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Abstract. This paper is addressed to engineers and statisticians working
on topics in reliability and survival analysis. It is also addressed to
designers of network systems. The material here is prompted by problems
of infrastructure assurance and protection. Infrastructure systems, like the
internet and the power grid, comprise a web of interconnected components
experiencing interacting (or dependent) failures. Such systems are prone
to a paralyzing collapse caused by a succession of rapid failures; this
phenomenon is referred to as “cascading failures.” Assessing the reliability
of an infrastructure system is a key step in its design. The purpose of this
paper is to articulate on aspects of infrastructure reliability, in particular the
notions of chance, interaction, cause and cascading.

Following a commentary on how the term “reliability” is sometimes
interpreted, the paper begins by making the argument that exchangeability
is a meaningful setting for discussing interaction. We start by considering
individual components and describe what it means to say that they are
exchangeable. We then show how exchangeability leads us to distinguish
between chance and probability. We then look at how entire networks can
be exchangeable and how components within a network can be dependent.
The above material, though expository, serves the useful purpose of enabling
us to introduce and make precise the notions of causal and cascading
failures. Classifying dependent failures as being either causal or cascading
and characterizing these notions is a contribution of this paper. The others
are a focus on networks and their setting in the context of exchangeability.

A simple model for cascading failures closes the paper. A virtue of this
model is that it enables us to make the important claim that causal failures
are more deleterious to infrastructure reliability than cascading failures. This
claim, being contrary to a commonly held perception of network designers
and operators, is perhaps the key contribution of this paper.

Key words and phrases: Chance, dependence, infrastructure, interaction,
network, probabilistic causality, reliability, survival.

1. PREAMBLE

The scenario of infrastructure protection has created
an opportunity for interaction between engineers, net-
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work designers and statisticians on a matter of recent
concern. However, it has also created some problems
of communication, interpretation and focus. One such
problem pertains to an appreciation of the nature of
“reliability.” Whereas reliability has been clearly de-
fined in the statistical literature (to include engineer-
ing outlets such as the IEEE Transactions on Relia-
bility) it remains conversational and nebulous to many
of the designers, builders and operators of infrastruc-
ture systems. This has been the experience of one of
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us. Questions are often raised, such as: what do we
mean by the word “reliability”? Why should reliability
have a quantitative import? Is reliability not a chance,
and if so, what is the difference between chance and
probability?

To some, reliability is simply an assertion: “if an
item works, then it is reliable; otherwise, it is unreli-
able.” To others, reliability cannot have a universal de-
finition, because it should be context dependent. For
example, whereas the reliability of an automobile rep-
resents its ability to provide transportation on demand,
the reliability of a power system must reflect its abil-
ity to deliver power at specified thresholds for speci-
fied periods of time. The view that reliability is simply
an assertion about the functioning or not of an item is
naïve. For one thing, it does not take into account the
random nature of failures. Indeed, it is a recognition
of the randomness of failure which makes it possible
for us to quantify reliability as a probability, and this
in turn enables us to come to terms with a context-free
definition of reliability. More important, once the sto-
chastic nature of failure is acknowledged, notions such
as “chance,” “interaction” and “cascading,” terminol-
ogy that is the mainstay of infrastructure assurance can
be made precise.

This paper is chiefly addressed to engineers and sta-
tisticians working on problems of reliability and sur-
vival analysis. However, with a focus on infrastructure
as a point of discussion, the paper may also be of in-
terest to network theorists. They may find our view
of looking at networks within the framework of ex-
changeability valuable. Furthermore, they may find our
conclusions about the deleterious nature of causal and
cascading network failures intriguing. Sections 2 and 4
of the paper could also appeal to statisticians interested
in foundational issues, independent of specific applica-
tions.

1.1 Chance and Probability

To most engineers, and for that matter many mathe-
maticians and statisticians, the notions of chance and
probability are synonymous. However, this need not
be universally so. Under the setting of exchangeabil-
ity, described below, chance is an objective feature in-
dependent of an individual (or a group of individuals
acting as one). The objective feature is a property of
something that is akin to what is known as a “collec-
tive” [cf. Von Mises (1957)]. Collectives are concep-
tual entities that involve a kind of homogeneity, and
sequences of infinite size. By contrast, “probability”

connotes a flavor of individuality, in the sense that it re-
flects an individual’s disposition to bet. Thus probabil-
ity is specific to an individual, or a group of individuals
acting as one; that is, probability is subjective. This is
the view of probability that we shall adopt. However,
not all share this view, so that for them chance and
probability may indeed be synonymous. The view of
probability as subjective does pose a difficulty in pub-
lic discourse, and this could be a reason for its lack of
universal appeal.

The distinction between chance and probability is
made transparent by a theorem of de Finetti [cf. Lind-
ley and Phillips (1976)] on an infinite number of un-
known quantities that are “exchangeable”; see Sec-
tion 2. Exchangeability, as a judgment made by an in-
dividual or a group of individuals, plays a central role
in reliability and survival analysis. Its practical import
is that it enables one to make predictions based on
observations of observables that are judged exchange-
able with the unobservables, for example, life testing.
Clearly, relating the observed to the unobserved must
connote an underlying notion of dependence. Indeed,
the judgment of exchangeability is, de facto, a state-
ment of dependence.

To summarize, the quantification of reliability by
probability enables us to articulate the notions of
chance, dependence, exchangeability and indepen-
dence. Furthermore, as we shall see later, the notion
of dependence gives birth to that of causality, and this
in turn helps us characterize cascading. The quantifi-
cation of reliability therefore provides a basic require-
ment of science, namely, an ability to measure.

2. EXCHANGEABLE COMPONENTS

A network consists of a number of components op-
erating together according to a specified architecture;
series and parallel systems are simple examples. How-
ever, before considering their joint action we look at
a single component in the network. This component
will ultimately fail, and on its installation you will have
beliefs, expressed through probability, about its time
to failure. Denote by F(t) your probability that it will
still be functioning at time t , so that if X is its life-
time, F(t) = P (X > t), and −dF (t)/dt = f (t) is the
probability density of X. Our notation is contrary to
convention, in that F(t) generally denotes P (T ≤ t).
Here, P denotes probability. Two points about F(t)

need to be emphasized; first, that as a probability, it
expresses your opinion, rather than the actual perfor-
mance, in any sense, of the component; second, that



EXCHANGEABLE, CAUSAL AND CASCADING FAILURES 211

it depends not only on the component but also on the
conditions under which it is used. F(t) is known as
the survival function of the component for a mission
time t , t ≥ 0. For reasons that will become clear in the
sequel, we do not refer to F(t) as the “reliability” of
the component; that is, we will be making a distinction
between reliability function and the survival function.
F(t) may be interpreted as a measure of the desirability
of the component as viewed by an individual, namely
us. The universality of this interpretation comes from
the fact that X need not represent lifetime; X could
represent, for example, the amount of power delivered,
and P (X > t) represents our uncertainty about the de-
livered power being greater than a threshold t .

It is usual, in the context of reliability theory, to think
of the component as coming from a batch of similar
components, each of which might have replaced it
in the network with similar results. It is necessary
to express the notion of similarity in a mathematical
form and a way to do this is through the concept
of exchangeability, mentioned briefly in Section 1.1.
For n components from the batch, let f (t1, t2, . . . , tn)

be your probability density that they will fail at times
t1, t2, . . . , tn; then you are said to judge them as
exchangeable if this probability is invariant under any
permutation of the subscripts. For example, with two
components, your probability that the first will fail
at t1 and the second at t2 is the same as that for the
first at t2 and the second at t1; that is, f (t1, t2) =
f (t2, t1). Since exchangeability is defined in terms of
probability, and since to us here probability, as an
opinion, is a judgment, exchangeability is therefore
also a judgment; see Section 1.1. A famous theorem
of de Finetti (1938) says that for an infinite batch, or,
more practically, a very large batch, exchangeability
implies that your beliefs have a structure in which the
lifetimes are believed to be independent and identically
distributed (i.i.d.) with a distribution, that is unknown
to you but about which you have beliefs, reflected
through probability. Furthermore, this distribution is
the limit of your beliefs about the empirical distribution
of the observed lifetimes; see, for example, Bernardo
and Smith (1994), page 177. De Finetti’s theorem
involves some rather complicated mathematics and
it is usual and useful to think about it in terms of
a parameter θ that indexes all distributions on the real
line, where we can write, taking some liberties with
precision,

f (t1, t2, . . . , tn) =
∫ ∏

i

f (ti |θ)f (θ) dθ(1)

with density f (ti |θ) of individual lifetimes, the same
for all, the product expressing their independence,
given θ , and a density f (θ) for the parameter θ ;
θ could be a scalar or a vector. Exchangeability there-
fore produces the usual assumption of i.i.d. lifetimes
involving a parameter θ and a “prior” distribution for θ .
Under reasonable conditions, as n increases, the para-
meter concentrates around a value, θ0 say, and f (t|θ)

tends to a limit f (t|θ0) which is the empirical density;
θ0 is often referred to as the true value of θ . This limit
is called a chance, and the reliability of the component
for a mission of time τ , is

∫ ∞
τ f (t|θ0) dt . In writing the

above we have made a distinction between reliability
and the survival function through chance and probabil-
ity, respectively. Thus, in the context of exchangeabil-
ity and de Finetti’s theorem, we make the claim that
reliability is a chance, not a probability.

While θ indexes all distributions on the real line, it is
usual to use a small subclass of such distributions; for
example, exponential distributions with mean 1/θ , and
we speak of the subclass as providing a failure model
for the lifetimes. This greatly simplifies the mathemat-
ics but causes trouble if the empirical distribution or
chance departs seriously from the assumed exponen-
tial form. In making a simplification of this type we
have to recognize that the judgment (here exponential)
of f (t|θ) is a judgment by you, not an objective state-
ment. The objective quantity is the limit of the empir-
ical distribution function, which in principle can never
be observed. Even this is only objective in the sense
that it is shared by all who make the exchangeability
judgment. Diaconis and Freedman (1980) have trou-
ble with the synthesis about objective quantities; see
Section 6, Remark 1 of their paper. The individuality
of f (θ), the “prior,” however, is recognized and is of-
ten given as a reason for rejecting the position taken
here. The choice of suitable failure models occupies
much literature in the statistical theory of reliability.

2.1 Dependence and Independence

Consider now the case of two components from
a batch which are judged exchangeable; the ideas about
to be presented extend to any number. It is impor-
tant to distinguish two types of probability statements
about their lifetimes t1, t2. First, there is your joint
density f (t1, t2) expressing your belief that the first
will fail at t1, the second will fail at t2; second, there
is your joint density, given θ , f (t1|θ)f (t2|θ). In the
latter, t1 and t2 are judged by you to be independent
(and identically distributed), were you to know θ . In
the former, they are judged to be dependent because
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of the linkage provided by θ , which is unknown and
expressed in (1). This linkage allows learning in the
sense that your judgment about t2 will be affected
by observing the value of t1. In principle, with θ un-
known, observing t1 enables you to revise your judg-
ments about θ , and this in turn enables you to revise
your judgments about t2. Were θ to be assumed known,
no such learning occurs because of the independence.
Thus the notions of dependent and independent life-
times are statements about learning. Whenever there
is learning our probabilities change; otherwise they do
not. Again the exponential distribution provides an il-
lustration. Here, suppose that for i = 1,2,

f (ti |θ) = θ exp(−θti ),

and thus by (1),

f (t1, t2) =
∫

θ2 exp[−θ(t1 + t2)]f (θ) dθ.

For the convenient, simple case, with f (θ) =
u exp(−θu), easy calculation gives

f (t1, t2) = 2u/(t1 + t2 + u)3

and

f (t2|t1) = 2(t1 + u)2/(t1 + t2 + u)3,

demonstrating how your belief about t2 is affected by
observation of t1. Note that f (t2|t1) is the conditional
density of t2 were t1 to be observed; f (t2|t1) =
f (t1, t2)/f (t1). In particular, notice that this density is
not exponential and in the upper tail behaves like t−3

2
rather than like exp(−θt2).

While it is usual to assume some small class of dis-
tributions, like the exponential or the Weibull, difficul-
ties can arise if the true distribution, that is, the empir-
ical limit, were not a member of the assumed class. If
the chance distribution is truly exponential, then your
opinions about θ , expressed through f (θ |t1, t2, . . . , tn)
will concentrate around the true value. If the exponen-
tial is assumed but truth lies elsewhere, then, intuitively
speaking, the situation seems to be that θ will tend to
the value that makes the true distribution as close to the
exponential with that value, in the sense of Kullback
and Leibler (1951) distance, as possible. One strategy
is to make the model as large as computational fa-
cilities will allow, keeping in mind considerations of
parsimony (i.e., Occam’s razor). Another factor to be
borne in mind is that in practice one rarely observes
a large number of similar components, so that the em-
pirical distribution is poorly determined. This proba-
bly accounts for successes achieved with models as

restricted as the exponential. Although it is true that
repetitions are rarely sufficiently large to permit a rea-
sonable assessment of the chance distribution, those
with considerable experience with many networks and
their components can obtain a fairly good idea that the
chance distribution belongs to a class of densities, like
the Weibull. It is this sort of collective experience that
encourages the use of standard distributions.

3. EXCHANGEABLE NETWORKS

We now pass from a single component, taken from
a batch, to a network of, say, two components, each
component not necessarily from the same batch. They
will have lifetimes t1 and t2 dependent on the network
architecture and the external conditions, and you will
have a density f (t1, t2) for them, expressing your
beliefs about when they might fail. You may judge
them exchangeable, in which case t1 and t2 will
be dependent, but conditionally independent given
some θ , and the considerations of Section 2 will
apply. However, the general case need not restrict
itself to intercomponent exchangeability. It would be
more reasonable to suppose that a collection of similar
networks, being taken from a batch of networks, is
judged exchangeable. If so, there is a bivariate form
of de Finetti’s theorem using f (t1, t2|θ) and f (θ). For
example, with two exchangeable networks with failure
times tij for component i in network j , i, j = 1,2,

f
(
(t11, t21), (t12, t22)

)
=

∫
f (t11, t21|θ)f (t12, t22|θ)f (θ) dθ.

In general, with n exchangeable two-component
networks, the bivariate analogue of (1) is

f
(
(t11, t21), . . . , (t1n, t2n)

)
=

∫ ∏
i

f (t1i , t2i |θ)f (θ) dθ,
(2)

reflecting independence of the vectors (t1i , t2i ), given θ ,
i = 1, . . . , n, and f (t1i, t2i |θ) being the same for all i.

Under reasonable conditions, as n increases, the
parameter θ concentrates around a value, say θ0,
and f (t1, t2|θ0) is the limit of the bivariate empirical
density of (t1i , t2i ), i = 1,2, . . . ; this limit is the
chance. The subclass of distributions used to represent
f (t1, t2|θ0) is then a bivariate failure model for the
lifetimes.

From f (t1, t2), your belief about the failure time of
the network can be calculated, and from f (t1, t2|θ) the
same belief, given θ , can be found. These will depend
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on the network’s architecture; for example, if the two
components are in series (parallel), then the time to
network failure is the smaller (larger) of t1, t2. For the
case n = 2 of (2), while given θ , the network lifetimes
are judged independent, it does not imply, that with θ

known, the component lifetimes within each network
are independent. That is, f (t1, t2|θ) may not factor as
f (t1|θ) and f (t2|θ). For example, f (t1, t2|θ) could be
any one of the several bivariate distributions in the
literature. Thus, it is entirely possible, that when the
lifetimes of two networks are judged exchangeable,
these lifetimes can be independent given θ , even
though the lifetimes of each component within each
network are dependent. With θ unknown, the lifetimes
of the network will of course be dependent, assuming
that they are exchangeable. It is rarely satisfactory to
say that two quantities like t1 and t2 are independent. It
is also necessary to state the conditions under which
your probability for t1 and t2 is being discussed.
Thus there is a real difference between their being
independent, given θ , and being independent given
only the background knowledge of the network and its
components.

There are several ways in which, even with θ known,
dependence of component lifetimes within a network
can arise. We describe here two possibilities. However,
we must first emphasize the fact that for networks with
many components, even as few as five, such compo-
nent dependencies can create havoc vis-a-vis the de-
termination of the network’s reliability function; in-
deed, for such networks the “reliability polynomial,”
which is defined for networks with independent com-
ponents (given θ ), does not exist! The first of the above
mentioned two possibilities is that circumstances out-
side the network may put a strain on it; this strain
could be shared by both components rendering their
lifetimes correlated. For example, with the power line
network, a storm (common shock) could bring down
several trees in different parts of the region, causing
several lines to break. For such scenarios, the bivariate
exponential distribution of Marshall and Olkin (1967)
wherein θ = (λ1, λ2, λ12),

P (X1 ≥ t1, X2 ≥ t2|θ)

= exp[−λ1t1 − λ2t2 − λ12 max(t1, t2)](3)

is an attractive model for approximating the chance
density f (t1, t2|θ). Marshall and Olkin introduced
a model for a system with two components in which
there are three types of external shock to the system.
Type 1(2) affects component 1(2) only, whereas type 3
affects both components simultaneously. The shocks

are generated by three independent Poisson processes
having rates λ1, λ2 and λ12, respectively. The lifetimes
X1 and X2 of the two components are dependent,
even with θ known, since the marginals P (Xi ≥ ti ) =
exp(−(λi + λ12)ti), i = 1,2, obtained by letting tj ,
j 
= i, in (3) become zero, cannot be multiplied to
yield (3). Why this dependence? It stems from the
fact that upon observing t1 (or t2), our assessment
of X2 (or X1) changes on the grounds that learning
about a failure at t1 (or t2) leads us to incorporate
the belief that the common shock could have been the
cause of failure. Knowing θ does not tell us when
the common shocks occur, but knowing t1 (or t2)
causes us to believe that the common shock could have
occurred there. A good summarization of this bivariate
exponential distribution is in Barlow and Proschan
(1975), page 128.

For the second possibility leading to intercomponent
lifetime dependency within a network, we consider the
case of two components in parallel. If one compo-
nent fails, the network still functions, but the surviv-
ing component is subjected to an increased stress, and
thus the lifetimes have a positive association. Paired
organs is a good example from the biological sciences,
and fiber bundles is an example from the physical sci-
ences. As a simple scenario, suppose that, given θ , the
lifetimes of the individual components are independent
with θ exp(−θt) as a common density; that is, the fail-
ure model is an exponential. Now suppose that when
one of the two components fails, there is an increased
stress on the surviving component so that θ doubles to
2θ and its remaining lifetime is exponential with den-
sity 2θ exp(−2θt); see Figure 1. Simple calculations
show that the joint density of the lifetimes at t1 and t2
is 2θ2 exp(−2θt2) for t1 < t2, and 2θ2 exp(−2θt1) for
t2 < t1; ti , i = 1,2, is the lifetime of the ith compo-
nent. The time to failure of the network has density
at u, of the form 4uθ2 exp(−2θu); its mean time to
failure is 1/θ . The model for dependent lifetimes given
above is a restricted case of the bivariate exponential
distribution of Freund (1961). Here dependency is be-
cause upon the failure of the first component, we learn
of the time at which that surviving component experi-
ences an increased stress, and this in turn changes our
assessment of the survivability of the second compo-
nent. More details about this can be found in Freund
(1961), who also develops expressions for the marginal
densities and the joint moments.

Examples of other bivariate distributions used as
chance distributions in survival analysis are summa-
rized by Oakes (2001) and in engineering reliability



214 D. V. LINDLEY AND N. D. SINGPURWALLA

FIG. 1. Failure rate of the second component to fail, in Freund’s
model.

by Martz and Waller (1982) and by Henley and Ku-
mamoto (1981), who have other models of common
cause failures.

4. CAUSAL, CASCADING AND
INTERACTING FAILURES

The notion of dependence as a probability chang-
ing phenomenon (due to learning) has been well in-
corporated and developed in reliability theory and in
survival analysis. Independence, always conditional
(given some parameter) simplifies the assessment of
probability, and is often an idealization. Several sto-
chastic failure models incorporating dependence have
been introduced; the ones by Freund (1961) and by
Marshall and Olkin (1967) are two examples. How-
ever, in practice, we also encounter terms such as “the
cause of failure,” “interaction” and “cascading fail-
ures.” These terms do not appear to have been well
articulated within a mathematical framework. In this
section we outline some preliminary thoughts that may
help alleviate some of these shortcomings. We start
with causality, trace its philosophical roots, and then
develop some mathematical relationships. We then ar-
gue that the models by Marshall and Olkin and by Fre-
und are indeed models of causal failure. The notion of
causality with an added caveat leads us to the notion
of cascading. Consequently, a modified version of the
model by Freund paves the way towards a probabilistic
characterization of cascading failures.

4.1 Causality and Models of Causal Failure

4.1.1 Philosophical background. The notion of cau-
sality, or causation has been elusive, from the days of
Hobbes, Hume and Newton to the modern day philoso-
phers such as Suppes and Salmon; see, for example,
the excellent overview by Holland (1986). Four prin-
cipal conceptions of causation have been proposed to

address the question “What is a causal relationship?”
These are the materialist (or dynamical), the spiritual-
ist, the rationalist (or apriorist), and the phenomenalist
(or positivist); see Krajewski (1982), pages 223–235.

The materialist notion was enunciated by Hobbes
and was adopted by Newton in his Principia. Here the
causal relation is the connection between two bodies
A and B , in which A acts on B and makes changes
to it. The action is connected with the transmission of
motion; to Newton, cause was a force. This view un-
derwent a change via physicists like Helmholtz, Ost-
wald, Planck and Einstein, so that causal relations were
identified with the transmission of energy, and cause is
the principle of conservation of energy. The contempo-
rary view takes into account nonphysical phenomena
(biological and sociological) so that causation is con-
sidered as an action involving a transfer of energy or of
information.

The spiritualist notion traces its roots to the Bishop
of Berkeley and to Aquinas. Here cause is identified
as a spiritual being that by virtue of its will causes
a change in another being (spiritual or material). Thus,
it is only God that “is the true cause.” The rationalist
notion views a causal relation as a special case of
the logical relation between reason and consequence.
Thus Descartes considers cause to be the reason for
the existence of a thing. This view was also held by
Spinoza and by Leibniz.

By far the most common and the most discussed
conception is the phenomenalist one. It is due to Hume
who sees a causal relation as one that can only be
drawn from experience. To Hume (1748), cause is

. . . an object precedent and contiguous to
another, and so united with it, that the idea
of one determines the mind to form the idea
of the other.

That is, the frequent observation that A is followed
by B associates in our mind the notion that when A ap-
pears we expect B also to appear. Thus, the connec-
tion between events is of a psychological, associative
nature. Hume’s psychologism has been the topic of
much discussion. However, his basic notion of succes-
sion of events has been accepted, and it has been en-
riched by others, namely, John Stuart Mill (1843), who
claimed that a causal relationship between A and B
can be ascertained, not only if A is always followed
by B , but when, in addition, we know that this will
continue in the future in all situations, regardless of
other circumstances. That is, B must follow A uncon-
ditionally. This unconditionality must be drawn from
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sources other than experience, for which Mill appeals
to science as a repository of mankind’s extensive expe-
rience. Further refinements to Hume’s thesis of succes-
sion (temporal), and Mill’s thesis of the perpetual are
that if events are separated in space, one needs to look
at intermediate events, events that may not be perceived
by direct observation, but inferred by knowledge of
physics and psychology; that is, a spatio-temporal con-
tiguity.

Of these four conceptions, it is the one by Hume, that
is, the phenomenalist conception, that has motivated
a quantification of causality, one deterministic and the
other probabilistic. The former, which is overviewed
in the Appendix, is subsumed by the latter under an
additional condition. Probabilistic causality enables
us to identify failure modes that are causal, and its
modification enables us to characterize failures that
cascade. The material in the Appendix (which if
included in the text would be distracting) enables us to
put the material of Section 4.1.2 in its proper context.

4.1.2 Probabilistic causality. A probabilistic ap-
proach to causality has been developed by Reichen-
bach, Good, and Suppes; see, for example, Salmon
(1980), pages 50–74. We outline below the version of
Suppes (1970). In the context of time series this ver-
sion is known as Wiener causality [cf. Granger (1969)].
Here, D is a prima facie probabilistic cause of E , de-

noted D
P→ E , if:

1. D occurs before E (in time).
2. P (D) > 0.
3. P (E |D) > P (E).

Condition (3) implies that a cause is a probability
raising event. Contrast this with the notion of depen-
dence wherein all that matters is a change in proba-
bility. We note that (3) is also a consequence of de-
terministic causality (see the Appendix), since there

D
C→ E ⇒ P (E |D) > P (E). Thus we have the the-

orem.

THEOREM 1. If D occurs before E , and if 0 <

P (D) < 1, then

D
C→ E �⇒ D

P→ E .

The converse is not true. Thus the notion of proba-
bilistic causality is a weakening of the notion of deter-
ministic causality, and as such is a broadening of this
class.

From condition (3) it is easy to see that if P (E) > 0,

then D
P→ E ↔ P (D |E) > P (D), and that under

probabilistic causality, D cannot be disjoint from E .
However, D can be completely contained in E , or D
and E can intersect, so that the first and the middle

illustrations of Figure 6 correspond to the case D
P→ E ,

but not the case D
C→ E .

Suppes’ three conditions define the cause to be prima
facie, because the cause is only an apparent cause.
Suppes declares a cause to be a genuine cause, if it
is a prima facie cause that cannot be shown as being
a “spurious cause.” A (prima facie) cause D is said
to be a spurious cause of E if and only if there exists
a cause S where:

(i) S occurs before D .
(ii) P (D,S) > 0.

(iii) D is a prima facie cause of E .
(iv) P (E |D,S) = P (E |S).
(v) P (E |D,S) ≥ P (E |D).

Thus a spurious cause is a prima facie cause that can
be explained away by conditioning on an earlier event
(or a common cause) that accounts as well for the con-
ditional probability of the effect. Clearly, since there
could be an inexhaustible number of S’s that could ren-
der a prima facie cause spurious, one can rarely ascer-
tain that a particular cause is genuine. It is because of
arguments such as this, that Suppes’s notion of prob-
abilistic causality has been, to some philosophers, un-
satisfactory; see Hesslow (1976, 1981).

However, defenders of this theory, such as Rosen
(1978) maintain that an assertion of a causal relation-
ship depends on what information is available and upon
a conceptual framework relative to which the causal re-
lations are postulated. It is possible that the conceptual
framework is inadequate or partial, and thus there is
always the possibility of discovering a better explana-
tion of causal relationships. Thus Suppes’ probabilis-
tic theory presupposes the view that there are no ulti-
mate causes and that to assume otherwise is sheer dog-
matism. Consequently, all the probability statements
in this section must be rewritten, to include the back-
ground information (or the conceptual framework H );
for example, (2) should be written as P (D;H) > 0
and (v) as P (E |D,S;H) ≥ P (E |D;H).

The bivariate exponential distribution of Marshall
and Olkin discussed in Section 3 provides an illustra-
tion of probabilistic causality. Let E be the event that
X2 = t2, and D the event that X1 = t1, where t1 < t2.
Then it is easy to verify that for t1 > 1

λ12
ln λ1+λ12

λ1
, the

three conditions of prima facie causality are satisfied so
that D is a prima facie probabilistic cause of E . How-
ever, D is not a genuine cause. If S denotes the event
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that the common shock of this distribution occurs at t1,
then E is independent of D , given S. Indeed, in this
particular case, S is a genuine probabilistic cause of E .
Thus we claim that Marshall and Olkin’s bivariate dis-
tribution is a model of causal failure for A with T2 = t2
as the event, T1 = t1 as a prima facie cause and S as
a genuine cause, for all values of t1 greater than a spec-
ified constant.

4.1.3 Causes of effects and effects of causes. The
deterministic and probabilistic thinking outlined above
is concerned with assessing the cause of an effect.
Such assessments are useful in medical diagnosis and
in maintenance management. In the latter context, the
effect could be the network’s failure, and a prima
facie cause the failure of one or more of its nodes.
The comment by Cox (1986) on Holland (1986) raises
some noteworthy philosophical and statistical issues.
By contrast, when we are addressing issues pertaining
to the efficacy of a treatment or an engineering design,
interest centers around assessing the effects of a cause.
For example, we may want to know what could happen
to a network if one or more of its nodes were to be
disabled, or if several nodes were collapsed into one.

Bayes’ law is a vehicle for assessing the causes
of effects. Thus for example, if C or D , or both C
and D , are probabilistic causes of an event E , then
P (C|E) ∝ P (E |C)P (C); similarly P (D |E). On the
other hand, assessing the effects of causes has proved
to be a difficult endeavor, especially in the medical
context, since every subject under study can experience
a treatment (i.e., a cause) or not. Much has been writ-
ten on this topic in the statistical literature. This we
have barely touched upon since our focus here is
on probabilistic modeling. A comprehensive synthesis
of a broad spectrum of issues involving statistical
techniques is by Cox (1992).

4.1.4 Other approaches to causality. To some, such
as Pearl (2000), the approaches to causality discussed
here seem inadequate. Perhaps his ideas are easily
the best we have because no definition of causality
can be expected to embrace all the meanings that
we associate with the word. Like most words in
the English language, the term “cause” is imprecise,
whereas any definition of the term is precise. The same
can also be said of the word “probable”; however, the
notion of probability has been made precise in one of
several ways.

4.2 Cascading and Models of Cascading Failures

What are cascading failures and how are they differ-
ent from causal failures? Before addressing this ques-
tion, it is helpful to overview the distinction between
dependent and causal failures. Whereas dependence is
characterized in terms of probability changing events,
causality is characterized, among other things, in terms
of probability increasing events. Furthermore, with de-
pendence, there being no consideration of a time se-
quencing of occurrences, there is an interchangeability
of events. Thus if D is dependent on E , then E is de-
pendent on D . With causality there is a time ordering
so that if D is the cause of E , then E cannot be the
cause of D . Engineers refer to this time ordering as
dependence with dynamics.

To distinguish causal failures from cascading fail-
ures, the first thing to note is that in a causal failure
model, simultaneous failures are possible. For exam-
ple, in Marshall and Olkin’s model, an occurrence of
the common shock (the genuine cause) is followed by
the simultaneous failure of both components. Under
the notion of cascading that will be introduced later,
there is a sequence of failures, one followed by the
other, but within a specified time; no simultaneous fail-
ures are allowed. The scenario here parallels that of
a domino effect. That is, the falling of a domino causes
its neighbor to fall, but only if the neighbor is within
striking distance of the falling domino. If the domi-
nos are too far apart, a falling domino will not have
any effect on its neighbors. Thus with cascading fail-
ures, the failure of one component is followed by that
of its neighbor, but within a specified time, which we
shall call critical time. If the failure of a component
causes its neighbor to fail, but after the critical time has
elapsed, then such failures are causal, not cascading.

Freund’s model, discussed at the end of Section 3,
provides a suitable framework for developing models
of cascading failures. Recall that in this model the
failure of the first component permanently changes the
parameter θ—which is the failure rate of the surviving
component—to 2θ . This increase in the failure rate,
shown in Figure 1, increases the probability of failure
of the surviving component. Thus, if X1 = t1 denotes
the event that the first component to fail, fails at time t1,
and if X2 = t2, t1 < t2, denotes the event that the
surviving component fails at time t2, then the event
(X1 = t1) is a prima facie cause of event (X2 = t2),
and thus Freund’s model is also a description of causal
failures.

Now suppose that we modify Freund’s model such
that the failure rate of the surviving component changes
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FIG. 2. Failure rate of the second component to fail in a model
for cascading failures.

at t1 from θ to 2θ , but at time t1 + δ it reverts back
to θ , as illustrated in Figure 2. The quantity δ > 0
is the critical time (or the threshold time), and the
ensuing model is a description for a cascading failure.
The choice of what value to choose for δ is subjective,
though a possible strategy is to let δ be the time it takes
to restore the failed component to operational status.

For the setup of Figure 2 we can verify [see Swift
(2001)] that the joint density at t1 and t2, for t1 < t2 is

2θ2e−2θt2 if t2 < δ,

2θ2e−2θt2 if t1 < t2 < t1 + δ,

θ2e−θ(t1+t2+δ) if t2 > t1 + δ.

Similarly, the joint density for t2 < t1 is

2θ2e−2θt1 if t1 < δ,

2θ2e−2θt1 if t2 < t1 < t2 + δ,

θ2e−θ(t1+t2+δ) if t1 > t2 + δ.

The time to failure of the system with cascading
failures has density at u of the form

fC(u) =



4θ2ue−2θu, u < δ,

4θ2δe−2θu + 2θe−θ(u+δ)

−2θe−2θu, u ≥ δ.

Its survival function at u is of the form

SC(u) =
{

2θue−2θu + e−2θu, u < δ,

2θδe−2θu + 2e−θ(u+δ) − e−2θu, u ≥ δ;
thus its failure rate at u is

hC(u) =




4θ2 u

2θu + 1
, u < δ,

2θ(2θδe−θu + e−θδ − e−θu)

2θδe−θu + 2e−θδ − e−θu
, u ≥ δ.

The mean time to system failure is 1
θ

+ 1
2θ

e−2θδ; this
is larger than 1

θ
, which is the mean time to failure under

FIG. 3. A comparison of survival functions under causal (lower
line), cascading (thick line) and independent (upper line) failures
(when θ = 1 and δ = 0.25).

the causal model of Freund. This is to be expected.
We also note that as δ ↑ ∞, the mean time to system
failure is 1

θ
, and that as δ ↓ 0, the mean is 3

2θ
, the

mean time to failure of a parallel redundant system
with two independent, exponentially distributed life-
lengths. Thus for parallel redundant systems whose
component life-lengths have exponentially distributed
life-lengths, cascading failures result in a larger mean
time to failure than causal failures, but a lower mean
time to failure than that under independent failures.

To see if the above characteristic is also displayed
by the survival (or reliability) function, we recall that
under Freund’s model of causal failures, the density
of the system failure at u is of the form 4θ2ue−2θu,
so that its survival function, say SF (u) = 2θue−2θu +
e−2θu, and its failure rate is hF (u) = 4θ2u/(2θu + 1).
Similarly, for a two-component parallel redundant
system with independent exponentially distributed life-
lengths, the density, the survival function, and the
failure rate at u, are fI (u) = 2θe−θu − 2θe−2θu,
SI (u) = (2eθu − 1)e−2θu and hI (u) = 2θ(e−θu − 1)/

(e−θu − 2), respectively. Figure 3 shows a plot of
SC(u), SF (u) and SI (u) for u ≥ 0, when θ = 1 and
δ = 0.25. Here again, we see that system reliability
under a model for cascading failures is bounded above
by that under independence and below by that under
causality. Clearly, for this scenario, the assumption of
independence overestimates system reliability; thus it
must be cautiously invoked.

A comparison of the three failure rates hC(u), hF (u)

and hI (u) (see Figure 4), is instructive. It shows that
hC(u) → hI (u), whereas hF (u) dominates the other
two. Indeed, it can be verified [see Swift (2001)], that
limu→∞(hC(u) − hI (u)) = 0, for all values of θ and
δ ∈ (0,∞).

The results given above, albeit for a special case,
leads us to claim that it is causal, not cascading failures,
that are more deleterious to system performance, and
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FIG. 4. A comparison of failure rate functions under causal
(upper line), cascading (thick line) and independent (lower line)
failures (when θ = 1 and δ = 0.25).

that an unjustified assumption of independence could
result in an unwarranted overconfidence about an
infrastructure’s credibility. The generality of this claim
is suggested by the fact that for any finite value of δ,
the failure rate experiences a downward jump.

A generalization of the above model to cover mono-
tone failure rate functions, multiple components and
random values of δ, is in Swift (2001).

APPENDIX

Deterministic Causality

A deterministic view of causality has been presented
via two lines of reasoning, one based on the notion
of counterfactuals, and the other based on a principle
known as sufficiency. The two notions do not lead to
a common definition of deterministic causality.

A counterfactual is an outcome that would have
been observed had the world developed differently [cf.
Dawid (2000)]. As an example, consider the claim that
“had Darius defeated Alexander, then Zoroastrianism
would have been the dominant religion of the world.”
In general, if the world was in state D , thought of as
influencing E , then we say that event D is the cause

of an event E , denoted D
C→ E , if and only if E does

not occur in the absence of D ; for convenience, we do
not recognize here multiple causes. Thus, if E denotes

FIG. 5. D is a deterministic cause of E .

the complement of E , we may write, assuming that
P (D) > 0,

D
C→ E ⇐⇒ P (E |D) = 1

⇐⇒ P (E and D) = P (D)

⇐⇒ E is fully contained in D .

This is illustrated in Figure 5.
However, if E is completely contained in D , then

P (E |D) = P (E and D)

P (D)
= P (E)

P (D)
,

so that

P (E |D)P (D) = P (E)

or

P (E |D) ≥ P (E),

and since P (D) < 1,

P (E |D) > P (E).

Thus to summarize,

D
C→ E ⇐⇒ P (E |D) = 1 and also that

�⇒ P (E |D) > P (E).

Figure 6 depicts the three possible scenarios wherein

D
C
� E ; that is, D cannot be a deterministic cause

of E .

FIG. 6. Scenarios depicting the case when D is not a deterministic cause of E .



EXCHANGEABLE, CAUSAL AND CASCADING FAILURES 219

FIG. 7. C and D are jointly a deterministic cause of E .

Finally, if C and D are jointly a deterministic cause
of E , then E must be completely contained in C ∩ D ,
as shown in Figure 7.

The sufficiency principle for deterministic causality
is based on the notion that a cause is either sufficient,
or part of a sufficient condition, for the effect. This
belief, common among scientists, does not mean that
every event has a sufficient cause; rather, it means
that if an event has a cause, then it has a sufficient
cause. Thus we may say that event D is a sufficient

cause for event E , denoted D
S→ E , if P (E |D) = 1,

and it is easy to verify that here D is fully contained
in E ; also, P (E |D) > P (E), assuming that P (E) < 1.
Since D is contained in E the first illustration of
Figure 6 replaces Figure 5. Consequently, deterministic
causality defined under counterfactuals does not imply
the one defined under the sufficiency principle, and
vice versa, unless D and E in Figure 5 are identical.
We label the above forms of causality deterministic,
since the defining probabilities, namely P (E |D) and
P (E |D), are set to one.
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