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A Simulation-based Approach to Bayesian
Sample Size Determination for
Performance under a Given Model
and for Separating Models
Fei Wang and Alan E. Gelfand

Abstract. Sample size determination (SSD) is a crucial aspect of experi-
mental design. Two SSD problems are considered here. The first concerns
how to select a sample size to achieve specified performance with regard to
one or more features of a model. Adopting a Bayesian perspective, we move
the Bayesian SSD problem from the rather elementary models addressed in
the literature to date in the direction of the wide range of hierarchical mod-
els which dominate the current Bayesian landscape. Our approach is generic
and thus, in principle, broadly applicable. However, it requires full model
specification and computationally intensive simulation, perhaps limiting it
practically to simple instances of such models. Still, insight from such cases
is of useful design value. In addition, we present some theoretical tools for
studying performance as a function of sample size, with a variety of illustra-
tive results. Such results provide guidance with regard to what is achievable.
We also offer two examples, a survival model with censoring and a logistic
regression model.

The second problem concerns how to select a sample size to achieve
specified separation of two models. We approach this problem by adopting
a screening criterion which in turn forms a model choice criterion. This
criterion is set up to choose model 1 when the value is large, model 2 when
the value is small. The SSD problem then requires choosing n1 to make the
probability of selecting model 1 when model 1 is true sufficiently large and
choosing n2 to make the probability of selecting model 2 when model 2 is
true sufficiently large. The required n is max(n1, n2). Here, we again provide
two illustrations. One considers separating normal errors from t errors, the
other separating a common growth curve model from a model with individual
growth curves.
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1. INTRODUCTION

Experimental design is a multifaceted activity but,
undeniably, sample size determination (SSD) is a cru-
cial aspect. There is by now a substantial literature
in the classical case which is summarized roughly
through the 1980s in books such as Kraemer and Thie-
mann (1987), Cohen (1988) and Desu and Raghavarao
(1990). More recent work has moved toward general
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regression settings and generalized linear models, for
example, Self and Mauritsen (1988), Self, Mauritsen
and O’Hara (1992) and Muller, LaVange, Ramey and
Ramey (1992). A recent sophisticated illustration in the
context of longitudinal data studies appears in Liu and
Liang (1997).

EXAMPLE 1. Consider the usual normal theory
linear regression setting. That is, assume y = Xnβ + ε
where Xn is subscripted to denote sample size and
is n × p, β is p × 1 and ε ∼ N(0, σ 2In). SSD may
be sought to address specified inferential performance.
However, the classical SSD approach described below
restricts inferential performance to hypothesis testing
regarding linear transformation of β, requiring a null
and alternative hypothetical value. In practice, for
φ = h(β) we may seek to control the performance of
an interval estimate for φ or, if φ is viewed as an effect
size, to assess something about the chance that φ > φ∗,
that is, of detecting an effect of size at least φ∗. We
return to this example in Section 5.

A generic strategy when interest is confined to a
single parameter, say θ , assumes an estimator θ̂ of θ

which is consistent and approximately normal. Then,
with a specified null and alternative along with an
estimated standard error for θ̂ , we have a routine
“one sample normal” calculation for sample size n

which should perform reasonably well if the resulting
n is reasonably large. This approach is advocated by
Shuster (1993).

The general classical strategy in the situation of more
complicated parametric modeling structure is as fol-
lows. In the case of Gaussian data, for an estimable
parameter of interest, the usual associated F statistic
will have a null distribution which is a central F . Typ-
ically, at an alternative value for the parameter, the re-
sulting noncentrality parameter is increasing in sample
size n. Then, a sample size is determined such that, at
this n, the probability of rejecting the null achieves a
prescribed level. For generalized linear models, under
conditions, likelihood ratio tests and score tests have
approximate chi-square distributions which are central
under the null and, under alternatives, approximately
noncentral. The noncentrality parameter can be ap-
proximated using the sample or estimated expected in-
formation matrix along with the familiar delta method.
Again, if this parameter is increasing in n we can pro-
ceed as above.

The limitations of the classical approach are evi-
dent. In simpler cases, for example, the binomial, one

needs an estimate of the quantity for which perfor-
mance is desired in order to obtain the required sam-
ple size. In other cases, one needs an estimate of the
variability in the data or else of the standard error of
the parameter estimate. In the general case, one needs
a value of the parameter vector in order to calculate the
noncentrality parameter as a function of sample size.
Where does one obtain these numbers from? Moreover,
should these numbers merely be inserted into an SSD
formula without some recognition of their uncertainty
or variability? How comfortable are we with the var-
ious approximations which are implicit in the result-
ing SSD formula? Perhaps, most importantly, in the
general case is one interested exclusively in perfor-
mance which is measured through power at an alter-
native value of a noncentrality parameter?

In this sense, a Bayesian approach may be more
attractive, but the literature on Bayesian SSD is more
recent and more narrow, focusing primarily on normal
and binomial one- and two-sample problems. A recent
issue of The Statistician (46 2, 1997) summarizes
this work. In particular, see the articles by Lindley
(1997), Pham-Gia (1997), Adcock (1997), Joseph and
Belisle (1997) and Joseph and Wolfson (1997). An
earlier issue of The Statistician (44 2, 1995) is also
of interest, with papers by Joseph, Wolfson and Du
Berger (1995a, b) and discussions by Pham-Gia (1995)
and Adcock (1995). The most recent work is that of
Rahme, Joseph, and Gyorkos (2000) and Inoue, Berry
and Parmigiani (2000).

This effort illuminates two primary issues. The first
is the distinction between a formal utility approach
which provides SSD through a maximization of ex-
pected utility [Lindley (1997)] and a performance
based approach which chooses SSD to control infer-
ence for a parameter of interest to a specified degree of
error. The other issue is an elaboration of a variety of
performance measures and their respective advantages
and disadvantages.

Our contribution here is not to join the debate over
the first issue nor is it to argue for a particular class
of measures for the second issue. Rather, it is to move
the Bayesian SSD problem forward to handle the range
of models that classical SSD work has been address-
ing over the past decade (as referenced above). Our
simulation-based approach sacrifices explicit SSD for-
mulas and is computationally intensive but is feasible
for at least a portion of the wide range of hierarchi-
cal models which dominate the current Bayesian land-
scape. It was anticipated in Joseph, Wolfson and Du
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Berger (1995b, pages 169–170), and was illustrated for
a binomial model without covariates in Zou and Nor-
mand (2001).

We also address a second SSD problem. Often before
collecting data, we can consider several competing
explanatory models. It might be useful to be able to
determine a sample size such that, after the data is
collected, using a particular model choice criterion, our
chance of choosing a particular model given that model
is correct is sufficiently high. We refer to this problem
as SSD to separate models and confine ourselves to the
separation of two models. A natural initial question is
whether, for a given pair of models and a given model
choice criterion, separation through sample size is
achievable? As a simple example, if both models have
the same likelihood, differing only in the prior, then
with increasing sample size, since the data overwhelms
the prior, the posteriors will become indistinguishable
so model separation is not achievable. In other words,
prior sensitivity is a characteristic of a given sample
size and evaporates with increasing sample size.

EXAMPLE 2. A frequent concern when modeling
continuous data is whether the assumption of Gaussian
errors is acceptable. Perhaps a heavier-tailed distribu-
tion, say a t with small degrees of freedom, is appro-
priate. Consider the simplest version where model 1
asserts y1, . . . , yn ∼ N(µ,σ 2) and model 2 asserts
y1, . . . , yn ∼ t2(µ,σ ). With µ and σ unknown, how
large must n be so that, for an adopted model com-
parison criterion, the chance of selecting the normal
model, given it is true, achieves a specified level and
the chance of selecting the t model given it is true also
achieves a specified level. We return to this example in
Sections 8 and 9.

The classical literature unfortunately is limited to the
case of nested models under usual regularity condi-
tions. Then the likelihood ratio statistic will have an
asymptotic chi-square distribution under the reduced
model. As a result, the likelihood ratio is inconsistent.
As sample size increases we can not guarantee that
the chance that we select the reduced model when it
is true is arbitrarily large. Under special asymptotics,
under the full model, the likelihood ratio statistic will
have an approximate noncentral chi-square distribution
with noncentrality parameter which increases in sam-
ple size. Now suppose a full model parameter value is
selected. In addition, suppose a probability of choosing
the full model when the full model is true is specified,

thus defining the model separation criterion in this set-
ting. Then, for sample size large enough, the noncen-
trality parameter, resulting from the full model pa-
rameter value, will be large enough to achieve the
desired power thus determining the required sample
size. Unfortunately, in practice the functional connec-
tion of the noncentrality parameter to the sample size
through the design matrix may be vague. Also, it may
not be apparent which full model parameter value to
adopt.

The Bayesian literature is scant. Weiss (1997) con-
fines himself to the case of hypothesis testing consider-
ing nonnested composite null and alternative hypothe-
ses. He uses the Bayes factor, illustrating with some
very elementary examples. Rubin and Stern (1998)
raise the important point that the failure of the avail-
able data to reject a simpler model in favor of a more
complex one may be due to having insufficient data to
criticize the simpler model. Evidently, the context is
nested models but hypothesis testing is not proposed.
Rather, posterior predictive distributions of so-called
discrepancy variables are employed to diagnose par-
ticular failures of the simpler model. Sample size is
determined to make these distributions sufficiently
concentrated, implying a high chance of revealing fail-
ure of the simpler model when it is not operating.

Hence the format of the paper is as follows. In Sec-
tions 2–6 we focus on SSD for model performance; in
Sections 7–9 we consider SSD for model separation.
In Section 2 we detail a range of performance criteria.
This suggests Section 3 which introduces the roles of
the sampling prior and the fitting prior. In Section 4
we lay out the simulation-based approach including a
flow chart to elaborate the computational development.
In Section 5 we provide a collection of useful theoreti-
cal results with regard to performance as a function of
sample size. Such results are needed to provide guid-
ance with regard to what is achievable. In Section 6 we
give two nonstandard illustrations. The first considers
a survival model with censoring, the second a logistic
regression. Section 7 formalizes the model separation
problem. The use of sampling and fitting priors and
the general simulation-based approach follow that of
Sections 3 and 4, respectively. Section 8 presents ana-
lytical results for several separation problems. Finally,
Section 9 presents two examples. One considers sep-
aration of a normal error model from a t-error model.
The second seeks, in the context of longitudinal data,
to separate a common growth curve model from a hier-
archical model with individual growth curves.
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2. MODEL PERFORMANCE CRITERIA

A Bayesian model specifies a likelihood and a prior.
Denote the data associated with a sample size of n

by y(n) and let θ be the vector of all model parameters.
Then we write the model as the joint distribution of y(n)

and θ , that is,

f (y(n) | θ)f (θ).(1)

The posterior for θ is proportional to (1). Here f (θ)
can be a hierarchical specification, for example, θ =
(θ (1), θ (2)) with θ (1), say, the first-stage parameters
and θ (2) the hyperparameters. Interest focuses on
inference regarding the scalar ϕ = h(θ).

We consider exclusively the problem of choosing
n to achieve specified expected behavior with regard
to the posterior f (ϕ | y(n)). We do not consider that
there is a cost to sampling and thus do not formulate
a utility function which reflects the trade-off between
performance and cost [Lindley (1997)]. Therefore we
do not have an expected utility maximization problem.
We do note that the utility maximization approach can
be handled within our general computational strategy
following the ideas in Müller and Parmigiani (1995)
but no further details are presented here.

The literature mentioned in Section 1 discusses a
variety of performance criteria with regard to f (ϕ |
y(n)) and associated c.d.f. F(ϕ | y(n)). These include:

1. The average posterior variance criterion (APVC).
Given ε ≥ 0, the APVC seeks n such that

E var(ϕ | y(n)) ≤ ε.(2)

Of course other measures of dispersion might be
appropriate, for example, the average posterior
interquantile range.

2. The average coverage criterion (ACC). Suppose
A(y(n)) is a set on R1 determined by y(n) of fixed
length l. For instance, A(y(n)) could be a symmetric
set of the form (ϕ̂n − l/2, ϕ̂n + l/2) where ϕ̂n

is an estimate of ϕ such as the posterior mean
or median. Alternatively, with a highest posterior
density (HPD) set, A(y(n)) = {ϕ :f (ϕ | y(n)) ≥
cn(l)} where cn(l) is chosen such that the Lebesgue
measure of A(y(n)) is l. Then given α ≥ 0, ACC
seeks n such that

E Pr
(
ϕ ∈ A(y(n)) | y(n)

)≥ 1 − α.(3)

Of course, for a fixed l, the HPD choice will receive
a smaller n than the symmetric choice. Thus, the
latter is conservative, but simpler to compute. See
Joseph, Wolfson and Du Berger (1995b) in this
regard.

3. The average length criterion (ALC). Consider the
interval A(y(n)) = (F−1

ϕ|y(n)(α/2), F−1
ϕ|y(n)(1 − α/2)).

That is, A(y(n)) is an equal (in probability) tail,
1 − α posterior interval estimate for ϕ. Given l ≥ 0,
the ALC criterion seeks n such that

E
(
F−1
ϕ|y(n) (1 − α/2)− F−1

ϕ|y(n) (α/2)
)≤ l.(4)

Again, a 1 − α HPD interval can replace the equal
tail interval.

4. In certain applications ϕ will be interpreted as an ef-
fect size in which case Pr(ϕ > 0 |
y(n)) (the posterior probability of detecting an ef-
fect) or, more generally, Pr(ϕ > ϕ∗ | y(n)) (the pos-
terior probability of detecting an effect of size at
least ϕ∗) may be of interest. Then, given α ≥ 0, we
seek n such that

E Pr(ϕ > ϕ∗ | y(n)) ≥ 1 − α.(5)

Note that in (2)–(5), the expectation is calculated
with respect to the marginal distribution of y(n) which
therefore must be proper.

Implicit in (2)–(5) is the existence of a limit for the
left side as n → ∞ and that this limit permits the
specified inequality. In fact, rough monotonicity of the
left sides in n would seem to be implicit as well. These
theoretical matters are taken up in the next section.
Not surprisingly, establishing the existence of limits is
much easier than demonstrating monotonicity so we
generally depend upon the results of our simulation-
based approach to clarify the rough monotonicity.

To unify notation we remark that each of (2) through
(5), for an appropriate nonnegative function T (y(n)),
can be written as

E
(
T (y(n))

)≤ ε.(6)

Also, in the above, if it is of interest, we can replace
f (ϕ | y(n)) with a posterior predictive distribution,
f (ynew | y(n)), and again obtain a form like (6). Lastly,
if we have multiple performance objectives, this will
result in a set of expectations each like (6). If the
required n is computed for each one, the maximum of
these n’s achieves all objectives.

3. FITTING AND SAMPLING PRIORS

Bayesian sample size determination is a form of
“preposterior” analysis. It is done in the absence of
data. Nonetheless, given a proper model and a sample
size, we can certainly simulate data from the model to
learn how the resultant posterior will behave.
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An important aspect of our approach is that we dis-
tinguish between a “sampling” prior and a “fitting”
prior. In particular, while we often have useful prior in-
formation, it is generally preferable to let the data drive
the inference. Priors which are relatively noninforma-
tive are encouraged. An analysis which more closely
resembles a likelihood analysis (but avoids worrisome
asymptotics) results. Hence in (1) we think of f (θ)
as vague, perhaps improper as long as f (θ | y(n)) is
proper. We refer to this prior as the fitting prior and
denote it by f (f )(θ). This is the prior that we would
anticipate using to fit the model once the data is ob-
tained.

By contrast, in practical sample size determination
we are usually interested in achieving a certain level of
performance if θ is likely to be in some specified por-
tion of the parameter space. We capture this through
a sampling prior for θ , denoted by f (s)(θ). The sam-
pling prior arises in a “what if” spirit. Drawing upon
expertise, we may speculate upon a variety of infor-
mative scenarios regarding θ and capture each with a
suitable sampling prior. Moreover, if φ = h(θ) is of in-
terest we may create f (s)(θ) from f (f )(θ) by insur-
ing that f (s) is proper and very informative with re-
gard to φ. We take “very informative” as a uniform
prior over some suitable bounded interval. In terms
of capturing variability appropriately, allowing uncer-
tainty in φ and, in fact, in θ , seems preferable to fix-
ing θ , as classical approaches require. The sampling
prior is necessarily proper and generates the θ ’s in the
Bayesian model. Given such a θ , say, θ∗,y(n)∗ is gen-
erated from f (y(n) | θ∗). Then y(n)∗ is subjected to the
fitting model to ascertain what sort of posterior analy-
sis ensues. Also, the sampling prior, in conjunction
with f (y(n) | θ) provides the (proper) marginal distrib-
ution f (s)(y(n)) under which (6) is computed. y(n)∗ is
a realization from this distribution. With regard to (6),
T (y(n)) is calculated under f (f )(y(n)), its expectation
under f (s)(y(n)). Neither f (s)(θ | y(n)) nor f (f )(y(n))

is of interest.

4. THE SIMULATION-BASED SSD APPROACH

The simulation-based SSD approach requires ex-
ploring an appropriate set of n’s such that, at each
one, E(T (y(n)) | y(n) ∼ f (s)(y(n))) is calculated. With
multiple Ti ’s, this expectation must be obtained for
each one. The set of n’s need not be known in ad-
vance but may evolve according to (6). If the right-
hand side of (6) is inflexible, we would attempt to find
a pair n1 and n2 such that the associated expectations

bracket ε. Then, perhaps a bisection or more refined
search would be used to find the required n. If the right-
hand side of (6) is flexible, then we may propose a grid
of n values, obtain the left-hand side of (6) for each
one and, using simple interpolation, develop a plot of
E(T (y(n)) | y(n) ∼ f (s)(y(n))) versus n.

Generically, T (y(n)) is a functional of f (f )(θ | y(n)).
More broadly, it may be a functional of f (f )(ynew, θ |
y(n)) = f (ynew | θ,y(n))f (f )(θ | y(n)). Only in the sim-
plest cases will f (f )(θ | y(n)) be available explicitly.
For these, few choices of T (y(n)) will be available ex-
plicitly and even fewer of these will admit an explicit
expectation with regard to f (s)(y(n)) [especially since
f (s)(y(n)) itself will rarely be available explicitly].

Fortunately, we can compute E(T (y(n)) | y(n) ∼
f (s)(y(n))) using simulation. In particular, following
the end of Section 3, we can obtain arbitrarily many re-
alizations y(n)∗

l , l = 1, . . . ,L, from f (s)(y(n)). Hence,
a Monte Carlo integration for E(T (y(n)) | y(n) ∼
f (s)(y(n))) is L−1∑L

l=1 T (y(n)∗
l ) so we only need to

compute T (y(n)∗
l ). However, given y(n)∗

l , we can use
either direct or iterative simulation to sample either
f (f )(θ | y(n)∗

l ) or f (f )(ynew, θ | y(n)∗
l ) and hence, to

obtain the corresponding functional of the sample as
an arbitrarily accurate approximation to the functional
T (y(n)∗

l ).
It is apparent that the required computation is inten-

sive. Figure 1 provides a flow chart to summarize the
steps.

FIG. 1. Flow chart.
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5. ANALYTICAL RESULTS FOR MODEL
PERFORMANCE SSD

It is insightful to start with a simple example where
calculations can be done explicitly. Suppose yi , i =
1, . . . , n ∼ N(θ,σ 2) with σ 2 known and let f (f )(θ) =
N(µf , τ

2
f ), f

(s)(θ) = N(µs, τ
2
s ). Then, f (f )(θ | y(n))

= N
(
nτ2

f yn+σ 2µf

nτ2
f +σ 2 ,

σ 2τ2
f

σ 2+nτ2
f

)
. Also, by sufficiency,

f (s)(y(n)) can be replaced with f (s)(ȳn) where
f (s)(ȳn) = N(µs, σ

2/n + τ 2
s ).

With the APVC criterion, T (y(n)) = σ 2τ 2
f /(σ

2 +
nτ 2

f ) and thus E(T (y(n)) | y(n) ∼ f (s)(y(n))) decreases
strictly to 0 as n → ∞. With, say, an effect size
criterion, T (y(n)) = Pr(θ > θ∗ | θ ∼ f (f )(θ | y(n))),
we obtain

T (y(n)) = !

(nτ 2
f (ȳn − θ∗) + σ 2(µf − θ∗)

nτ 2
f + σ 2

/√
σ 2τ 2

f /(σ
2 + nτ 2

f )

)

and, after some calculation,

E
(
T (y(n)) | y(n) ∼ f (s)(y(n))

)

= !

(
(µs − θ∗ + σ 2µf /nτ

2
f )

/√√√√σ 2

n
+ τ 2

s + σ 2(σ 2 + nτ 2
f )

n2τ 2
f

)
.

(7)

The limit of (7) as n → ∞ is Pr(θ > θ∗ | θ ∼
f (s)(θ)). The fitting prior is overwhelmed in the
posterior by the increasing amount of data arising
under the sampling model and in the limit we obtain
the probability under the sampling prior. Also the need
to obtain this limit in order to determine what α’s are
achievable in (5) is demonstrated (or alternatively, to
modify f (s) so that a desired α is achievable).

Our objective is analytical assessment of limn→∞ bn
where bn = E(T (y(n)) | y(n) ∼ f (s)(y(n))). Theorem 1
provides two limiting results.

THEOREM 1. (i) Let hn(θ) = ∫
T (y(n))f (y(n) | θ)

dy(n). If hn(θ) → h(θ) then, provided interchange of
limit and integration is valid, limhn = ∫

h(θ)f (s)(θ)

dθ . Alternatively, if, given θ , T (y(n))
P→ h(θ) and

supn bn(θ) ≤ M < ∞, then limn→∞ bn = ∫
h(θ) ·

f (s)(θ) dθ .
(ii) Suppose T (y(n)) is a linear functional, that is,

T (y(n)) = ∫
γ (θ)f (f )(θ | y(n)) dθ . Define T (s)(y(n)) =

∫
b(θ)f (s)(θ | y(n)) dθ . If T (y(n)) − T (s)(y(n))

P→ 0
and supn

∫ |T (y(n)) − T (s)(y(n))|f (s)(y(n)) dy(n) ≤ M

< ∞, then lim bn = ∫
γ (θ)f (s)(θ) dθ .

The straightforward proof is given in Appendix A.
We note that the alternative conditions in (i) may be

easier to check since often the convergence require-
ment is available through standard asymptotics and the
boundedness requirement can be established without
computing hn(θ) explicitly.

For (ii), the boundedness condition will be achieved
if either b(θ) is bounded or f (f )(θ), hence f (f )(θ |
y(n)) has bounded support. The convergence in proba-
bility condition will hold when usual regularity con-

ditions hold. That is, T (y(n)) − b(θ̂n)
P→ 0, where

θ̂n is the maximum likelihood estimator of θ based

on y(n), implies T (y(n)) − T (s)(y(n))
P→ 0. Intuitively,

as n grows large, the likelihood (the data) overwhelms
either prior. Lastly, we see the importance of distin-
guishing a sampling prior from a fitting prior. If they
are the same then, in the above case, E(T (y(n)) | y(n) ∼
f (s)(y(n))) = ∫

b(θ)f (s)(θ) dθ , free of n. There is no
SSD problem.

We conclude this section with some examples where
we work primarily with APVC. However, note that
controlling APVC typically ensures that ACC and
ALC can be controlled. For instance, using Cheby-
shev’s inequality Pr(ϕ ∈ (E(ϕ | y(n))−d,E(ϕ | y(n))+
d) | y(n)) ≥ 1 − var(φ | y(n))/4d2. Taking expectations
with respect to y(n) ∼ f (s)(y(n)) yields

Ef (s)(y(n)) Pr
(
φ ∈ (E(φ | y(n)) − d,

E(φ | y(n)) + d
) | y(n))

≥ 1 − APVC/4d2.

(8)

From (8), for fixed length d , if APVC → 0, ACC → 1.
But also, if we fix posterior coverage to 1 − α, then (8)
yields 1 − α ≥ 1 − APVC/d2, that is, d2 ≤ APVC/α

so, again, if APVC → 0, ALC → 0.

One and two sample problems. Consider first the
one parameter natural exponential family (NEF) with
density f (y | θ) = c(y) exp(θy − χ(θ)), the so-called
canonical parametrization. It is evident that, for a
sample of size n, yn is sufficient. Also, the form of
the conjugate prior is well known, f (θ) = k(m,µ0) ·
exp(m(µθθ − χ(θ)). In the case where f (y | θ) has
a quadratic variance function (QVF), V (µ) = ν0 +
ν1µ + ν2µ

2 where µ = E(y | θ) = χ ′(θ), then, as
in Morris (1983, Theorem 5.4), the posterior vari-
ance of µ is var(µ | yn) = V (y0)/(N − ν2) where
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N = n+m and y0 = (nȳn +mµ0)/N . Also, since mar-
ginally, E(ȳn) = µ0 and var(ȳn) = NV (µ0)/

n(m − ν2), provided m > ν2 [again, Morris (1983)],
we can compute APVC explicitly. Indeed, after some
calculation, APVC = V (µ0)(1 + ν2n

N(m−ν2)
)/(N − 2)

where APVC → 0 as n → ∞. In fact, it is easy to see
that if n is sufficiently large, APVC decreases strictly
to 0.

The normal case with σ 2 known is a special case of
the above. When σ 2 is unknown and f (f )(µ,σ 2) ∝
1/σ ,

√
n(µ − ȳn)/sn ∼ tn−1 where s2

n is the usual
sample variance [Box and Tiao (1973), Section 2.4].

Hence, var(µ | y(n)) = n−1
n−3

s2
n

n
and APVC = (n−1)

n(n−3) ·
E(s2

n | y(n) ∼ f (s)(y(n))) = (n−1)
n(n−3)E(σ 2 | σ 2 ∼

f (s)(σ 2)). So, if the mean of f (s)(σ 2) exists, APVC
→ 0 as n → ∞ and, in fact, monotonically.

The above results directly extend to the usual two
sample problem. If x1, . . . , xn i.i.d. f (x | θ1) and
y1, . . . , yn i.i.d. f (y | θ2) and θ1 and θ2 are, a priori, in-
dependent, var(θ1 −θ2 | x(n1),y(n2)) = var(θ1 | x(n1))+
var(θ2 | y(n2)). So, APVC for θ1 − θ2 approaches 0 if
APVC approaches 0 for each of θ1 and θ2. We can ap-
ply the foregoing results choosing n1 and n2 to make
each of these less than ε/2, ensuring that the APVC for
θ1 − θ2 is less than ε.

Linear regression and generalized linear models.
Consider first the usual normal theory linear regres-
sion setting. That is, we assume y(n) = Xnβ + ε(n)

where Xn is subscripted to denote sample size and is
n × p with rank p, β is a p × 1 vector of regression
coefficients and ε(n) ∼ N(0, σ 2In).

The classical SSD approach notes that, in testing
H0 :β = 0, the noncentrality parameter at a given
β and n is λn = βT XT

n Xnβ/σ 2. Hence, if λn is
sufficiently large, say λ∗, the probability that the usual
F test rejects H0 at this λ∗ can be made as large
as desired. But since XT

n Xn = O(n), for any β �= 0,
λn → ∞ as n → ∞. Therefore, if n is large enough,
λn will reach λ∗ and this n becomes the required
sample size. There is a bit of circularity in this
argument because λ∗ in fact depends upon n since
the denominator d.f. of the F distribution does. For
large n, since Fp,n−p ≈ χ2

p, presumably this is not a
serious problem. What is problematic is that, without
explicit assumptions regarding Xn, the connection of
λn to n through Xn is vague. Even if this is made
precise, a value of β is required to calculate λn.
Where does this β come from? Moreover, such a
performance measure is appropriate only if the sole

objective of the experiment is to reject H0 :β = 0. Note
that so-called local asymptotics which make β = βn =
O(n−1/2) hence λn = O(1) can not achieve arbitrary
power.

For a generalized linear model, the F statistic is re-
placed by a score or likelihood ratio statistic. Under
suitable conditions, such a statistic has an approximate
chi-square distribution with an approximated noncen-
trality parameter λn which, as above, tends to ∞ as
n → ∞. Hence, the foregoing approach can be applied.

The Bayesian SSD approach presumes broader in-
ferential interest, in particular about some (or all) of
the β’s individually. We continue to illustrate with the
APVC. Hence, we have the multiple criteria, APVC for
βj ≤ εj , j = 1,2, . . . , p (or perhaps a subset of these).

In a preposterior mode, we assume that each vec-
tor Xi is random and, in fact, that the Xi are i.i.d.
Hence, in our simulation-based approach, given n, we
generate Xi

∗, i = 1,2, . . . , n, collecting them into X∗
n.

We draw (β∗, σ 2∗) from f (s)(β, σ 2), then y(n)∗ from
N(X∗

nβ
∗, σ 2∗In) and proceed as in Section 4. In partic-

ular, if f (f )(β, σ 2) = N((β | (β0, cσ
2)IG(σ 2 | a, b)

then we can directly simulate the fitting posterior;
that is, f (f )(β, σ 2 | y(n)) = f (f )(β, | y(n))f (f )(σ 2 |
y(n)) where the latter two distributions are multivari-
ate normal and inverse gamma, respectively. For a gen-
eral f (f )(β, σ 2) we would use a Gibbs sampler as in
Gelfand and Smith (1990). The choice of distribution
for Xi depends upon the application. For convenience
we might assume that the components of Xi are inde-
pendent uniforms over ranges determined by expertise.

Hence, we consider when APVC for βj → 0 as
n → ∞. In fact, with Xn random, we only ask when

APVC for βj
P→ 0. In particular with fitting prior

f (f )(β, σ 2) ∝ 1/σ , the posterior covariance matrix
for β is (n − p)(n − p − 2)−1σ̂ 2(XT

n Xn)
−1 where

σ̂ 2 is the usual mean square error [Box and Tiao
(1973), Section 2.7]. Standard calculation shows that
(XT

n Xn)
−1 is Op(n

−1). Hence, as with the one sample
normal case above, if f (s)(σ 2) has a finite mean,

APVC for βj
P→ 0.

For the generalized linear model we offer an approx-
imate argument, omitting details. Assuming a NEF
model with canonical link, under a flat prior for β ,
provided the posterior exists, β | y(n) .∼ N(β̂n, (X

T
n ·

MnXn)
−1) where β̂n is the MLE for β based on y(n)

and Mn is a diagonal matrix with (Mn)ii = χ ′′(XT
i β̂).

Hence, analogous to the Gaussian case, (XT
n MnXn)

−1
jj

will be Op(n
−1) under appropriate constraints on

f (s)(β).
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A random effects model. We consider the simplest
balanced random effects model, yij = µ + αi + εij ,
i = 1, . . . , I, j = 1, . . . , J with εij i.i.d. N(0, σ 2

e ),

αi i.i.d. N(0, σ 2
α). In this setting, we take Jeffreys’

prior as the fitting prior, that is, f (f )(µ,σ 2
α , σ

2
e ) ∝

σ−2
e (σ 2

e + Jσ 2
α)

−1. The resulting posterior is straight-
forward to sample using Markov chain Monte Carlo
methods but, analytically, we are limited to approxima-
tion. Suppose interest lies in APVC for σ 2

e and for σ 2
α .

Intuitively, the former is controlled by letting J grow
large, the latter by letting I grow large as well. Appen-
dix B provides formal details.

For an unbalanced setting with, for population
i, j = 1,2, . . . , Ji , the same conclusions will obviously
hold if minJi → ∞. In particular, this means that if we
choose I = I0 and J = J0 to achieve specified APVC
performance, we will achieve at least this performance
for any design with minJi ≥ J0.

6. TWO EXAMPLES OF SSD FOR PERFORMANCE

We illustrate the foregoing development in two
standard settings, a survival model with censoring
and a logistic regression. Neither has previously been
considered with regard to Bayesian SSD.

6.1 A Single Event Survival Data Problem

We consider a survival model incorporating a Wei-
bull hazard, that is, h(t, θ) = λγ tγ−1, λ > 0, γ > 0,
θ = (λ, γ ). We introduce right censoring which could
be imposed at random but which we treat as fixed, that
is, T is censored if T > Tc. Random censoring would
simply require sampling (T,Tc) pairs. In either case
we can design the censoring mechanism to roughly
achieve some predetermined expected proportion of
censoring. For convenience we take the fitting prior
to be a product of vague gamma distributions. Such
choices provide a full conditional distribution for λ

which is an updated gamma and a log-concave full
conditional distribution for γ . Hence a Gibbs sampler
is routine, sampling γ through adaptive rejection
sampling using the approach of Gilks and Wild (1992).
For the sampling prior we take λ ∼ U(λ, λ̄) and,
independently, γ ∼ U(γ , γ̄ ). Possible choices for γ

might make the support greater than 1 (less than 1)
insuring a decreasing (increasing) hazard. With this
choice and a choice of some median survival time
of interest [median = (log 2/λ)γ ], rough choices for
λ and λ̄ can be made. Sample size determination to
control inference regarding λ and γ is not likely as
useful as that for say a survival time quantile or the
value of the survival function at a given time.

As a concrete illustration we set the fitting prior
for both λ and γ to be Ga(0.01,0.01), that is, a
gamma distribution with mean 1. The sampling prior
is λ ∼ U(0.01,0.02), γ ∼ U(3.0,3.5) and Tc = 5.0.
(The expected censoring rate is roughly 10%–20%.) In
Figure 2 we consider APVC and ALC for the posterior
median survival time and for the survival function at
t = 4.0. We illustrate with n = 10,11, . . . ,20, though,
of course, we could look at any range of n with any
appropriate spacing. The Monte Carlo integration for
expectations with respect to f (s)(y(n)) used L = 2000.

6.2 A Logistic Regression Problem

We consider a logistic regression setting where
the objective is to model pij , the probability of an
occurrence for the j th individual in the ith group, i =
1,2, . . . , I, j = 1,2, . . . , J . We assume log

pij

1−pij
=

β0 + β1Xi + β2Zij and seek inference regarding β1,
the coefficient of the population level covariate and β2,
the coefficient of the individual level covariate, each
to specified precision. In particular, we set I = 2 and
let Xi = 0,1 indicating which of the two groups was
sampled.

With binary response, the fitting prior cannot be
flat or else an improper posterior results. Hence we
take independent normal priors for β0, β1 and β2 with
mean 0 and variance large relative to the scale of
the data. Under the fitting prior, models are fitted us-
ing a Gibbs sampler with adaptive rejection sampling.
The sampling prior can match the fitting prior for β0
but is very informative for β1 and β2, that is, β1 ∼
U(β

1
, β̄1), β2 ∼ U(β

2
, β̄2). With I fixed at 2, sam-

ple size determination involves letting J increase, sam-
pling J individuals from group 1 and J from group 2.

As a concrete illustration we let Zij ∼ U(0,1) with,
as fitting prior, β0, β1, β2 all N (0,10). The sampling
prior is β0 ∼ N(0,10), β1 ∼ U(1,1.5), β2 ∼ U(1,2).
In Figure 3 we obtain APVC and ALC for both β1
and β2 for J = 10,15,20, . . . ,50. The Monte Carlo
integrations for expectation with respect to f (s)(y(n))

used L = 2000. If we sought APVC for β1 equal
to 0.2 we would interpolate to J = 32. If in addition we
sought APVC for β2 equal to 0.05 then we would take
J = 36 and this choice of J achieves both performance
specifications.

7. FORMALIZING SSD FOR THE MODEL
SEPARATION PROBLEM

We approach the model separation problem through
model choice criteria. We do not enter the debate as to
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FIG. 2. Sample size determination under a Weibull model with censoring.

FIG. 3. Sample size determination under a logistic regression model.
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whether one criterion is preferable to another. Rather,
we simplify to the adoption of a model screening crite-
rion [Kass and Raftery (1995)], leaving the selection to
the user. In particular, denote the data associated with a
sample of size n by y(n) and let θ i denote the vector of
model parameters under model Mi , i = 1,2. Then the
two Bayesian models to be separated are

f (y(n) | θ i ,Mi)f (θ i | Mi), i = 1,2,(9)

where the first term in (9) is the likelihood under model
Mi and the second term is the prior under Mi .

We denote the screening criterion by S and its value
for data y(n) and model Mi by Si(y(n)). Such a criterion
might be the marginal density ordinate at y(n), that is,
Si(y(n)) = ∫

f (y(n) | θ i ,Mi)f (θ i | Mi)dθ i . It might
be a pseudodensity ordinate arising under cross vali-
dation [Geisser and Eddy (1979)], that is, Si(y(n)) =∏

i f (y
(n)
i | y(n)

(i) ) where y
(n)
i is the ith component of

y(n) and y(n)
(i) denotes the vector of components of y(n)

with y(n)
(i) deleted. It might be a posterior predictive

density ordinate [Aitkin (1991)], that is, Si(y(n)) =
f (y(n)

new | y(n),Mi) evaluated at y(n)
new = y(n). It might

be a functional of the posterior f (θ i | y(n)), for exam-
ple, E logf (θ i | y(n)) | θ i ∼ f (θ i | y(n)) [Spiegelhal-
ter, Best, Carlin and van der Linde (2002)]. It might
be a functional of f (y(n)

new | y(n),Mi) as in Gelfand and
Ghosh (1998). It might be a functional of f (y(n)

new, θ i |
y(n),Mi) as in Gelman, Meng and Stern (1996). In fact,
it could be a non-Bayesian criterion such as a penalized
likelihood [see, e.g., Gelfand and Dey (1994)].

Then, without loss of generality, we assume that the
screening criterion has been formulated such that it is
positive and, the larger the value, the more support for
the model. Defining T (y(n)) = lnS1(y(n))/S2(y(n)), we
“choose” M1 when T (y(n)) > 0, “choose” M2 when
T (y(n)) < 0. Then the SSD problem to separate two
models becomes

Choose n1 such that

Pr
(
T (y(n)) > a1 | M1

)= 1 − α1
(10a)

Choose n2 such that

Pr
(
T (y(n)) < a2 | M2

)= 1 − α2.
(10b)

Set n = max(n1, n2). Here a2 ≤ 0 ≤ a1 reflect the
strength of relative model support one wishes to detect
under each model. Obviously, α1 and α2 indicate
the confidence in such detection. To clarify (10),
Pr(T (y(n)) > a1 | M1) = ∫

f (θ1 | M1)
∫

1(T (y(n)) >

a1)f (y(n) | θ1,M1) dy(n) dθ1. A similar expression
arises for Pr(T (y(n)) < a2 | M2).

Weiss (1997) proposes (10) informally where T (y(n))

is the log of the Bayes factor and the setting is hy-
pothesis testing. Note that one may elect to choose n

to satisfy only one of the criteria in (10). For instance,
if M1 ⊂ M2 we may seek a sample size to reject M1 in
favor of M2, that is, use (10b). This is the approach of
Rubin and Stern (1998).

Following Section 3 we introduce fitting and sam-
pling priors. For model Mi the fitting prior, denoted
by f (f )(θ i | Mi), i = 1,2, is the rather vague prior we
would anticipate using to fit Mi once the data is ob-
tained. By contrast, the sampling prior for model Mi ,
denoted by f (s)(θ i | Mi), i = 1,2, is the prior under
which we seek to achieve model separation with regard
to (10). These priors induce the marginal distributions
f (s)(y(n) | Mi) under which the probabilities in (10) are
calculated.

The simulation-based SSD approach requires com-
puting the left-hand side of (10) for each n. As in Sec-
tion 4 for a given n under model Mi , we can obtain ar-
bitrarily many realizations y(n)∗

l , l = 1,2, . . . ,L, from

f (s)(y(n) | M). When i = 1, L−1∑
l 1(T (y(n)∗

l ) > a1)

is a Monte Carlo integration for Pr(T (y(n)) >

a1 | y(n) ∼ f (s)(y(n) | M1)). When i = 2, L−1·∑
l 1(T (y(n)∗

l ) < a2) is a Monte Carlo integration for
Pr(T (y(n)) < a2 | y(n) ∼ f (s)(y(n) | M2)). It only re-
mains to compute T (y(n)∗

l ) for a given y(n)∗
l which, in

turn, requires S1(y
(n)∗
l ) and S2(y

(n)∗
l ). All the foregoing

screening criteria can be obtained through either direct
or iterative simulation.

We next turn to the question of when (10) can be
achieved. The answer depends upon the behavior of the
sequence of distributions f (s)(T (y(n)) | Mi),n = 1,2,
. . . , i = 1,2, which is conveniently studied through
the behavior of the sequence of conditional distribu-
tions f (y(n) | θ i ,Mi), n = 1,2, . . . . For all customary
screening criteria, under M1 given say θ1 we may dis-
cern three behaviors for T (y(n)):

T (y(n))
P→ c(θ1) > 0, T (y(n))

P→ ∞ or

T (y(n))
d→ T0 ∼ f0(t0 | θ1).

(11)

In certain cases f0 does not depend upon θ1. Similarly,
under M2, given θ2, with θ2, c(θ2) < 0, and −∞
replacing θ1, c(θ1), θ1 > 0 and ∞ in (11). Of course,
for a pair M1,M2, the limiting behavior under M1 need
not be the same as that under M2.
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Theorem 2 summarizes what can be said regarding
(10a) under each of the limits in (11). Analogous
results can be developed for (10b). All three limiting
cases are illustrated through the analytical results of the
next section.

THEOREM 2. With regard to the sequence of
conditional distributions f (y(n) | θ1,M1), n = 1,2, . . . ,
at a given θ1:

(i) If T (y(n))
p→ ∞ then (10a) is achievable.

(ii) If T (y(n))
p→ c(θ1) > 0, then (10a) need not be

achievable.
(iii) If T (y(n))

d→ T0 ∼ f0(t0 | θ1) then (10a) need
not be achievable.

The proof is straightforward and given in Appen-
dix C.

8. ANALYTICAL RESULTS FOR MODEL
SEPARATION SSD

The preceding development has reduced the model
separation problem to the examination of the distribu-
tion of the statistic T (y(n)) when y(n) ∼ f (s)(y(n) | M1)

and when y(n) ∼ f (s)(y(n) | M2). Here, we are inter-
ested in analytical examination of limn→∞ P (T (y(n))

> a1 | y(n) ∼ f (s)(y(n) | M1)) and limn→∞ P (T (y(n))

< a2 | y(n) ∼ f (s)(y(n) | M2)). Below, we present re-
sults for three problems: (i) hypothesis testing where
both H0 and HA have positive Lebesgue measure in the
space of θ (the nonsingular null case), (ii) the nested
(generalized) linear models case, and (iii) the choice
between error distributions.

Hypothesis testing with a composite null hypothe-
sis. Suppose H0 : θ ∈ ;0 and HA : θ ∈ ;c

0. Let f (f )(θ |
M1) = f (f )(θ | M2) = f (f )(θ) be a common proper
prior fitting density for θ and let PH0 = ∫

;0
f (f )(θ)

> 0, PHA
= ∫

;c
0
f (f )(θ) > 0. The posterior proba-

bilites PH0(y
(n)) ≡ Pr(θ ∈ ;0 | θ ∼ f (f )(θ | y(n))) and

PHA
(y(n)) ≡ Pr(θ ∈ ;c

0 | θ ∼ f (f )(θ | y(n))) are of in-
terest.

Letting M1 be H0 and M2 be HA, we recall that

PH0(y
(n))

PHA
(y(n))

= BF
(n)
12

PH0

PHA

,(12)

where BF
(n)
12 is the Bayes factor for model M1 given

data y(n). From (12), PH0(y
(n))

P→ 1 ⇔ lnBF
(n)
12

P→ ∞
and PHA

(y(n))
P→ 1 ⇔ lnBF

(n)
12

P→ −∞. Next, we
introduce a sampling prior f (s)(θ | M1) restricted to

H0 which induces f (s)(y(n) | M1) and a sampling prior
f (s)(θ | M2) restricted to HA which induces f (s)(y(n) |
M2). Then, if T (y(n)) = BF

(n)
12 , it suffices to study

the behavior as n grows large of PH0(y
(n)) under

f (s)(y(n) | M1) and of PHA
(y(n)) under f (s)(y(n) | M2).

Under usual regularity conditions PH0(y
(n)) −

1(θ̂
(n) ∈ ;0)

P→ 0 where θ̂
(n)

is the MLE of θ based

upon y(n). So, given θ , when θ̂
(n) P→ θ,PH0(y

(n))
P→

1(θ ∈ ;0). Thus∫
PH0(y

(n))f (s)(y(n) | M1)

→ Pr
(
θ ∈ ;0 | θ ∼ f (s)(θ | M1)

)
.

(13)

Hence, if the support of f (s)(θ | M1) is contained
in ;0, (13) is equal to 1, that is,

lim
n→∞ Pr(PH0(y

(n)) > 1−ε | y(n) ∼ f (s)(y(n) | M1)) = 1

for all ε > 0. Similarly, if the support of f (s)(θ | M2)

is contained in ;c
0, limn→∞ Pr(PHA

(y(n)) > 1 − ε |
y(n) ∼ f (s)(y(n) | M2)) = 1 for all ε > 0. Hence,
with sampling priors chosen in this fashion we can
choose n1 large enough so that Pr(BF

(n)
12 > a1 | y(n) ∼

f (s)(y(n) | M1)) is arbitrarily close to 1 and n2 large
enough so that Pr(BF

(n)
12 < a2 | y(n) ∼ f (s)(y(n) | M2))

is arbitrarily close to 1.

Nested linear models. In relating a response variable
Y to an explanatory variable X, the nature of the
regression function is of interest. A possible design
question is choice of sample size to distinguish a
lower order polynomial (e.g., a linear relationship)
from a higher order polynomial (e.g., a quadratic
relationship), that is, to separate nested linear models.

In the literature, in the case of regular models
(models where dimension remains fixed as sample size
increases), many screening criteria, Si(y(n)) can be
expressed in the form

Si(y(n)) = lnf (y(n) | θ̂ (n)

i ,Mi)

− k(n,pi)+ Op(1)
(14)

[Gelfand and Dey (1994)]. In (14), θ̂
(n)

i is the MLE
of θ i under model Mi and k(n,pi) is a penalty function
which is increasing in n and in pi where pi is the
dimension of model Mi . In other words, Si(y(n)) is
approximately a penalized log likelihood.

Then, from (14), for T (y(n)) = lnS1(y(n))/S2(y(n)),
T (y(n)) = lnλn + (k(n,p2)−k(n,p1))+Op(1) where

λn = f (y(n) | θ̂ (n)

1 ,M1)/f (y(n) | θ̂
(n)

2 ,M2). If M1 ⊂M2,
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under customary conditions, −2 lnλn
d→ χ2

p2−p1
under

M1. Hence, the behavior as n → ∞ of T (y(n)) given θ1
is readily examined.

In particular, if k(n,p) does depend upon n and
limn→∞ k(n,p) = ∞ then limn→∞ Pr(T (y(n)) >

a1 | θ1,M1) = 1. If limn→∞ k(n,p) is finite, then
limn→∞ Pr(T (y(n)) > a1 | θ1,M1) = b1 < 1. (This is
merely an elaboration of the well-known inconsistency
of the likelihood ratio test for nested models.) Since, in
both cases the limit does not depend upon θ1, these
limits hold marginally for T (y(n)) regardless of the
choice of f (s)(θ1 | M1). So, provided k(n,p) → ∞ as
n → ∞, we can choose n1 to make Pr(T (y(n)) > a1 |
y(n) ∼ f (s)(y(n) | M1)) arbitrarily close to 1.

The Bayes factor, the intrinsic Bayes factor [Berger
and Pericchi (1996)] and the fractional Bayes factor
[O’Hagan (1995)] all provide such a k(n,p). On the
other hand, the familiar AIC [Akaike (1973)], the
pseudo-Bayes factor [Geisser and Eddy (1979)] and
the posterior Bayes factor [Aitkin (1991)] do not. See
Gelfand and Dey (1994) for details. Recently proposed
criteria such as the DIC [Spiegelhalter, Best, Carlin
and van der Linde (2002)] and the posterior predictive
loss approach [Gelfand and Ghosh (1998)], at least for
regular Gaussian linear models, do not as well.

What happens under M2? Under suitable condi-
tions, −2 lnλn will have an approximate noncentral
χ2 distribution. In fact, for a Gaussian linear model,
if (Ey(n)) = X1nβ1 under M1, = X1nβ1 + X2nβ2 un-
der M2 then −2 logλn

·∼ χ2
p2−p1,γn/2σ 2 where γn =

βT
2 XT

2,nX2,nβ2. Hence, since customarily XT
2,nX2,n =

O(n), β2 must be O(n−1/2) in order to obtain a finite

nonzero limit for γn. If β2 = Op(1) then γn
P→ ∞ and

given β2, lnλn
P→ −∞ and, in fact, lnλn = −Op(n).

Similar results apply to generalized linear models [see,
e.g., the Appendix of McCullagh and Nelder (1989)].
Hence, if k(n,p) is of order less than n, given β2,

T (y(n))
P→ −∞ and hence marginally T (y(n))

P→ −∞
for y(n) ∼ f (s)(y(n) | M2). This order condition holds
for all k(n,p) in the literature so for all of the fa-
miliar T (y(n)) we can choose n2 large enough so that
Pr(T (y(n)) < a2 | y(n) ∼ f (s)(y(n) | M2)) is arbitrarily
close to 1.

Separating error distributions. A frequent concern
when modeling continuous data is whether the as-
sumption of Gaussian errors is acceptable. Perhaps
a heavier-tailed error distribution (typically a t with
small degrees of freedom) is appropriate. Here we

TABLE 1
The constants c1 and c2 for separating

normal (f1) from tν (f2)

ν c1 c2

1 0.26 −∞
2 0.12 −2.94
5 0.03 −0.11

10 0.01 −0.02
20 0.003 −0.005

consider, at the design stage, whether we can choose
a sample size large enough to separate two such error
distributions. The formal analysis may be simplified to
the separation of two scale parameter families. That is,
we presume y1, . . . , yn i.i.d. σ−1fi(y/σ ), under Mi ,
i = 1,2, for example, M1 is N(0, σ 2), M2 is σ t2 where
t2 denotes a t distribution with 2 degrees of freedom.

Again working with the Bayes factor, we show in
Appendix B that, under mild conditions,
limn→∞ Pr(T (y(n)) > 0 | y(n) ∼ f (s)(y(n) | M1)) = 1
and limn→∞ Pr(T (y(n)) < 0 | y(n) ∼ f (s)(y(n) |
M2)) = 1 where T (y(n)) = lnBF

(n)
12 . Hence, we can

choose n1 and n2 to make these probabilities arbitrar-
ily large. The argument in Appendix B is applicable
if f2 arises as a location mixture of f1. It is also ap-
plicable for separating scale parameter models which
are not error distributions such as an exponential from
a Weibull.

Recalling the definition of c1 and c2 from Appen-
dix D as Kullback–Leibler distances at σ = σ0, sup-
pose, for example, that |c1| < |c2|. The above argument
suggests that −V̄n will tend to be larger under f2 than
−V̄n will tend to be under f1, that is, that − lnBF

(n)
12

will tend to be larger under f2 than lnBF
(n)
12 will tend

to be under f1. This suggests that for a given 1 − α,
n2 will be smaller than n1, that is, separation is easier
under M2. In fact, this is illustrated in one of our exam-
ples in the next section. Here we conclude with Table 1
which provides c1 and c2 where f1 is normal and f2 is
a t with several choices of d.f.

9. TWO EXAMPLES

We provide two illustrations of SSD for model
separation. The first addresses separation of a normal
model for the data from a heavier-tailed model, in
particular a t model. The second considers separation
of a common growth curve model from a model with
individual growth curves.
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9.1 Normal Distribution versus t2 Distribution

Under M1, y1, . . . , yn ∼ N(µ,σ 2), under M2,

y1, . . . , yn ∼ tν(µ,σ ). For simplicity we set µ = 0,

taking f (f )(σ | M1) = f (f )(σ ) = IG(2,5), that is, an
inverse gamma distribution with mean 5 and infinite
variance. We also set f (s)(σ | M1) = f (s)(σ | M2 =
U(4,6)). Illustration in the previous section ensures
that separation is achievable.

Figure 4 show plots of Pr(lnBF
(n)
12 > 0 | M1) and

Pr(lnBF
(n)
12 < 0 | M2) versus n for v = 1 (Cauchy),

2 and 5. The jaggedness of the curves is attributable to
random error arising from the Monte Carlo integrations
to obtain these probabilities. Note that when v = 1 we
can separate Cauchy from normal with confidence ex-
ceeding 0.9 under either model by taking n as small
as 15. Of course, with v larger, separation must be-
come more difficult (since the t becomes closer to the
normal). This is seen in panel (1c) under M1, even with
v as small as 5. Table 1 and the associated discussion
suggest an asymmetry in this separation problem, that
separation under M2 is easier than under M1 for v = 2
and 5. Panels (1b) and (1c) provide detailed support for
this conclusion.

9.2 Common Linear Growth Curve versus
Individual Linear Growth Curves

Under M1, yij = β0 + β1tij + εij , under M2, yij =
β0i + β1i tij + εij where i = 1, . . . , n, j = 1,2, . . . , J .
In fact, we set J = 4 and, for simplicity, tij = j . With
J fixed, the SSD problem is to determine the number
of subjects n to separate M1 from M2. Because the
Bayes factor becomes increasingly difficult to compute
as n increases, we illustrate with the screening criterion
proposed in Gelfand and Ghosh (1998). This criterion
is routine to compute under Markov chain Monte Carlo
model fitting, which will be required under M2. It also
allows improper priors. In the present situation, for a
given model M , if µij is the posterior predictive mean
of yij and σ 2

ij is the posterior predictive variance of yij ,

then S(y(n)) = (
∑

i

∑
j σ

2
ij + ∑

i

∑
j (yij − µij )

2)−1

(since model support is to increase in S) whence

T (y(n)) = ln

∑
i

∑
j σ

2(2)
ij +∑

i

∑
j (yij − µ

(2)
ij )2

∑
i

∑
j σ

2(1)
ij +∑

i

∑
j (yij − µ

(1)
ij )2

.

The fitting prior under M1 is

f (f )(β0, β1, σ
2 | M1) = f

(f )
1 (β0)f

(f )
1 (β1)f

(f )
1 (σ 2)

FIG. 4. Sample size for separating normal (M1) from tν (M2).
In (1a) ν = 1, in (1b) ν = 2, in (1c) ν = 5. The “solid” curve is
Pr(ln BF 12 > 0 | M1), the “dot-connected” curve is Pr(lnBF 12 <

0 | M2).

where f
(f )
1 (β0)=f

(f )
1 (β1)=1 and f

(f )
1 (σ 2)= IG(2,5)

(as in the previous example). The illustrative sampling
prior is f (s)(β0, β1, σ

2 | M1) = f
(s)
1 (β0)f

(s)
1 (β1) ·

f
(s)
1 (σ 2) where f

(s)
1 (β0) = f

(s)
1 (β1) = U(0,1) and
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FIG. 5. Sample size determination to separate an individual
linear growth curve model (M2) from a common growth curve
model (M1). The criterion is that of Gelfand and Ghosh. Solid
curve is under M1, unconnected dots are under M2.

f
(s)
1 (σ 2) = U(4,6). The fitting prior under M2 follows

the customary normal-Wishart-inverse gamma form,(
β0i
β1i

)
∼ N(

(
µ0
µ1

)
,?), f (f )

2 (µ0) and f
(f )
2 (µ1) are flat,

f
(f )
2 (?) ∼ IW((ρR)−1, ρ) where ρ = 2,R =

(
100 0
0 0.1

)
and again f

(f )
2 (σ 2) = IG(2,5). As shown in Gelfand,

Hills, Racine-Poon and Smith (1990), in this case all
full conditional distributions are standard and a Gibbs
sampler for model fitting is routine to implement.
The sampling prior under M2 is again illustrative.

Given n, f
(s)
2 (β0i) = U(i/n, (i + 1)/n), f (s)

2 (β1i) =
U(2i/n, (2i + 1)/n) and again f

(s)
2 (σ 2) = U(4,6).

Figure 5 plots Pr(T (y(n)) > 0 | M1) and Pr(T (y(n))

< 0 | M2) using T (y(n)) above. Again jaggedness is at-
tributable to error in the Monte Carlo integrations con-
tributing to the calculation of T (y(n)). Model separa-
tion is quite good even for n as small as 20.

APPENDIX A

Here we provide a proof of Theorem 1. The follow-
ing standard probability result [see, e.g., Chung (1974),
page 95] is useful.

LEMMA 1. If Zn
d→ Z and supn E|Zn| ≤ M , then

limn→∞ E|Zn| = E|Z| < ∞.

For (i) of the theorem, usual application of the
Lebesgue dominated convergence theorem or mono-
tone convergence theorem enables the interchange of
limit and integration needed for the first part of (i).
For the second part of (i), if we work conditionally,

given θ , the lemma provides the result immediately
since T (y(n)) ≥ 0.

For (ii) of the theorem, the lemma is immediately
applicable with Zn = T (y(n)) − T (s)(y(n)).

APPENDIX B

For the random effects model of Section 5 we show
that, as J → ∞, APVC for σ 2

e → 0 and if, in addi-
tion, I → ∞ APVC for σ 2

α → 0. We modify notation
slightly, replacing y(n) with y(I,J ) and define Q1 =∑∑

(yij − yi·)2, Q2 = J
∑

i (yi· − y··)2, v1 = I (J −
1), v2 = I − 1 and r = Q2/(Q1 + Q2). From Box and
Tiao (1973), expression (5.2.37), f (f )(σ 2

e | y(I,J )) ≈
a−1Q1IG(b/2,1/2) where a = (v1

2 + 1) Ir(v2/2,v1/2+2)
Ir (v2/2,v1/2+1)

− v1
2

Ir (v2/2,v1/2+1)
Ir (v2/2,v1/2) and b = v1

a
Ir(v2/2,v1/2+1)
Ir (v2/2,v1/2) . Also,

from their expression (5.2.61), f (f )((σ 2
e + Jσ 2

α ) |
y(I,J )) ≈ c−1Q2IG(d/2,1/2) where c = (v2/2 + 1) ·
Ir (v2+2,v1/2)

Ir (v2/2+1,v1/2) − v2/2 Ir (v2/2+1,v1/2)
Ir (v2/2,v1/2) and d = v2

c
·

Ir (v2/2+1,v1/2)
Ir (v2/2,v1/2) . Hence, after routine calculation, the

posterior variance for σ 2
e ,

Te(y(I,J )) ≈ 2Q2
1/a

2(b − 2)2(b − 4).(B.1)

Instead of working with σ 2
α directly, we work with

(σ 2
e /J ) + σ 2

α . Again routine calculation yields its
posterior variance for

Tα(y(I,J )) ≈ 2Q2
2/J

2c2(d − 2)2(d − 4).(B.2)

Next, as anticipated above, we claim that Te
P→ 0 as

J → ∞ and that Tα
P→ 0 if, in addition, I → ∞.

First note that Iw(s, t) → 1 as t → ∞, which im-
plies tIw(s,t+1)

Iw(s,t)
behaves like t as t → ∞. Next, re-

call the familiar identity for incomplete Beta in-
tegrals [see, e.g., Abramowitz and Stegun (1965),
page 944], Iw(s, t) = s−1B(s, t)ws(1 − w)t +
Iw(s + 1, t) = t−1B(s, t)ws(1 − wt + Iw(s, t + 1)
where B(s, t) = D(s + t)/D(s)D(t). This implies di-
rectly that limt→∞((t + 1) Iw(s,t+2)

Iw(s,t+1) − t
Iw(s,t+1)
Iw(s,t)

) exists
and equals 1.

Applying these results to (B.1) and (B.2) we find that

as J → ∞, a
P→ 1, b

P→ ∞, (Q1/v1)
P→ (σ 2

e )
2, hence

(Q1/b)
2 → (σ 2

e )
2 and thus Te

P→ 0 as J → ∞. Also,

c
P→ 1 and d

P→ v2 and Q2/J = Q2
σ 2
e +Jσ 2

α

σ 2
e +Jσ 2

α

J

P→
σ 2
αχ

2
v1

. Hence if in addition v2 → ∞, that is I → ∞,

Tα
P→ 0. It is also apparent from (B.1) and (B.2)

and the foregoing discussion that the boundedness of
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the expectation condition holds so that finally, as
J → ∞, APVC for σ 2

e → 0 and if, in addition,
I → ∞, APVC for σ 2

α + σ 2
e /J , hence for σ 2

α → 0.

APPENDIX C

Here we provide a proof of Theorem 2. Let b(a1) =
limn→∞ Pr(T (y(n)) > a1 | M1). Recall that Pr(T (y(n))

> a1 | M1) = ∫
f (s)(θ1 | M1)

∫
1(T (y(n)) > a1)f (y(n) |

θ1,M1) dy(n) dθ1. Hence we can use the Lebesgue
dominated convergence theorem to study b(a1) and
hence to argue (i), (ii) and (iii).

For (i), by definition limn→∞ Pr(T (y(n)) > a1 |
θ1,M1) = 1 for all a1 and θ1. Hence b(a1) = 1 so (10a)
is achievable.

For (ii), we have b(a1) = Pr(c(θ1) > a1 | θ1 ∼
f (s)(θ1 | M1)). So, if a1 = 0, (10a) holds but for
a1 > 0, depending upon f (s)(θ1 | M1), (10a) may not
be achievable.

For (iii), limn→∞ Pr(T (y(n)) > a1 | θ1,M1) = 1 −
F0(a1 | θ1) so b(a1) = 1 − ∫

F0(a1 | θ1)f
(s)(θ1 |

M1) dθ1. If the support for f0 puts positive mass on
(−∞, a1) then (10a) need not be achievable.

APPENDIX D

For the problem of separating two scale parame-
ter families in Section 8, we argue that under usual
regularity conditions, limn→∞ Pr(T (y(n)) > 0 | y(n) ∼
f (s)(y(n) | M1)) = 1 and limn→∞ Pr(T (y(n)) < 0 |
y(n) ∼ f (s)(y(n) | M2)) = 1 where T (y(n)) = lnBF

(n)
12 .

Since Pr(T (y(n)) > 0 | y(n) ∼ f (s)(y(n) | M1)) =∫
f

(s)
1 (σ )Pr(T (y(n)) > 0 | y(n) ∼ σ−n

∏n
i=1 f1(yi/σ )),

if limn→∞ Pr(BF
(n)
12 > 1 | y(n) ∼ σ−n ·∏n

i=1 f1(yi/σ )) = 1 for each σ , we have demonstrated
the first limit. Let f (f )(σ ) be a common proper fitting
prior for σ . Then

BF
(n)
12 =

∫
σ−n

∏n
i=1 f1(yi/σ )f (f )(σ )∫

σ−n
∏n

i=1 f2(yi/σ )f (f )(σ )

=
∫
λ(σ ; y(n))σ−n

∏n
i=1 f2(yi/σ )f (f )(σ )∫

σ−n
∏n

i=1 f2(yi/σ )f (f )(σ )

= E
(
λ(σ ; y(n)) | σ ∼ f (σ | y(n),M2)

)
,

(D.1)

where λ(σ ; y(n)) =∏n
i=1 f1(yi/σ )/f2(yi/σ ).

Hence given σ = σ0, under usual regularity condi-

tions, BF
(n)
12 − λ(σ0; y(n))

P→ 0. Therefore,

limn→∞ Pr(BF
(n)
12 > 1 | y(n) ∼ σ−n

0
∏n

i=1 f1(yi/σ0)) =
limn→∞ Pr(λ(σ0; y(n)) > 1 | y(n) ∼ σ−n

0 ·∏n
i=1 f1(yi/σ0)). But logλ(σ0; y(n)) =∑n

i=1 Vi where

the Vi are i.i.d., Vi = f1(yi/σ0)/f2(yi/σ0). So, if yi ∼
σ−1

0 f1(yi/σ0), V̄n
a.s.→ ∫

σ−1
0 f1(y/σ0) log(f1(y/σ0)/

f2(y/σ0)) dy ≡ c1 > 0 where it is clear that c1 does not
depend upon σ0. As a result, limn→∞ P (

∑
Vi > 0) = 1

and we are done.
Similarly, limn→∞ Pr(BF

(n)
12 < 1 | y(n) ∼ σ−n

0 ·∏n
i=1 f2(yi/σ0)) = limn→∞ Pr(λ(σ0; y(n)) < 1 |

y(n) ∼ σ−n
0

∏n
i=1 f2(yi/σ0)). Now V̄n

a.s.→ ∫
σ−1

0 ·
f2(y/σ0) log(f1(y/σ0)/f2(y/σ0)) dy ≡ c2 < 0 so
limn→∞ P (

∑
Vi < 0) = 1 enabling the second limit in

the foregoing paragraph.
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