is
a characteristic of people from New York that was
pointed out to me in 1949 when I entered California
at Berkeley. When we have a conversation, our first
words when we respond are, “You’re wrong!” People
are aghast, as they have never heard anyone say that to
anyone. That is just a New York mannerism, I think.
Richard Feynman writes that as a young physicist at
Los Alamos, Niels Bohr met with him daily because he
said, “You’re the only one who tells me I am wrong.”

I am the youngest of nine children; my father was
a rabbi. I was born at home in Harlem. At the age
of three we moved to the Bronx. I went to Yeshiva,
which is a Jewish parochial school. The one advantage
I had was that, thanks to my numerous siblings and my
parents, there was always a lot to read in the house, so I
was always up on current affairs even from a young age
and had a broad knowledge of facts and always loved
learning new information.

Newton: What was the Bronx High School of
Science like?

Parzen: I entered the Bronx High School of Sci-
ence the year that a special high school in New York
City called Townsend Harris closed down and thus
Bronx Science was getting a lot of transfer students.
I, too, had transferred as a sophomore from Yeshiva.
Because I was very interested in current events, I was
very involved in social studies and led an organiza-
tion called the Forum which brought in many outside
speakers, congressmen and so on. Consequently, peo-
ple who knew me then are surprised I turned out to be
a mathematical type because they were sure I was go-
ing to be a lawyer.

I was student body president in my last semester and
I tell the story that my campaign slogan was, “My op-
ponent Bill has personality, and I have character.” Peo-
ple told me that what I actually had was poise. I as-
sumed poise is knowing enough so you are confident

in how to act in any social situation. The one thing
that people claimed showed that I have poise was that,
whenever I walked into a room in anyone’s home or
anywhere, the first thing that I did was head toward
the bookcases and start reading the titles on the books.
So then it was said, “That guy has poise.” Instead of
standing around looking lost, I was at home. I would
go right to the bookcase and then when someone said
things were starting, I’d turn around and say “Let’s be-
gin.”

HARVARD AND PROBABILITY AND STATISTICS

Newton: After Bronx Science, you went to Harvard.
How did you become interested in probability and
statistics?

Parzen: A series of things happened that I claim
determined my future. The first thing to understand
is that I was lucky in choosing to major in math.
In 1945, colleges like Harvard would only admit
a limited number of students from public high schools.
Only two of us (out of a very brilliant class) were
admitted from Bronx Science. My classmate feels
that he made a big mistake in going to Harvard
because he majored in physics and received very
little attention from his department. I majored in
mathematics, halfway between my two real interests,
physics and economics. As a result, I got a lot of
attention from the faculty. For example, there was
a tutorial system. Every week you met with a math
faculty member and discussed something. This had
the drawback that I had the problem of finding topics
to discuss that interested me. I happened to find
a secondhand book (in a bookstore in Harvard Square)
that was just published, but available for only $4. It was
Harald Cramér’s Mathematical Methods of Statistics,
which is now being reprinted and is described in the
ads as “a synthesis of English and American statistical
theory and Russian and French probability theory.”
I was only a sophomore, but I had the opportunity
of studying something with a tutor and I decided to
choose the book by Cramér. This was the first thing
that determined my future.

The second incident that happened involved one of
the world’s greatest mathematicians, Saunders Mac
Lane. He felt that statistics was important, and as
a kind of a one-time experiment in his life offered
an introductory course in statistics. However, no one
wanted to be the grader. I hadn’t had the course, but
I volunteered in order to get into the job of being
a grader of math papers. So I was a grader in my
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first statistics course. After that, I had a course in
mathematical statistics from Fred Mosteller early in his
career at Harvard, and he has been a good friend of
mine for 50 years.

Finally, I had to write a senior honors thesis and
I was very interested in the philosophical aspects of
life. Probability is a subject of both the philosophical
and mathematical sciences, so I chose to write a bache-
lor’s honors thesis on the philosophical and mathemat-
ical foundations of probability. Thus, when I went to
graduate school at Berkeley, I went as a math student,
but oriented toward probability.

Newton: You were in graduate studies at Berkeley
from 1949 to 1953. Who were some of the people at
Berkeley at that time?

Parzen: First, you have to understand that I came
to Berkeley at a very historic moment: the “Year of
the Oath.” There was a lot of faculty fervor, constant
meetings and protests because the faculty were being
compelled by the regents to sign a loyalty oath (which
eventually the Supreme Court ruled unconstitutional).
The math department was unique on the campus in
believing that since we were all in this together, the
teaching assistants should be considered faculty and
join the faculty meetings in order to help with the fight.
So that brought a lot of closeness.

When I became a teaching assistant at the University
of California at Berkeley, I was only 20 and a first-year
student. It was extremely rare for a first-year student
to become a teaching assistant, so I naturally asked
them how it happened. They said, “Well, you have
wonderful letters of recommendation; in particular
from George Mackey, who very rarely writes a good
letter of recommendation.” They treated me like a star.
I didn’t realize that teaching assistants rarely taught
calculus. Not only did I want to teach calculus but I
wanted to teach the first semester of calculus my first
semester, calculus II my second, and so on. I relearned
college math by teaching it for two years in the correct
order. I was very much part of the establishment from
age 20.

Indeed, in order to get a drink in California you had
to be 21. I didn’t have a driver’s license, but I would
show my teaching assistant card and they were sure
that you had to be 21 to have a teaching assistant
card, and they had never met anyone who had been
a teaching assistant who wasn’t 21, so they assumed
I could be served.

One person with whom I had close contact was
the man who built the Department of Mathematics
at Berkeley, Griffith C. Evans. He shared my interest

in mathematical economics and was also graduate
advisor when I entered. I attended his seminars in
mathematical economics. My second contact was with
Charles Morrey, who was the head of the department,
and whose research assistant I was in my third year
there. I wrote my thesis answering a question of his.
A third influence was Anthony P. Morse, a great
mathematical expert on measure theory. I took several
courses and seminars on measure theory with Morse.
He was very wealthy; he was a member of the Morse
family who invented the Morse code.

Newton: How about on the statistics side?
Parzen: On the statistics side, I had very close in-

teraction with Michel Loève, who taught probability
theory. Interestingly, the people who first taught mea-
sure theory in the University of California were the
statisticians. When Jerzey Neyman came to Berkeley,
he wanted to bring in advanced probability. The math
group did not teach measure theory. Essentially, Ney-
man fought for the right to teach courses like that; he
negotiated with the head of the math department for
a document that he calls his Magna Carta Liberatum:
his freedom to teach what he wanted even though it
overlapped with what the mathematicians may have
thought was theirs.

So I had close contact with Loève and very close
contact with Neyman. I was very fortunate that I was
a teaching assistant in mathematics, not statistics, so
I wasn’t under Neyman’s control, because he obviously
wanted to control the actions of the people who worked
for him. I was able to relate to him as a person with
similar intellectual interests to mine, but was not under
his financial control. And then, I had close contact with
Eric Lehmann, who in a certain sense was trying to
advise me from being too much under the sway of
Neyman.

At the time I was finishing up my thesis, Lucien
Le Cam was finishing his thesis. He was a year before
me, and I adapted a lot of his work and extended it to
uniform convergence.

Newton: What was your dissertation about?
Parzen: My dissertation was likely one of the hid-

den gems of the field of statistics. It was about uni-
form convergence. It started because I was Morrey’s
research assistant, and he was trying to derive the equa-
tions of hydrodynamics from statistical mechanics with
the idea of approximating a continuum as the limit of
an ensemble of n particles as n → ∞, and he wanted
the approximation to be uniform in time. Stimulated by
that problem, I extended it to comprehensive research
on uniform versions of the theorems of probability and
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statistics. So my Ph.D. thesis was “On Uniform Con-
vergence of Families of Sequences of Random Vari-
ables.” Now that is an interesting title! The man who
hired me for my first job was a physicist, William
Nierenberg, who was the outside member of my Ph.D.
committee. I went to the physics department office to
put my thesis into his box. I happened to hang around
there, and he showed up with some students and took
the thesis out of his box and read the title to the stu-
dents with a big laugh, “Can you imagine something
like this? How useful can it be, ‘on uniform conver-
gence of families of sequences of random variables’?”
It had three chapters. Chapter 1 concerns character-
istic functions converging uniformly in a parameter.
In statistics we don’t have a single probability distribu-
tion, but rather parameterized families of distributions;
not P but Pθ . So you would like to know whether the
theorems are uniform in this unknown probability dis-
tribution Pθ . The first task is to get the conditions for
the uniform convergence of characteristic functions of
the parameter to imply uniform convergence of the dis-
tribution functions. To accomplish that, and in partic-
ular to get necessary and sufficient conditions, I had
introduced the right kind of definitions.

Chapter 2 was on uniform-in-a-parameter probabil-
ity limit theorems, central limit theorems, weak and
strong laws of large numbers and the Borel–Cantelli
lemma. The key contribution I made was figuring
out how to define uniform-in-a-parameter concepts for
the strong law of large numbers and Borel–Cantelli
lemma. It is a case where if you have the right defini-
tion, just follow other people’s work and prove the the-
orem. Chapter 3 was on uniform-in-a-parameter math-
ematical statistics, maximum likelihood estimation and
the Glivenko–Cantelli theorem.

I should mention students I knew in Berkeley.
Besides Le Cam, two other fellow students who around
1953 got their Ph.D.s with Professor Loève were Julius
Blum and Leo Breiman.

INTEREST IN TIME SERIES

Newton: How did you become interested in signal
detection and time series?

Parzen: Again, I was lucky in my choice of first
job, which changed my career from probabilist to time
series analyst and system communication engineer,
doing research on statistical inference on stochastic
processes and statistical spectral analysis. I chose to
work at a physics laboratory for personal reasons.
The Hudson Laboratory was in New York, where

I wanted to live with my mother, and it also gave me
a deferment from the Korean War (a motivation shared
by a lot of the physicists at the laboratory). I was hired
because the physicist on my Ph.D. committee, William
Nierenberg, took the job as director of the Hudson Labs
and thought that working there would be a good thing,
which it was. The problems of the lab were connected
with signal processing. One of the jobs they were
doing was studying the ocean. They wanted to know
what the ocean sounded like. They were measuring
noise in the ocean and analyzing spectra of the noise.
I decided that this was a problem where we needed
more theory.

Another problem that I worked on was passive
detection of submarines. Usually you send out a signal
and you can determine if something is there, but
of course the signal you send out could be heard
by the person it was sent out to find, so it alerts
them that you are there. The question was whether
it was possible to detect submarines just from the
noise they were making, that is, by listening without
sending out any signal. We devised a method that
was essentially estimating the fourth cumulant of the
stochastic process. You had the noise of the submarine
in the presence of the Gaussian noise in the ocean,
so you modeled the noise of the submarine through
the propellers—called cavitation noise—and detected
the submarine by detecting the presence of a non-
Gaussian component in the noise. We actually had
trials of submarines and it seemed to work.

Newton: Who were the people at the time who were
working in stochastic processes?

Parzen: On the mathematical side, the people who
in 1953 were doing work on what you might call
the foundation of statistical inferences on stochastic
processes were all in Sweden. In particular, there was
Ulf Grenander, whom I knew about because he actually
had lectured at Berkeley when I was there. I didn’t have
too much contact with him, but I started studying his
thesis. He worked on spectral analysis and detection
of signals. Well, this field that Grenander (1950)
started became, of course, the foundation of statistical
communication theory and signal processing. All the
engineers were trying to figure out what this was about,
and I happened to get there first because I had the
submarine detection problem at Hudson Labs. Another
person doing leading work in stochastic processes at
that time was Peter Whittle.

Let me make a general remark. A lot of mathemati-
cians became attracted to signal processing theory and
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FIG. 1. International Statistical Institute meeting, Paris 1961: on right side, starting with second person, Ingram Olkin, Dorothy Gilford,
Emanuel Parzen, Carol Parzen, Ellen Chernoff, Judy Chernoff; on left side, starting with second person, Betty Scott, Jerzy Neyman, Ann
Durbin, Jim Durbin, Miriam Chernoff, Herman Chernoff, Ed Deming is also in the picture.

essentially turned into engineers, even becoming pro-
fessors of engineering. I think what was different about
me was that I became interested in the same prob-
lems, but retained my identity as a statistician working
in a statistics department. When I would go to signal
processing meetings, I was the only person there from
a statistics department.

MODERN PROBABILITY AND ITS APPLICATIONS

Newton: While that was going on, you were doing
work that led to your 1960 book, Modern Probability
Theory and Its Applications, which has had a huge in-
fluence on generations of statisticians and nonstatisti-
cians alike. How did the book come about?

Parzen: I was teaching at Columbia University,
which at that time had the world’s greatest electrical
engineers in its electrical engineering department—
Lofti Zadeh in particular. They were spending half of
their time teaching probability because probability was
an important part of their approach to electrical engi-
neering. They recognized that this was very inefficient
and that it would be much better to have a course in
probability that the students in electrical engineering

could take. I happened to be there and I created such a
course and started teaching it. I have to emphasize that
the first day I started teaching introductory probabil-
ity I had hundreds of students, because there were all
these engineers wanting to study signal processing and
therefore probability. When I went to Stanford in 1956,
I started a course in probability and again I had im-
mediately hundreds of students who were interested in
working in industry.

So that’s essentially why I wrote the book. My job
as a graduate student at Berkeley had been to fill in
the symbols in the manuscript of Loève’s probability
book, so I was absolutely familiar with that book
cover to cover. Thus, I told my students that I would
give them in an elementary way the contents of the
most advanced book on probability that had just been
published by Loève.

Newton: Why do you think the book has been so
popular?

Parzen: I think there are several reasons. Number
one, engineers have told me “Your book purports to be
a mathematics book, but I can tell it’s an engineering
book.” Somehow it had that flavor. I did teach engi-
neers, so the book is very readable. Students love to
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read it and at the same time it is encyclopedic. To this
day, I have never failed to find a topic in the index,
whether it be cumulants or medians or anything else.
It is chock full of information, plus it has tables of so-
lutions to occupancy problems and other problems and
tables of distributions.

I can boast that at Stanford 500 students per year
took the course; the bookstore manager told me he
never saw a used copy of my book. It was a book that
people wanted to hold on to. I also should point out
that my book has a minicourse in advanced probability
in its last two chapters. Many people have told me,
including Russian probabilists, “You’re so young and
your book is so profound.” The proofs I have of the
theorems of advanced probability that in many other
books take 20 pages are compressed into a few pages.

Another reason that book was written was that when
I started writing it, I gave it to the typing pool that
the Stanford department had, and a wonderful lady,
Mary Alice McComb, began typing it. She would come
to my office door every morning and say, “Do you
have more for me to type? Otherwise, they will put
me back in the typing pool.” No Mary Alice not that!
So I began writing furiously so that Mary Alice would
have something to type and not go back in the typing
pool.

YEARS AT STANFORD

Newton: In 1956, you went to Stanford, where you
stayed for 14 years. How did you happen to go to
Stanford?

Parzen: Again, I want to emphasize that, as in all my
jobs, I was recruited. The Department of Statistics at
Stanford was started in 1948. It was built to eminence
by Albert Bowker and in the official 50th anniversary
history of the Stanford Department they write that by
1956 the department had reached eminence. That was
the year Sam Karlin and I arrived. Bowker wanted to
hire the best young probabilists and went around the
country interviewing people about a list of the best
young probabilists, and I was number one on his list.
That was the story of the way I got to Stanford and
again I was given star treatment (until Lincoln Moses
became Head in 1964).

Newton: Who were some of the people with whom
you worked?

Parzen: The people I interacted with at Stanford
were first Bowker, then Chernoff, then Karlin and
many others. Let me say that the atmosphere at Stan-
ford in 1956 was unbelievably friendly. We would have

FIG. 2. International Statistical Institute meeting, Paris 1961:
Sam Greenhouse, Sir Ronald A. Fisher, unknown, Carol Parzen,
Ingram Olkin, Emanuel Parzen.

department parties after every football game and were
very supportive of each other. By “we” I mean my-
self, Herman Chernoff, Herb Solomon (who was Head
from 1959 to 1964), Ted Anderson, Ingram Olkin, Sam
Karlin, Tom Cover, Ken Arrow (in economics), Pat
Suppes, Tom Kailath (in electrical engineering), Gene
Golub (in computer science), George Forsythe (also in
computer science, a big supporter of me) and Joe Keller
(in mathematics). The joint Berkeley–Stanford statis-
tics colloquiums were held twice a semester and pro-
vided fantastic parties and opportunities for interaction
with everybody.

Newton: During that time a remarkable number of
things happened in your career. For example, your
stochastic process book was published. How did that
come about and why has this book had such an
influence?

Parzen: At Stanford I developed Statistics 116, “In-
troductory Probability,” which used my textbook Mod-
ern Probability Theory, and I also developed intro-
ductory stochastic processes courses, Statistics 217
and 218. Now you need to understand that this was
part of a larger controversy in statistics about how to
teach probability and statistics. Traditional statisticians
felt that you should have a single year course that had
probability taught as part of a statistics course, and did
not support the concept of an introductory probability
course. There were national workshops that were held
on this question. It was very controversial among sta-
tisticians to have a separate probability course. I argued
that there were in fact two groups: those who wanted
to go on to statistics and those who wanted to go on to
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stochastic processes. Again, coming from my contact
with the engineers, I knew that they wanted to study
stochastic processes. Eventually, the engineers stud-
ied a famous book by Papoullis that was a combined
course on stochastic processes and probability. I was
interested in the whole curriculum and I proposed that,
under our quarter system, the first quarter would be
probability out of my book, and then we would have
two quarters on stochastic processes, which was of
great interest to students in operations research and
electrical engineering. We would also have two quar-
ters on statistical inference, which essentially could
start off without teaching probability, as that material
would have already been covered in the course on prob-
ability.

Over the years, many scientists and engineers have
told me how important to their careers were the
techniques they learned from my book on stochastic
processes. This was a time when the synthesis of
ideas and modeling techniques that they provided were
highly relevant and influential to the problems being
researched by many scientists and engineers. Students
in my course on stochastic processes reported that
they understood that, to solve problems, the trick was
to choose a variable on which to condition. They
lamented that there seemed to be no general procedures
for choosing the conditioning variable. My goal was
to teach creativity—not how to quickly complete the
solution, but how to start it and proceed step by step.
Students who take engineering stochastic processes
courses learn a lot of material as a cookbook, and their
experience is that they have no idea how to start when
they encounter an unfamiliar problem.

Newton: It was also during this time that your pio-
neering work on statistical spectral analysis appeared.
What led you to your work on optimal spectral density
estimators?

Parzen: To answer that I need to first talk about
the impact of spectral estimation. In 1960, I organized
a session at the national statistics meetings on spectral
estimation that was eventually published in Technomet-
rics in 1961. It consisted of contributions by Gwilym
Jenkins and myself, along with discussion by John
Tukey and Roy Goodman. I think these four papers did
a lot to spread the word about spectral estimation to
applied scientists, economists and engineers. It is inter-
esting to note that Jenkins’s paper was called “General
Considerations in the Analysis of Spectra” and mine
was called “Mathematical Considerations in the Esti-
mation of Spectra,” so the two papers represented the

British style and the American style. I had many econo-
mists tell me that they couldn’t understand Jenkins’
paper, even though it was supposed to be the practi-
cal, down-to-earth paper, but that they fully understood
my paper. Really, it got them going. Statisticians de-
bate a lot about the issue of mathematics and statistics,
and whether we should be problem-solving oriented
or general-theory (theorem proving) oriented. I regard
our spectral analysis papers as a counterexample to the
claim that we lead people astray unless we emphasize
the problem-solving view. It is obvious that there are
people who would find a British style “general con-
siderations” paper more understandable, but there were
many who found that the American style “mathemati-
cal considerations” more understandable. So I feel that
we were very successful in spreading the word.

Newton: What was the basis of your spectral analy-
sis ideas?

Parzen: My first paper in 1955 on statistical spec-
tral analysis considered both continuous and discrete
parameter time series. This was lucky because it gave
me insights needed to obtain general formulas for the
bias and mean square error of kernel spectral estima-
tors. My spectral estimation theory was based on the
concept of a covariance approach to spectral estima-
tion proposed by Norbert Wiener in his 1930 theory of
generalized harmonic analysis. At a meeting in 1967,
he told me that he was afraid that his 1930 paper con-
tained nothing new and that physicists knew it all. I as-
sured him that in no way was this true. In the 1980s,
we learned that the immortal physicist, Albert Ein-
stein, had proposed the basic ideas of spectral estima-
tion in 1914 in response to a question from a friend
about analyzing meteorological time series by smooth-
ing a periodogram. This is called the direct approach.
Einstein had not taken Wiener’s covariance approach,
called the indirect approach, which provides the most
rigorous approach to both the probabilistic and sta-
tistical theorems of spectral representation analysis.
The direct method of spectral estimation by smooth-
ing a periodogram became computationally competi-
tive and attractive in the 1960s with the introduction of
the fast Fourier transform (FFT) by Tukey and Cooley.
This contribution was recently named one of the top
ten algorithms having the greatest influence on the de-
velopment and practice in science and engineering in
the 20th century. The popularity of the FFT began with
the recognition that it revolutionized computing times
of time series covariances.

My progress in spectral estimation theory in 1955
was due to my asymptotic evaluation of the bias of ker-
nel spectral estimators in terms of the differentiability
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of the unknown density and the kernel’s characteris-
tic exponent r , which is intuitively equivalent to c + 1,
where c is the number of vanishing moments of the
kernel function. The mean square error of spectral esti-
mators was shown to decrease as n−2r/(2r+1). For non-
negative spectral estimators the exponent r is at most 2,
for which we obtain the celebrated n−4/5 rate of mean
square error attainable by nonnegative spectral estima-
tors with kernels guaranteeing positive estimators. The
often quoted advice that mean square error depends
mainly on bandwidth is true for kernels with the same
exponent r . This fact is very important as refutation of
the criticism that research on kernels is an example of
how mathematical research is not beneficial to statis-
tics.

Newton: What led to the Parzen window?
Parzen: I proposed in 1957 the very popular (in

applications) Parzen window (r = 2) for kernel spec-
tral estimation. Competitors were the Bartlett window
(r = 1) and the Tukey window (not necessarily non-
negative). In the 1960s, my econometrician friends
(such as Mark Nerlove) would say that if you want
to obtain publishable results from spectral estimation
use the Parzen window; its graphs of estimators were
most interpretable, especially for cross-spectral analy-
sis. Scientists, particularly oceanographers, reported
that using the Parzen window reduced “ghosts” (spu-
rious modes due to aliasing).

The theory of statistical spectral analysis provided
a role model for theories of function estimation and
semiparametric inference which are being applied in
economic data analysis.

Because there was controversy among statisticians
about criteria for good spectral estimators, in Parzen
(1958) I proposed that the appropriate response of
a methodologist was: “In a situation such as this, it
would appear that in first approaching the problem one
should obtain as many theorems as possible. One’s cri-
teria as to what constitutes a solution may change but
the theorems endure, as statements of incontrovertible
facts which may or may not be relevant to the prob-
lem at hand.” A major result in my 1958 paper—that
I regret not exploiting empirically—is the optimal ker-
nel k(u) = 1/(1 + u2r) which was shown by Cogburn
and Davis in 1974 to be equivalent to fitting splines.
Any modern collection of tools for spectral analysis
must include function approximation by splines and
wavelets. I regard my 1958 paper as secretly influential
because its methods of proof were adapted in several
Ph.D. theses to find optimal estimators for various
function estimation problems.

Newton: Can you comment on the fact that many
people know very little about frequency domain time
series methods?

Parzen: In the 1970s, and even now, the only part of
the theory of time series analysis known to many ap-
plied researchers was time domain methods, especially
the highly applicable ARIMA modeling methods in-
troduced by George Box and Gwilym Jenkins. I still
urge spectral domain thinking; it is useful even when
one is not looking to measure cycles but only measur-
ing signal in noise (such as in intervention analysis) to
take advantage of the fact that a time domain model
of the noise is an adequate fit if its spectrum has the
right shape. Mandelbrot in the 1960s told me that R/S
research on economic time series with long tails and in-
finite second moments was intended to “slay the spec-
tral analysis dragon.” I assured him that his ideas help
us amend, extend and strengthen (but not discredit) the
application of spectral analysis to real economic data.
I am confident that important applications of spectral
methods to economics will yet emerge in the analysis
of financial time series.

REPRODUCING KERNEL HILBERT SPACES

Newton: In the late 1950s and early 1960s you
also introduced the idea of reproducing Hilbert space
representations of estimators in time series. Do you
remember how you thought of this and could you say
why this idea is so useful in so many areas of science
and engineering?

Parzen: I remember very well. Let me first introduce
the background. In the 1940s Hilbert space methods
were introduced by Kolmogorov and Loève to study
the probabilistic structure of time series. A time se-
ries X(t) with finite second moments has a covariance
kernel K(s, t) which is positive definite. Therefore,
there exists a Hilbert space, denoted H(K), of func-
tions f (t), with suitable inner product 〈f,g〉 such that
〈f,K(∗, t)〉 = f (t) for all points (observation times) t

and functions f in the Hilbert space H(K). H(K) is
called a reproducing kernel Hilbert space (RKHS) be-
cause of the way the kernel reproduces (represents) the
value of f at a point t . It is natural to introduce RKHS
to solve the optimization problem of finding the func-
tion f of minimum norm ‖f ‖ in a Hilbert space H

with inner product 〈f,g〉 when f is subject to the con-
straint 〈f,g(t)〉 = b(t). Current research by statisti-
cians on functional inference makes extensive use of
RKHS, as is shown in the excellent book of Ramsay
and Silverman (1997).
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In the 1950s, the problem was to develop the foun-
dations of linear statistical inference on time series—
more precisely, regression analysis of continuous pa-
rameter time series. The engineering custom was to
choose a coordinate system in which to frame the prob-
lem, where the problem might be Fourier series ex-
pansion, eigenfunction expansion, or discrete sampling
or interpolation. In 1957, lecturing on this engineering
literature (especially the classic book by Lanning and
Battin, 1956), I had the inspiration that RKHS repre-
sentations could be used to give a coordinate free pre-
sentation of statistical estimators in terms of RKHS in-
ner products, whose computation would be the final
step in the analysis.

Newton: Can you give me an example?
Parzen: Suppose somebody was trying to model

data collected by airplanes flying at various heights.
You have discrete heights and continuous times. The
modeler would work on the problem of estimation
and would create pages and pages of symbols with
summations over the heights and integrals over the
times. My opinion is that it is impossible not to
make a mistake if you kept on writing formulas with
summations and integrals, but you could replace all the
summations and integrals with inner product symbols
and achieve an economy of thought that would reduce
the chance of error. Then at the end you would get the
form of the answer and implement the various inner
products by actual summations and integrals.

In addition, suppose you tried to detect a signal
in the presence of noise. What you do is take the
signal and expand it and do the formal calculations,
and say, “Here is my estimator.” Once you know
the answer (the estimator), then you can just verify
that it has properties the answer is supposed to have
under these conditions. So, the method of doing the
calculations, the hard math of actually computing the
answer, is easier if you have an easy way (soft math)
to verify that it is the right answer. So, that is why
I think that RKHS is a very beautiful thing. More
importantly, it led to the concept of regression analysis
of continuous parameter time series which turns out to
help solve a very central regression design problem:
Given a parametric family of functions on the interval
zero to one, what is the minimum number of points that
you need to observe of the function in order to compute
estimators of the parameters that are almost as efficient
as if you had observed the whole function? Well, this
problem turns out to be equivalent to the problem
of computational complexity. How do you compute
an integral with the fewest computations that in fact

give you practically the right answer? This was solved
by Sacks and Ylvisaker, who used the framework of
reproducing kernels to do it. Randy Eubank applied
these seminal results in his 1979 thesis on representing
a sample by a few order statistics.

In the 1950s abstract reproducing kernels started.
I started it in statistics, and the numerical analysts
started it in numerical analysis. Statisticians should
know about this history and the many applications.

Newton: How did you know about reproducing
kernel Hilbert spaces?

Parzen: The mathematics department at Berkeley
didn’t have the usual Ph.D. comprehensive exams;
instead, they had the equivalent of a minor thesis.
You were handed a few words and you would have to
find out mathematically what those words represented.
You lectured on that topic to your committee. The
committee then asked questions on anything they
wanted to, but it began with a presentation of a lecture
on the minor thesis that you were assigned—that was
intended to be chosen in a field that wasn’t your main
field of interest. Many students took years to fulfill
this requirement. The abstract concept of reproducing
kernels was introduced in France in the early 1940s
by Aronszajn, who published his first comprehensive
paper in English in 1950. Around that time I was given
my minor thesis topic, which just said “reproducing
kernels.” My first problem was to find out what this
meant. I told my fellow graduate students, “I have
to find out what reproducing kernels are and I can’t
seem to find any literature on it.” One of my fellow
graduate students was married to a French woman and
he found a reference to the first Aronszajn paper in
French. Now the fascinating thing about reproducing
kernels is that they arose out of a thesis by Stephen
Bergmann, who was said to speak all the languages of
the world equally badly. He came to Berlin in 1920
and took a course in several complex variables, and
when he finished writing up what he thought was his
version of the lecture notes, it turned out to be his
thesis. From 1920 to 1940, the idea of the kernel
function as a way of studying the various problems
of differential equations and several complex variables
developed among applied mathematicians. But, instead
of having a general theory, they would say, “Well,
we are going to follow the steps we had in our
previous paper that introduced the kernel with the
following property and so on and so forth.” Aronszajn
had the inspiration that we could take all these ideas
and by abstracting them prove general versions of
properties found in individual cases. So he developed
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the abstract Hilbert space theory of reproducing kernels
to essentially unify 20 years of a certain school of
applied mathematicians on the kernel function method
of doing applied mathematics. That was 1940 and led
to his 1950 comprehensive paper. So I studied this
for the sake of passing my comprehensive exam, but
I studied this whole literature and learned all about
kernel functions.

I regard myself as being very lucky to have learned
about kernel functions for my comprehensive exam.
Then in the year 1952, the great mathematician Solo-
mon Bochner decided to spend a year slumming among
statisticians and I ate lunch with him every day and
took his course on Fourier analysis and Bochner’s
lemma, which I used in my spectral density estimation
paper and my theoretical work on signal processing.
For those interested in the details, a collection of 20 of
my papers from 1956 to 1964 is published in my 1967
book Time Series Analysis Papers.

I think the main thing about my books and my papers
is that they do not just present isolated facts; they try
to be a comprehensive presentation. If people need
facts, they are all there. In the reviews of my book on
stochastic processes, for example, very applied people
would say that it has a wonderful presentation of
Markov chains, but it is really too mathematical for
an applied person. But when they take an example of
data in which they are interested and go through the
material with their example, it all works and makes
sense. I think that it is beautiful that people who have
examples can learn from the example point of view,
and report, “Oh this is very pure, but it really works.”

Newton: You mentioned your probability density
estimation work. How is that related to your spectral
density estimation work?

Parzen: I was aware that people should study non-
parametrically the idea of probability density estima-
tion and that was my goal in my research. I knew that
I should have an application of the problem of esti-
mating a probability density, so I chose the estimation
of the mode. This explains the title of my 1962 An-
nals of Mathematical Statistics paper (Parzen, 1962).
Essentially, I took all the knowledge that I had from
my previous experience of probability limit theorems
and maximum likelihood and deriving the mean square
error properties of the spectral density estimator, and
combined it and wrote a paper about the mathematical
theory of probability density estimates. Other statisti-
cians such as Akaike, Rosenblatt, Bartlett (the British
say “Well, Bartlett really had these ideas”), Fix and

Hodges, Watson and Leadbetter had certainly done pi-
oneering work in this area. Nevertheless, in spite of the
fact that many people deserved credit, engineers who
began applying these estimators often used the name
“Parzen estimators” and quoted my 1962 paper as their
statistical reference because it was a comprehensive
presentation of the theory and applicability of proba-
bility density estimators.

Let me talk about a very important related area
in theory and application: nonparametric regression
which estimates the conditional expectation of Y

given X. I believe this might be the right answer to
the wrong problem from the point of view of practical
applications. Often it is more relevant to estimate the
conditional quantile function of Y given X and this is
the emphasis of my current research.

Newton: How applicable do you think kernel den-
sity estimation and nonparametric regression have be-
come?

Parzen: How applicable probability density estima-
tion is has long been a topic of discussion. People have
claimed it’s not an objective theory that can be rou-
tinely used by applied people. Now I have two reac-
tions to that: First, it’s good that applied people should
realize that they need to consult statisticians. It is not
really true that even introductory statistical methods
are applicable without consulting a statistician. Sec-
ond, having gone to many workshops on probability
density estimation and studying its vast literature, I feel
that researchers in the field do not have a consensus on
how to do it. I regard this as part of the problem of
the enormous gap between what is known by the disci-
pline of statistics and what is applied in the profession
of statistics. I think goodness-of-fit testing is another
example. When we list open problems at the frontier
of research, we need to add the problem of filling this
gap—to enable methods that we theorists know have
merit to be more widely and easily used by applied
people.

YEARS AT BUFFALO

Newton: In 1970, you moved to the Statistics De-
partment at State University of New York at Buffalo,
where you stayed until 1978. How did that happen?

Parzen: I spent 1969–70 in New York City on
a Fellowship from IBM. At that time, Marvin Zelen,
who had been my close friend since 1958, had moved
to Buffalo. I felt that perhaps I wanted to move my
family to an Eastern lifestyle. Marvin was a very
compatible colleague so again I didn’t apply but was
recruited to take a job at Buffalo.
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Newton: I joined the department in 1971 as a grad-
uate student and remember the environment as being
very exciting but tense.

Parzen: We, in a certain sense, encountered all of
the problems of developing a statistics department.
At Buffalo I developed my mantra that I advise
everybody who is trying to put together a statistics
department to learn—namely, that you have to find
good people in the university who are willing to sing:
“We do better research and our students get better
jobs because the statistics department is here.” I think
we were very successful at that in my time at SUNY
Buffalo. Unfortunately, although some of our statistics
faculty recognized that statistics is an evolving field
and wanted to move on to new emerging frontiers,
others (in my opinion) wanted to teach only what they
learned in graduate school and required a lot of work
from students that didn’t really have much intellectual
payoff. I felt that we should liberate the students by
giving them the freedom, for example, of taking one of
their classes pass/fail to concentrate on other courses
that interested them more. I would rather see a student
get three A’s and a pass than four B’s.

Thus, we confronted all the issues that statistics de-
partments are still confronting in designing their cur-
riculum. The problem in graduate school was always
phrased as breadth versus depth. Students would study
certain traditionally required courses of the statistics
curriculum because they needed it for breadth, but I felt
that breadth was interfering with depth.

I also took the attitude from my engineering friends
that the statistics curriculum should be such that
students should be able to start research after, say,
two years of study. Under further consideration, we
developed the concept of statistical science which
was based on my contact with Neyman. Neyman
basically felt that there were mathematical statisticians
and there were applied statisticians, a word used by
him to describe people doing routine statistics. What
we needed was a third kind of statistician who had
an appreciation of mathematical statistics, but wanted
to work on real problems and wouldn’t just use the
methods of routine applied statistics. The debate is
whether such people can be trained or do they train
themselves. I felt that we could train such people in
the concept of statistical science.

The phrase “statistical science” is widely used nowa-
days, but we actually had a precise definition of it.
A statistical scientist was a statistician who wanted to
do evolving science but was also trained in what I will

call “core.” “Core” is the discipline of statistics, as op-
posed to “outreach,” which is the profession of statis-
tics. A statistical scientist tries to blend core and out-
reach, and go beyond the usual statistical methods used
by the applied statistician to evolve new methods, thus
adding to development of the core at the same time as
they solve applied problems.

Anyhow, the SUNY Buffalo experiment had a prob-
lem that unfortunately started the year I came—they
really did not have funds to support their vision. We
put in a proposal to the university to develop statistics
that was rated as the number one proposal by the uni-
versity administration because it combined attainabil-
ity with great goals. In other words, many departments
would say, “give us two million dollars and we will
do something,” but rather than saying “give us a lot of
money and we’ll spend it,” we said we can incremen-
tally achieve great things with this plan. Unfortunately,
none of these plans were implemented. As a result, we
had a situation where some faculty had a lot of fund-
ing, and some faculty didn’t. The faculty who didn’t
wanted a tax so that those with money would bene-
fit those without money. Obviously, the people with
money didn’t like that idea. Anyhow, those were the
kinds of tensions, but we felt we had a strong program.

Newton: How did you leave Buffalo?
Parzen: In 1977, Marvin Zelen was attracted to go

to the Dana Farber Cancer Institute and the Harvard
School of Public Health. We had developed a biosta-
tistical laboratory at Buffalo as a separate activity of
the faculty of statistical science, in order to be able to
accomplish this goal of building a strong research pro-
gram. This group was so strong they were recruited by
Harvard, and then in 1977 you and I were approached
by Texas A&M to help strengthen the statistics pro-
gram there. The issues that led to our exodus from
Buffalo were the day-to-day issues indicated above.
In addition, although SUNY Buffalo had claimed that
it wanted to become the Berkeley of the East, it in fact
didn’t have any money, and ultimately took the attitude
that it had overinvested in statistics and didn’t want to
support statistics. We felt that there was not much point
in trying to work in a system that didn’t seem to want
to support statistics.

Newton: So it’s kind of sad that there are no longer
statistics degrees awarded at SUNY Buffalo. Do you
think that . . .?

Parzen: I would sing my mantra. I would say that
there is a pattern of statistics programs trying to be
eliminated by vice presidents who feel that the uni-
versity has overinvested in statistics. The only way for
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that not to happen is for there to be a constituency that
supports a department of statistics. In every university,
there are people not in statistics departments who are
happy to teach statistics but don’t support the concept
of a separate department of statistics because they don’t
want to have to utilize the services of that department.
The only way that they will utilize it is to convince
them to sing the song: “We do better research and our
students get better jobs, because statistics is here.”

But, I think that you can’t get people to sing that
song if the statistics department is always at risk. There
are a lot of people who want “to eat their lunch.” And
a vice president or dean who decides that he can make
other people happy with the resources he could obtain
from statistics will do so. It has happened at many
universities. So, my advice to every statistics program
is to develop a constituency. Unless you do that, you
won’t have a statistics department.

MORE ABOUT TIME SERIES

Newton: Let’s return now to time series analysis.
What are your recollections about the development of
the so-called Box–Jenkins method?

Parzen: Well, very fond memories. In order to ex-
plain the development of the Box–Jenkins method
I have to go back into my own history. I spent the
summer of 1958 in England on my way to the In-
ternational Congress of Mathematicians at Edinburgh
(where I networked with Maurice Priestley, Maurice
Bartlett and C. R. Rao). Deciding that summer to
become an expert in statistical time series, I net-
worked in London with the great Maurice Kendall,
who recommended that I interact with Gwilym Jenk-
ins. I went to his office at Imperial College and said,
“I’m Manny Parzen; you’re Gwilym Jenkins. Let’s
talk.” I invited him to be a visiting faculty member
at Stanford in 1959–1960. On his way to Stanford
in 1959, Jenkins visited John Tukey in Princeton, and
on his way home in 1960 he visited George Box in
Wisconsin. At Wisconsin, he and Box began the world-
renowned Box–Jenkins approach to time series analy-
sis, first published as a paper in 1962 and exposited in
a book in 1970. With support from the Office of Naval
Research, I spent 1961–62 at Imperial College, Lon-
don, visiting Jenkins. George Box told me around that
time that he had saved Gwilym Jenkins for statistics;
after his year at Stanford, Gwilym was very discour-
aged and said that statistics was too hard the way they
practice it at Stanford.

There is no question that Box–Jenkins is a very valu-
able methodology; it arose out of practical problems.

Box was interested in problems of process control. In
those days a control process was analogous to knobs
on a machine that has to be adjusted to differentiate,
integrate and be in proportion. Jenkins began teach-
ing Box how to justify this: that there was an under-
lying model, the ARIMA model, that this method of
control implied. The ARIMA model is the model that
explains why the methods of what they called propor-
tional control, differential control and integral control
worked. From process control, Box and Jenkins moved
into the forecasting context. I had close interaction with
Box and Jenkins throughout this period, discussed their
work at various meetings and always tried to put it
in the broader context of autoregressive modeling, but
Box refused to incorporate anything about criteria for
model selection, either my CAT or Akaike’s AIC. He
took the attitude that automatic model selection tech-
niques were too dangerous and would be misused. So,
he was very happy with Box–Jenkins model building
and didn’t integrate model selection criteria into their
methodology.

I should mention here that Peter Whittle was always
upset that Box and Jenkins did not refer to his work
or acknowledge that he had developed the theoretical

FIG. 3. U.S. Time Series Analysts and Smoothers, Tokyo, 1984:
Victor Solo, Emanuel Parzen, Grace Wahba, Wayne Fuller, Bob
Shumway, Bill Cleveland, David Brillinger.
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FIG. 4. Statistical Time Series Analysis U.S.–Japan Joint Seminar, Hawaii January 25–29, 1993: ( first row) David Brillinger, Manny
Parzen, Ruey Tsay, George Tiao, Joe Newton; (second row) unknown, David Stoffer, Bob Shumway, Will Gersch, Roger Brockwell, Clive
Granger.

framework for the ARIMA models in his influential
book Prediction and Regulation.

Box and Jenkins wrote a theory of time series analy-
sis which became a success. But you have to recognize
that they are role models of how to spread knowledge,
particularly Jenkins. Box would tell me that they would
have these short courses and people would bring their
data. Jenkins would sit at a computer terminal all day
modeling their data, showing them how to model it. He
was really the practitioner par excellence.

Newton: You mentioned model selection methods,
which in the ARIMA context means selecting the order
of the ARIMA model. Can you talk a little about that,
and in particular about your relationship with Akaike?

Parzen: Well that is another interesting story. I was
the first person to invite Gwilym Jenkins to the United
States and of course he then met Box and Tukey. And
I was the first person to invite Akaike to the United
States. Akaike and I met and became lifelong friends
in 1965 in Japan at a seminal U.S.–Japan Joint Seminar
on “Applications of Stochastic Processes to Engineer-
ing” whose story is told in “A conversation with Hi-
rotugu Akaike” by David Findley and myself (Findley
and Parzen, 1995). We organized two U.S.–Japan joint
seminars on “Statistical Time Series Analysis” (Tokyo
1984, Hawaii 1993).

In 1972, Akaike pioneered the Akaike information
criterion (AIC), which is an information criterion for
statistical model identification. I was stimulated to
develop a criterion for autoregressive time series model
identification which I called CAT, an abbreviation for
criterion autoregressive (AR) transfer function; its idea
was to minimize the integrated mean square error
of approximation of an infinite order AR by a finite
order AR. My luck was being able to express both bias
and variance in terms of the innovation variances of
successive order AR models. Although derived from

FIG. 5. Hirotugu Akaike, Manny Parzen, Maurice Priestley.
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different philosophies, the graphs of AIC and CAT in
ARIMA modeling practice have similar shapes and
choose the same estimated order. My 1974 paper
describing CAT, “Some Recent Advances in Time
Series Modeling,” appears in the same engineering
journal as Akaike’s highly cited paper (Parzen, 1974;
Akaike, 1974). My 1974 paper also describes the
theory of inverse correlations (Fourier transform of
the inverse of the spectral density, introduced by Bill
Cleveland, whose investigation inspired my study of
orthogonal polynomials on the unit circle that enabled
me to derive the formula for CAT).

Newton: In the time you were at Buffalo you also
did some work on multiple time series modeling. Can
you describe some of that please?

Parzen: The paper I remember the most as being
a comprehensive paper was a follow-up to the work
I did on multiple time series analysis in 1966 in which
I announced to the members of the multivariate analy-
sis statistical fraternity that I had reduced the problem
of multiple time series analysis to the problem of mul-
tivariate analysis. You tell me how you would analyze
multivariate data, and I would tell you how I would
analyze multiple time series. They of course said that
they didn’t know what I meant. If you compute canon-
ical correlations or any other multivariate statistic, they
can tell you its distribution, but they weren’t famil-
iar with the idea of model building for multivariate
data. Basically, that is what we were trying to do—
develop a strategy for modeling multiple time series.
Parzen (1969) was where I first discussed various au-
toregressive approaches and sketched out the theory of
autoregressive spectral density estimation. The sketch
was filled in and completed by a brilliant Ph.D. student
of mine at Stanford, Ralph Kromer, who unfortunately
never published his comprehensive thesis.

When we were turning to the problem of multiple
time series analysis, one of my first goals was to
obtain the analog of the univariate CAT criterion for
multiple time series, and I was also motivated in joint
work with you to develop the idea of periodically
correlated time series, which is another approach to
modeling multiple time series by somehow treating
them as a series of linked univariate time series. This
research was motivated by the application of modeling
atmospheric ozone, which was a controversial topic.

At that time you and I also began the idea of
developing a user-friendly timeseries program called
TIMESLAB and multiple TIMESLAB. In my opinion,
multiple time series is still not as automatic a topic
as univariate time series. My own view of the matter

is that you should take an information approach. If
you want to model the time series Y (t) in terms of
the related explanatory time series X(t), you should
compute the information about Y (t) in various subsets
of the past of Y , the past of Y and X, the entire
series X and the past of Y or other combinations of
values of Y and X, and determine the value of adding
or deleting these subsets to the modeling of Y . I feel
that these are important topics but they don’t yet lead
to as comprehensive a theory of multiple time series as
I think we have for univariate time series.

TIME AT TEXAS A&M

Newton: In 1978, you moved to Texas A&M as
a Distinguished Professor and continued some of your
work in time series as well as work in quantile function
theory. Let me start by asking you what it was like to
work with H. O. Hartley, the founder of the department
at Texas A&M?

Parzen: Well, I think Hartley was a truly great
man; I felt he was a very lonely man, a victim of the
European idea of being the only leading professor. He
should have continued to be a professor but he retired
because he didn’t want to be just a professor but also
the head of a department (which was not possible at
age 65 then at Texas A&M).

I had many wonderful conversations with Hartley.
I remember that, in my first few years at Texas A&M,
he called me into his office the day he got a letter from
Henry Daniels saying he (Daniels) had just discovered
that Herman O. Hartley was the same person as the au-
thor of “A Foundation Paper of Correspondence Analy-
sis,” which was published in England in 1935. I don’t
believe the fact that Hartley created the foundational
ideas of correspondence analysis is as widely known
as his other research. Did you know about his corre-
spondence analysis work?

Newton: Yes, I’m trying to remember what his name
was in his youth.

Parzen: It was Hirschfield, which was changed to
Hartley.

Newton: Continuing with your work on time series
analysis, you became interested in forecasting nonsta-
tionary time series and participated in a very famous
forecasting competition.

Parzen: We were developing our own methods
as alternatives to the Box–Jenkins methodology. The
difference between our methods and Box–Jenkins
methods is that (in my opinion) Box–Jenkins was
a closed system. If you tried Box–Jenkins methods and
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FIG. 6. Time Series Analysis and Signal Processing Cutting Edge Advanced Seminar, held in Austin and College Station, Texas,
May 23–June 4, 1986: T-shirt presented to Professor Parzen proclaims “CATs, Quantiles, Windows, and RKHS. No place but Texas” and
“Long Memories of the Cutting Edge of Time Series”; ( first row) Randy Eubank, Ritei Shibata, Richard Jones, Manny Parzen, Craig Ainsley,
Maurice Priestley and Joe Newton.

they didn’t seem to work, there wasn’t any suggestion
as to how to go on from there. We were interested in
developing a method of time series analysis that was
open ended and didn’t run out of ideas.

Forecasting has an intellectual community of its own
with its own meetings and publications and, of course,
its own annual conferences attended by people who
are in the forecasting business. I once asked a leading
forecaster, “What do you promise the client?” He said,
“Oh, I never promise the client anything. All I promise
them is that if they hire me, they will do 50% better
than they are doing now.”

In order to somehow compare various forecasting
schemes, a group at a great business school in France
led by Makridakis created a database of economic
time series, some quarterly, some annual and some
monthly, and asked people to forecast 18 time periods
ahead. You and I jointly entered this competition and
our results were a winner. We had total mean square
error over 18 periods that was less than any other. The
method that we imposed is similar to ARIMA but in
ARIMA you take differences as the first step. Instead,

we automatically regressed the data on one lag, not
necessarily the most recent lag, and allowed that one
lag AR to be nonstationary. Then we took the result
of that and fit a stationary ARMA, where the ARMA
order was chosen by AIC. So we called AR for the
first step and ARMA for the second step, thus giving
something we called ARARMA.

I should emphasize that prediction is regarded as
a time series analysis problem and is a very contro-
versial subject. For example, if you want to forecast
18 steps ahead, should you use the method that is best
for one step ahead and then the one that is best for two
steps ahead and so on, or should you just build a model
and use it to forecast one through 18 steps ahead?

We essentially built our forecast 18 steps ahead by
building a model. One thing we learned was how im-
portant the idea of memory length is. If you identify
a series as short memory, you can identify a model
(fit an ARMA) by automatic model identification tech-
niques. But if it’s not stationary (of a kind we call
short memory, which essentially means that the spec-
tral range is more or less finite), one must transform
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nonstationary to stationary in a nonunique way. For ex-
ample, if you had hourly data of electricity demand,
there might be a daily, monthly or weekly period, so
you could take perhaps a 168- or 24-hour difference.
My experience is you want to do the longest lag dif-
ference first and leave more latitude, but in general
what you want to do is the simplest transformation of
the data that will make it just barely a short memory
time series so that you can then model this by auto-
matic modeling techniques. As an exercise in the trans-
formation of a nonstationary to a stationary series, we
modeled municipal water use demand in Texas and we
regressed water use on population and found that this
was a transformation whose residuals were a stationary
time series.

So my philosophy is that anything you can do
to transform your original observations to a residual
which is just barely stationary is the way to handle
the problem of nonstationary time series, and that is
what we did in the ARARMA method where the initial
transformation to stationarity was a one-lag AR whose
coefficient could be greater than 1.

I should point out that we didn’t really push our
method because we had no desire to join the forecast-
ing community, because forecasting is a full-time pro-
fession. Basically you have to become a salesman for
your technique. I have gone to forecasting meetings
and every talk seems to present a problem and a dis-
cussion of how well the speaker’s method did. If you
ask them, “Well, did you try this other method?” They
say, “No, I want to use my method. It worked very well
so why do I need to try any other method?”

QUANTILE METHODS

Newton: Since the late 1970s, you have championed
the idea that methods based on quantile functions can
be a more useful way to study random variables than
those based on their density or mass functions. Why
do you feel that this is true?

Parzen: Well, as usual there is a story of how I was
led to being interested in something. I was lecturing
on the total time on test statistic at Buffalo. The total
time on test statistic is used to test that observations are
exponential based on the property of the exponential
distribution that if you observe a process at an arbitrary
time and measure how long until it dies, which is called
its residual life, then the residual life distribution is also
exponential. Thus the residual life distribution is the
same as that of the observations.

So it was an example of testing whether a distribu-
tion function (cdf ) F equals a distribution function G,

and it turns out that a superior way of testing the equal-
ity of two distributions or two probabilities is not to
take their difference but to take their ratio, which in
the case of distribution functions is G(F−1), which
would be uniform if F = G. I was led to rephras-
ing the problem of testing the identity of two distrib-
utions by asking whether the comparison distribution
function G(F−1) was equal to the identity distribution
function.

To study the comparison distribution function, it is
natural to study the quantile function F−1, so called
because, for any number p in the interval [0,1],
F−1 evaluated at p gives the pth quantile of the distri-
bution defined by F . Now, the derivative of the quan-
tile function, called the sparsity function by Tukey,
is nonnegative, and this caused me to draw upon my
background in time series analysis. I have always felt
that time series are the underworld of probability be-
cause the probability density is a nonnegative function,
the spectral density is a nonnegative function and so
there exist mathematical analogies between probabil-
ity based on density functions and time series based on
spectral density functions.

Now we had another nonnegative function—the
derivative of the quantile function, which instead of
being called the sparsity function I called the quantile
density function. It turns out that, just as the raw spec-
tral density is exponentially distributed, the raw sam-
ple quantiles (i.e., the spacings between order statis-

FIG. 7. Manny Parzen and Miklos Csörgő, 1979 International
Statistical Institute meeting in New Delhi, discussing applications
to quantile data analysis of strong approximation limit theorems
for quantile processes.
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FIG. 8. Ph.D. students and colleagues of Emanuel Parzen celebrating his 60th birthday in 1989 in College Station, Texas: Don Ylvisaker,
Grace Wahba, Joe Newton, Marcello Pagano, Randy Eubank, Manny Parzen, Will Alexander, Marvin Zelen, Scott Grimshaw. Recent
distinguished Ph.D. students include Cheng Cheng and Todd Ogden.

tics) are also exponentially distributed. So the mathe-
matical properties of the spectral density are equivalent
to those of the sparsity function. Not only that, but the
reciprocal of the sparsity function (which I call the den-
sity quantile function) arises naturally as the probabil-
ity density function evaluated at the quantile function;
also the reciprocal of the spectral density is the inverse
spectral density. It thus turns out that an idea which
seems purely mathematically motivated is natural be-
cause there is a duality of functions: the sparsity func-
tion and the density quantile function are analogous to
the spectral density and the inverse spectral density.
Furthermore, the mathematical properties of the nat-
ural sample estimator of the function G(F−1) under
the null hypothesis that F = G are those of a Brown-
ian bridge. So you have an analogy between testing for
white noise in the time series case and testing homo-
geneity of populations in the distribution function case.

Well, now you get the quantile function and you
realize that the quantile function was being made
popular by John Tukey and his five-number summary,
and not only that but when you start writing down
formulas for these functions, the quantile density,
the density quantile and so on, they are all very
beautiful formulas. It is a set of facts that statisticians
neglected. I complained to the leaders of the field
such as Peter Bickel, my peers, and said “Why aren’t
people celebrating these facts?” There are wonderful

properties of the quantile function and the various
functions derived from it, especially G(F−1), which
I called the comparison distribution function, used for
comparing two continuous distributions.

To compare two discrete distributions I found a nat-
ural way. This led to what I consider a breakthrough
idea that says if you are comparing two distributions
which are initially continuous, you want to do that by
computing the comparison distribution. And the com-
parison distribution for samples (i.e., the estimator of
the population comparison distribution) is the compar-
ison distribution of the two discrete distributions which
are the sample distributions of the data.

This insight led to a very beautiful theory which ex-
tends the theory of nonparametric statistics. You have
the development of the Wilcoxon statistic and then
the formalization of studying its properties. The work
of Pyke and Shorack said we can actually derive the
results of the Chernoff–Savage theorem from a gen-
eral theorem about convergence in distribution of a se-
quence of stochastic processes. But they used this just
for theorem proving; they didn’t think of using this sto-
chastic process as something you would actually look
at as a statistic to study and actually use for data analy-
sis. It turned out that the stochastic process that they
were defining was a very ugly process. It didn’t re-
ally lend itself to a truly computable representation
of linear rank statistics as a function of the process.
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So I studied the various ways in which you could get
more applicable data analysis versions of that stochas-
tic process and in my opinion the best version was
a continuous process: namely, the comparison distri-
bution of the sample distributions.

Newton: Are you still working in this area?
Parzen: Yes, because I feel we can unify many

of the standard results of classical nonparametric and
parametric statistics by expressing them in terms of
quantile functions and mid–distribution functions. Any
formula you have is worth looking at in the quantile
domain. In fact, this has led me to a definition of what
an average is. How do you compute the mean of a set of
numbers? You don’t just add them up and divide by n.
First, you arrange them in increasing order, and then
add them up. So I say statistics is arithmetic done by
sorting before adding. Any time you have a statistic
that is a sum, the question is what is the additional
information that comes from taking the things you
are summing and forming their quantile function. For
example, the mean of any data set is the integral of its
quantile function.

This is another example of what I call the gap
between what is known and what is applied. Many
students have written beautiful theses in the quantile
domain at Texas A&M to fill this particular gap, not
just my students but, for example, the students of
Wehrly and Longnecker.

People often accuse me of saying that you should
do everything in the quantile domain. No, not at all.
Obviously you should use ordinary methods based on
distribution functions in some circumstances. I will
use an analogy to time series. In time series, we
have a choice of domains—the time domain and the
frequency domain—and the reason that is good is
that we don’t know in advance which is the most
parsimonious way to look at data. The same thing is
true of statistical methods; we have a choice of the
distribution domain and the quantile domain and that is
good because we don’t know in which domain nature
will be most parsimonious. For example, quantiles are
much simpler for handling censoring. This example
again illustrates that there are many beautiful things
you can do in the quantile domain. For example,
a neglected fact is that a confidence interval for
a quantile function can be computed without doing
plug-in estimation of the asymptotic variance of the
estimated quantile function.

Of course, this leads me to a goal that I really want
to accomplish in the next few years: to sum up this
work which represents the work I have been doing

since I got to Texas A&M almost 25 years ago, sum
it up in a book called Statistical Methods Learning and
Quantiles. I don’t quite understand why it is so hard for
quantile data analysis to catch on.

I am optimistic that this will be expedited by my
latest research on quantile–quartile Q/Q(u) plots (to
make box plots easier to interpret and to help identify
distributions fitting data), estimation of conditional
quantiles (by smoothly estimating quantile functions
of middistribution transform of data) and comparison
distributions [graphical statistics and limit theorems for
their empirical processes, unification of nonparametric
and parametric methods for con/crete (continuous and
discrete) data].

In addition to a textbook Statistical Methods Learn-
ing and Quantiles, another book project I would like to
accomplish is a textbook Time Series Analysis Methods
and Exponential Models.

I’ll give an example of a success of quantile data
analysis. I looked at the original data that was pub-
lished as the first data set of statistical data analysis by
John Graunt. It was length of life and mortality rates in
London, and I asked myself, “let me just see if these
data are exponential.” To my shock, it was exactly ex-
ponential. If you compute the comparison distribution
and various statistics and plot them, you get a straight
line. So I said to Steve Stiegler, “Do you know that
John Graunt’s data is exactly exponential?” He said,
“Yes, that’s how he created it.” Graunt took the facts
that 36% of the people died by 16, and some people
lived to age 80, and he filled in a table on the number of
deaths from 0–16, 16–26, 26–36 and so on, essentially
using a rule that said of those alive in a period, 5/8 are
alive by the next period. It comes down to an exponen-
tial distribution. This is an example of how a quantile
data analysis disclosed at a glance a fact that I don’t
think that most people in statistics are aware of—that
the original data published by John Graunt were not
real data.

CONFERENCES AND WORKSHOPS

Newton: Throughout your career, you have orga-
nized a large number of influential conferences and
workshops. What are some of your recollections about
these meetings and who were some of the more inter-
esting people with whom you interacted?

Parzen: First, let me remark that I find it interest-
ing that in the SIAM series of proceedings of the re-
gional conferences, there are a conference on distri-
bution functions, principal lecturer Jim Durbin, and
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a conference on quantile functions, principal lecturer
Miklós Csörgő, and I happen to have been organizer of
both. I think that it is an interesting coincidence that the
two major research monographs on distribution func-
tions and quantile functions owe their existence to my
initiative.

Obviously, I hope all the conferences that I have been
involved with have been very significant events in the
lives of those who attended them. In addition to those
two conferences on quantiles and distributions, in 1983
we had a “Symposium on Time Series Analysis of Ir-
regularly Observed Data” that included all of the lead-
ing workers around the world. But again I can only
say it was a very stimulating event for those there, and
(of course) that since then the problem of irregularly
observed time series has been an increasingly impor-
tant one, so that the proceedings of the conference have
been often cited.

We also had the idea for what we called the Time
Series Analysis Bootcamp. We brought together young
researchers for two weeks and had lectures on time
series analysis and signal processing. Of course, I think
those ideas are worth continuing; it just requires
a tradition. You have to recognize in all honesty that
organizing conferences is tough because people always
want to know, “Why should you do it?” When we
proposed an idea to CATS (Committee on Applied and
Theoretical Statistics), some people on the committee
said, “We understand the leading people in time series
are Box and Jenkins, so why aren’t they doing this?”

Newton: Gee, thanks!
Parzen: It didn’t bother me, I was willing to do it

because I think we will cast a much wider net. People
will get a much deeper, broader education. That is
what we are proposing; we are not just proposing Box–
Jenkins. A very great event (in 1990 at the Institute for
Mathematics and Its Applications) was a one-month
workshop “New Directions in Time Series Analysis,”
an interdisciplinary workshop. The people who were
there felt that they made many interesting connections.
I think workshops advance the field and are worth
doing.

We had a conference here at Texas A&M joining
together economists and statisticians in 1996. In 1992,
behind the scenes as a member of the Committee of
Research Conferences in the Mathematical Sciences,
I organized conferences on change-point analysis and
on wavelets and their applications in statistics. So
I have been again, Mazel, in the right place at the right
time when the opportunities arose to do something that
led to a workshop.

There are two kinds of statisticians: those who make
their contributions in terms of research and those who
make their contribution in terms of organizational abil-
ity. Some people imply that I am the kind of aca-
demic who contributes through organizational ability
because I have organized many workshops. I have al-
ways thought that this view of my career is amusing.
No, I want to make it by research contributions, but
along the way I am happy to do organizational contri-
butions as well.

THE PARZEN PRIZE

Newton: Another interesting thing that you did
was in 1994: you and your wife Carol organized
the Emanuel and Carol Parzen Fund and Prize for
Statistical Innovation. Why did you do this, and has
the prize had the effect that you had hoped it would?

Parzen: Let me preface my answer by giving my
attitude on the future of statistics. We cannot plan or
forecast the changing future of the discipline (core) and
profession (outreach) of statistics. We should plan to
convince students and young faculty to pursue a career
in statistical science because one can do exciting and
rewarding research as a statistician. For this we need to
teach vision (the big picture of frontiers of research to
know where to apply their talent) and technical power
(expertise in mathematical, computational and applica-
ble statistical theory). To attract the talent it deserves
for its long-term health as a distinct discipline, statis-
tical science must appear exciting and rewarding, and
must pay attention to and applaud the achievements of
professional statisticians.

To applaud and to promote the dissemination of sta-
tistical achievements, the Parzen Prize for Statistical
Innovation is awarded (around April of even-numbered
years) to North American statisticians who have made
outstanding and influential contributions to the devel-
opment of applicable and innovative statistical meth-
ods. The prize has been established to relieve the spar-
sity of prestigious awards and prizes that recognize
outstanding careers in the discipline and profession
of statistics. From 1994 to 2002 we have given five
prizes: Grace Wahba, Donald B. Rubin, Bradley Efron,
C. R. Rao and David Brillinger; all of whom of course
are extremely highly recognized. I’d like to point out
that Grace Wahba has been elected to the National
Academy of Sciences.

In my view there is a lot of talent in statistics, and
we have a very large number of outstanding people.
The Parzen Prize provides a mechanism for helping
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FIG. 9. Jim Calvin, Joe Newton, Brad Efron, Manny Parzen, Carol Parzen, Michael Parzen at the ceremony awarding the 1998 Parzen
Prize to Efron.

us to appreciate the fact that we do have outstanding
talent in statistics and statistical science. I feel the prize
has worked very well. The prize winners we have had
have all been very interested in receiving the prize,
have established the credibility and the value of the
prize, and I think we will continue to try to recognize
achievement. I think we need to applaud people and
this is essential for maintaining the health of statistics
and to make people realize that it is a career that is
exciting and rewarding.

Personally, I think statisticians do a very bad job of
awarding prizes. I am involved in the American Sta-
tistical Association and have been awarded the Wilks
Award. People who are getting the Wilks Awards are
outstanding people and I think there should be much
more attention, much more glitter to the awarding of
these prizes. There is hardly any PR associated with
them, even though this honor is one of the most pres-
tigious prizes of the statistical profession. Let’s face it,
we don’t get the newspaper attention that we should
for the prizes that we give out. More prizes are being
awarded and they aren’t getting the publicity they de-
serve. I think that publicity for outstanding contribu-
tions in statistics is very important for the future health
of the profession.

THE FUTURE OF STATISTICS

Newton: You have talked about what the future
might be and we all know that the availability of
massive computing power, and huge datasets, and data
mining and things like that are having a big impact on
statistics, but what do you think is the rightful role of
statistics in science?

Parzen: Number one, statistics right now has been
a small sample subject. The engineers are always
telling me, “We don’t need statistical inference.” They
have very large samples so their problems are problems
of probability. What are large datasets? That is proba-
bility; that’s a large sample. I think statistics is a chang-
ing field. There is financial mathematics, there’s ge-
nomics, so a lot of statisticians are paying attention to
other fields. What is it that historically links statistics
with science? The problem of statistics, and the rise
and fall of statistics departments, is that everybody is
doing statistics and wants to do it, so why do you need
professional statisticians?

To me, statistics is the process of technology transfer
of methods that arise among psychologists or econo-
mists or among geophysicists, and so on. The technol-
ogy transfer of these ideas is the broad field of statis-
tics.
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Statistics will obviously be changing, as I mentioned
earlier in talking about the development of statistics
departments. You can’t have a statistics department that
says a well-trained statistician is one who had the same
graduate training I had 30 or 40 years ago. So we have
got to learn how to be a changing field in order to have
the optimal professional involvement in society. On the
other hand, there has to be a discipline of statistics, for
which we have to get support.

I happen to feel that the concept of data mining re-
quires what I call statistical methods learning (unifica-
tion), that is, knowing what the connection is between
various statistical methods. As I mentioned about fore-
casting, there is a big tendency for people to use one
method and say, “Okay, this is good.” I have always
argued that data is expensive and analysis is cheap.
We should be prepared to investigate our data by vari-
ous methods of analysis. There is no question that sta-
tistical computation is very important, and one thing
I regret is that I haven’t gotten more involved com-
puting, though philosophically I have been involved
since 1960. I do think, for many problems, raw com-
puter power and just doing things computationally is
very essential. On the other hand, we don’t want sta-
tistics graduate study and practice to be entirely com-
putational without theory. There is a tendency for peo-
ple not to want to study theory because they want to
emphasize computation. We obviously need to bal-
ance computation and theory. We have a very diffi-
cult philosophical problem, “How do the principles of
small samples in statistics apply when you have large
datasets?” I don’t think we have thought deeply enough
about that.

So, let’s search for the fundamentals. One of the
things that I have always felt is knowledge is the edge,
and statistics is the way to discover knowledge. We
should preach to the public: “Knowledge is the edge,
and statistics is the way to discover knowledge.” But,
this means that we have to take the body of knowledge
that is statistical theory and somehow digest it and
package it so that the gap between what we know and
what is being applied is reduced. This is what I call
statistical methods learning: reducing the gap between
what we know in the theory of statistics and what is
being applied. I have a plan for how to write a concise
encyclopedic book about statistical methods learning
(unification).

There are many people, as in data mining and
statistical learning, who are happy to rob statistics of
its methods, and make very successful careers, and say

they are so happy to be able to do this without the
competition of statisticians.

On the other hand, why should a person choose
a career in statistical science? Let’s face it; I can’t give
the universal answer. Statistics itself has to give the
answer. What can we do to show young people who
are considering entering the discipline of statistics that
it is a rewarding enough and exciting enough career?
I think if you go to the statistics meetings this summer,
you will see that people are doing a lot of things that
aren’t inference. The key is to find the connecting link
between all these different activities, and once you
learn the connecting link, the question is “why does
this connecting link exist?”

Newton: That’s a philosophy that many in statistics
would agree with. It also seems to be a good way
to end our conversation. Thanks very much Manny
for sharing your thoughts about your career and about
statistical science with us.

Parzen: Thank you, Joe, for your friendship for
30 years.

REFERENCES

AKAIKE, H. (1974). A new look at the statistical model identifica-
tion. IEEE Trans. Automatic Control AC-19 716–723.

ARONSZAJN, N. (1950). Theory of reproducing kernels. Trans.
Amer. Math. Soc. 68 337–404.

FINDLEY, D. F. and PARZEN, E. (1995). A conversation with
Hirotugu Akaike. Statist. Sci. 10 104–117.

GRENANDER, U. (1950). Stochastic processes and statistical
inference. Ark. Mat. 1 195–277.

HIRSCHFIELD, H. O. (1935). A connection between correlation
and contingency. Proc. Cambridge Philos. Soc. 31 520.

JENKINS, G. M. (1961). General considerations in the analysis of
spectra. Technometrics 3 133–166.

LANNING, J. H. and BATTIN, R. H. (1956). Random Processes in
Automatic Control. McGraw-Hill, New York.

MAKRIDAKIS, E., NEWTON, H. J., PARZEN, E. et al. (1982).
The accuracy of extrapolation (time series) methods: Results
of a forecasting competition. J. Forecasting 1 111–153.

NEWTON, H. J. (1988). TIMESLAB: A Time Series Analysis
Laboratory. Wadsworth, Pacific Grove, CA.

OGDEN, T. and PARZEN, E. (1996). Data dependent wavelet
thresholding in nonparametric regression with change point
applications. Comput. Statist. Data Anal. 22 53–70.

PARZEN, E. (1958). On asymptotically efficient consistent esti-
mates of the spectral density function of a stationary time se-
ries. J. Roy. Statist. Soc. Ser. B 20 303–322.

PARZEN, E. (1961a). An approach to time series analysis. Ann.
Math. Statist. 32 951–989.

PARZEN, E. (1961b). Mathematical considerations in the estima-
tion of spectra. Technometrics 3 167–190.

PARZEN, E. (1962). On estimation of a probability density function
and mode. Ann. Math. Statist. 33 1065–1076.



378 H. JOSEPH NEWTON

PARZEN, E. (1969). Multiple time series modeling. In Multivariate
Analysis—II (P. Krishnaiah, ed.) 389–409. Academic Press,
New York.

PARZEN, E. (1974). Some recent advances in time series modeling.
IEEE Trans. Automatic Control AC-19 723–730.

PARZEN, E. (1977). Multiple time series: Determining the order
of approximating autoregressive schemes. In Multivariate
Analysis—IV (P. Krishnaiah, ed.) 283–295. North-Holland,
Amsterdam.

PARZEN, E. (1979). Nonparametric statistical data modeling (with
discussion). J. Amer. Statist. Assoc. 74 105–131.

PARZEN, E. (1982). ARARMA models for time series analysis and
forecasting. J. Forecasting 1 67–82.

PARZEN, E. (1992). Comparison change analysis. In Nonpara-
metric Statistics and Related Topics (A. K. Saleh, ed.) 3–15.
North-Holland, Amsterdam.

PARZEN, E. (1992). Time series, statistics and information. In New
Directions in Time Series Analysis (D. Brillinger, P. Caines,

J. Geweke, E. Parzen, M. Rosenblatt and M. S. Taqqu, eds.)
265–286. Springer, New York.

RAMSAY, J. O. and SILVERMAN, B. W. (1997). Functional Data
Analysis. Springer, New York.

SACKS, J. and YLVISAKER, D. (1968). Designs for regression
problems with correlated errors; many parameters. Ann. Math.
Statist. 39 40–69.

TUKEY, J. W. (1961). Discussion, emphasizing the connection be-
tween analysis of variance and spectrum analysis. Technomet-
rics 3 191–219.

BIBLIOGRAPHY

The above list of references is a minimal list to show direct links
between research by Parzen and seminal papers by others.


