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Blood Pressure Data
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Abstract. Some analyses of longitudinal blood pressure data have fo-
cussed on the question of whether a current value of blood pressure is
predictive of subsequent rate of change. A positive correlation between
blood pressure values at the beginning of a longitudinal study and rate of
change over the course of the study has been found in studies of adults.
Negative correlation, however, has been found in a study of children.
These studies, either implicitly or explicitly, rely on linear growth curve
models in which subjects’ blood pressure observations are assumed to fol-
low simple linear regression models with slopes and intercepts varying
among subjects, but with the slopes constant over time.
Our analysis of a longitudinal data set of 2,203 measurements of sys-
tolic blood pressure from 216 children also provided a negative estimate
of the correlation. However, smoothed plots of cross products of residu-
als suggested that an alternative random effects model, in which rate of
change of systolic blood pressure is not treated as constant over time,
might better fit the data. It is possible that the negative estimates of
the correlation found in children’s blood pressure data are an artifact of
assuming a constant rate of change when the data actually follow the al-
ternative model. It is shown that the expected result of fitting the linear
growth curve model to data that follow the alternative model is an ap-
parent negative correlation between slope and intercept. In the data, the
observed estimates of the parameters of the linear growth curve model
are consistent with the observed estimates of the parameters of the al-
ternative model.

Key words and phrases: Autoregressive, horse-racing effect, Jenss ef-
fect, linear growth curve, Ornstein–Uhlenbeck process, random effects,
regression dilution bias.

1. BACKGROUND

High blood pressure is a risk factor for stroke,
heart disease and kidney failure. Affecting approxi-
mately 22% of the adult population, high blood pres-
sure is the most common medical condition in the
United States. While effective treatment is now pos-
sible for most persons with high blood pressure, rel-
atively little is known about primary prevention.
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Although, in a few populations, average blood
pressure seems to remain constant throughout life,
a variety of studies have shown that the population
average blood pressure generally increases with
age. Some studies have examined the association
between behavioral and anthropometric character-
istics and blood pressure. A small but significant
influence of sodium intake has been observed, and
obesity and low levels of physical fitness have been
found to be associated with higher blood pressure.
Gender, smoking history, growth and height have
also been found to be associated with higher blood
pressure.

The question of whether blood pressure values
tend to persist over time has been examined in lon-
gitudinal studies of blood pressure, and positive cor-
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relation between baseline and subsequent measures
of blood pressure values has been observed.

Investigators have also been concerned with the
question of whether current values of blood pres-
sure are predictive for subsequent rate of change.
Two studies of adults, Svärdsudd and Tibblin (1980)
and Wu, Ware and Feinleib (1980), have found a
positive correlation between blood pressure values
at the beginning of the study and subsequent rate
of change. This positive correlation has been in-
terpreted as evidence for a feedback mechanism in
which high blood pressure values lead to an acceler-
ated increase in blood pressure, and also as evidence
for a so-called horse-racing phenomenon in which
high blood pressure values are the eventual result
of persistent positive rates of increase (Peto, 1981).
In contrast to the studies showing a positive cor-
relation between slope and intercept, one study in
adults (Jenss, 1934) and one study in children (Hof-
man and Valkenburg, 1983) have described a neg-
ative correlation. Such negative correlations have
been termed a Jenss effect.

It is generally assumed that blood pressure mea-
surements are composed of “underlying” blood pres-
sure values and error terms that represent mea-
surement error and short-term transient variability.
Previous investigations of correlation between ini-
tial values and subsequent slope rely, either implic-
itly or explicitly, on linear growth curve models in
which underlying blood pressure observations are
assumed to follow simple linear regression models
with the slopes and intercepts varying among sub-
jects, but with the slopes constant over time.

The presence of the error terms can lead to a
kind of regression dilution bias when the naive ap-
proach of first fitting simple linear regressions to
each subject’s measurements and then regressing
the estimated slopes on the estimated intercepts
or on the initial measurements is used. See, for
example, Oldham (1962). This is because the er-
ror terms induce a nonzero conditional variance,
given the underlying blood pressure values, in
the estimated intercept or initial measurement,
and a negative conditional covariance between
the estimated slope and the estimated intercept
or initial measurement. If the conditional vari-
ance and correlation are not accounted for in
analysis, estimates of the correlation between the
slope and intercept of the underlying blood pres-
sure are biased. In the context of longitudinal
studies of blood pressure, this form of regression
dilution bias has been referred to as a regression to
the mean phenomenon.

Several approaches have been proposed in the
context of longitudinal blood pressure data for cor-

recting for this bias. See, for example, Blomqvist
and Svärdsudd (1978), Blomqvist (1977) or Wu,
Ware and Feinleib (1980). One approach is to as-
sume Gaussian random effects and error terms,
and to fit the linear growth curve model using
maximum likelihood. The other is to compute sam-
ple correlations between the first observation and
the estimated subject specific slopes, and then to
estimate a bias correction that accounts for the
conditional covariance induced by the error terms.
When all of the subjects experience their first ex-
aminations at the same age, the two approaches
estimate the same quantity. When subjects are not
first examined at roughly the same age, it seems
more natural to estimate the correlation between
slope and level at a fixed age rather than to esti-
mate a parameter that depends on the random ages
at which subjects are first examined.

Differing points of view on whether the nega-
tive correlation found in adults by Jenss (1934) is
wholly attributable to bias may be found in Wu,
Ware and Feinleib (1980) and Hofman (1984). The
negative correlation found in children by Hofman
and Valkenburg (1983), however, was computed
with a bias correction.

The original purpose of the analysis reported
here was to examine in a longitudinal data set of
children’s systolic blood pressure whether there
was a positive horse-racing phenomenon or a neg-
ative Jenss effect. Corresponding to the results of
Hofman and Valkenburg (1983) in children, the lin-
ear growth curve analysis of the data resulted in a
negative estimate of the correlation between slope
and intercept. However, a graphical model-checking
approach indicated that the growth curve analysis
might not be appropriate. An alternative random
effects model was fitted to the data. A theoretical
investigation suggests that the observed results of
fitting the linear growth curve analysis are consis-
tent with the results expected when the alternative
random effects model holds. It is possible that the
negative covariance estimates observed with chil-
dren’s data are simply an artifact of applying the
linear model to data that follow the alternative
model.

2. DATA AND NOTATION

The data for the analysis were obtained be-
tween 1985 and 1989 as part of the longitudinal
Columbia University Study of Childhood Activity
and Nutrition. Subjects were healthy children re-
cruited mainly through a pediatric practice at the
Presbyterian Hospital that serves a predominately
Hispanic, densely populated, low-income neighbor-
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hood in northern Manhattan, New York City. Most
of the children (91%) were Hispanic. Girls outnum-
bered boys slightly (52% to 48%). Measurements
were taken at irregularly spaced intervals. See
Shea, Sasch and Zybert (1989) for details of the
study.

In order to maintain consistency with previous
analyses, children were only included in this anal-
ysis if, after discarding the first measurement, at
least six remaining longitudinal blood pressure
measurements were available and the time be-
tween first and last of the remaining blood pressure
measurements was at least one year. Each blood
pressure measurement used in the analysis was
obtained as the average of the second and third of
several measurements taken at the same exami-
nation. Systolic and diastolic measurements were
obtained using an automated blood pressure mon-
itor after the child had been seated comfortably
for several minutes. Only systolic blood pressure is
discussed here.

There were 216 children contributing systolic
blood pressure measurements to the analysis. After
the first examination was excluded and after sub-
jects with fewer than six remaining measurements
were excluded, the total number of measurements
included in the data was 2,203. The average of the
2,203 measurements was 100.72 mmHg, with stan-
dard deviation 8.66 mmHg and range 67.5–130.0
mmHg.

The average of the ages at the 2,203 examina-
tions was 69.01 months with standard deviation
8.62 months and range 48.23–95.24 months. The
number of examinations ranged from 6 to 13. The
numbers of subjects undergoing 6;7; : : : ;13 ex-
aminations were 2, 9, 18, 38, 43, 62, 42 and 2,
respectively. The average number of examinations
was 10.19. The average time between the first and
last examination was 22.04 months.

A plot of the blood pressure measurements ver-
sus age for a set of 10 subjects is shown in Figure 1.
Between-examination and between-subject variabil-
ity may be seen to be of similar magnitude.

In what follows, i will index subjects and j will in-
dex examinations. The systolic blood pressure mea-
surement obtained at the jth examination of the
ith subject will be denoted by Yij. The age of the
ith subject at that subject’s jth measurement will
be denoted by tij. The population average systolic
blood pressure at age t will be denoted by µ�t�.

A linear growth curve model underlies previous
investigations of the association between current
value and subsequent rate of change. The model
posits that the difference between blood pressure
and the population average may be described in

terms of mean zero random intercepts and slopes
plus independent error terms:

Yij − µ�tij� = αi + βitij + εij:
Here, αi denotes the random intercept and βi de-
notes the random slope associated with the ith sub-
ject, and εij denotes the error term associated with
the ith subject’s jth measurement. The underlying
blood pressure for the ith subject is µ�tij�+αi+βitij.

The population variance of the αi and βi and the
population covariance between the αi and βi pairs
will be denoted by σ2

α; α, σ2
β;β and σ2

α;β. The variance
of the εij will be denoted by σ2. It was assumed
that the εij are independent and independent of the
αi and βi pairs, and for likelihood based analyses,
the αi, βi and εi were assumed to have Gaussian
distributions.

It will be convenient to consider reparameteriza-
tions where the intercept corresponds to blood pres-
sure at some time τ different from zero. This model
may be expressed as

Yij − µ�tij� = ατi + βi�tij − τ� + εij:
Here ατi corresponds to the ith subject’s underlying
blood pressure at time τ. The variance of the ατi and
covariance of the ατi and βi under the reparameteri-
zation are given in terms of the original parameters
by

σ2
α; α�τ� = σ2

α; α + 2τσ2
α;β + τ2σ2

β;β;

σ2
α;β�τ� = σ2

α;β + τσ2
β;β:

The parameter σ2
β;β is left invariant by the repa-

rameterization.
It is interesting to note that the age at which the

marginal variance of underlying blood pressure is
minimized, −σ2

α;β/σ
2
β;β = τ − σ2

α;β�τ�/σ2
β;β, is also

the age at which the correlation between the slope
and blood pressure is zero. Of course, that point
might fall outside the range of the observations.

The alternative random effects model that was
considered in the analysis presented here may be
expressed as

Yij − µ�tij� = αi +Wi�tij� + εij;
where αi and εij are as in the linear growth
curve model, but where Wi�t� are independent
Ornstein–Uhlenbeck processes with marginal vari-
ance denoted by ω2

W and correlation structure of
the form

Corr�Wi�t�;Wi�s�� = ρ�t−s�:
See, for example, Karlin and Taylor (1981). Rosner
and Muñoz (1988) discuss this model in the context
of blood pressure data. The model is considered by
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Fig. 1. Ten representative longitudinal blood pressure profiles.

Gillman et al. (1992) in a random effects analysis of
longitudinal blood pressure data. Diggle (1988) also
discusses the model. The parameter ρ is the corre-
lation between values of Wi separated by a unit age
difference. In the context of the alternative model,
the variance of the αi and εij will be denoted by ω2

α; α

and ω2, respectively. The αi, the εij and the Wi were
assumed all independent. In this alternative model,
the marginal variance of underlying blood pressure
is constant over time and underlying blood pres-
sure slopes vary nonlinearly over time.

3. ANALYSIS AND RESULTS

The first stage of the analysis was to estimate the
population average blood pressure µ�t�. Smoothed
plots of the blood pressure measurements against
age suggested a bent line regression, with the bend
occurring at approximately 72 months of age. When

the bent line regression model was estimated using
ordinary least squares as if all the blood pressure
measurements were independent, the estimated
slope before 72 months was approximately 0.39
mmHg per month, while after 72 months it was
0.13 mmHg per month. The estimated intercept was
74.22 mmHg. A smooth and the fitted bent line re-
gression line are pictured in Figure 2 superimposed
over a plot of the blood pressure measurements
against age. The smooth was computed using the
supsmu function in the S-PLUS statistical pack-
age with the default parameters. The systematic
change in the population average blood pressure is
fairly small when compared with the variability in
blood pressure measurements.

The next stage of the analysis was to fit the linear
growth curve model. Maximum likelihood estimates
of the variance components, with the intercept de-
fined to correspond to the minimum of the ages
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Fig. 2. Fitted bent line regression and smooth superimposed over blood pressure measurements.

represented in the data set (τ = 48) were σ2
α; α�48� =

35:54 mmHg2, σ2
α;β�48� = −0:34 mmHg2 per month,

σ2
β;β = 0:019 mmHg2 per month2 and σ2 = 38:14

mmHg2. Standard errors computed via the observed
information matrix were 6.92, 0.22, 0.0092 and 1.28
mmHg2, respectively. The estimate of the slope be-
fore age 72 months is 0.44 mmHg per month, and
after 72 months the estimate was 0.17 mmHg per
month. The estimate of the intercept (corresponding
to τ = 48) was 91.86 mmHg.

Note that the estimated covariance between the
random intercepts (defined to correspond to the ages
at the beginning of the study) and the random slopes
was negative. This corresponds to the findings in
children of Hofman and Valkenburg (1983). The age
at which blood pressure was estimated to have min-
imum marginal variance was 48 − σ2

α;β�48�/σ2
β;β =

66:42 months. This was approximately the average
of the ages represented in the data set.

To check the fit of the linear growth curve model,
smooth plots of squares and cross-products of resid-
uals from the fixed effect models were generated.
The residuals, denoted eij, were computed as Yij −
µ̂�tij�, where µ̂ was the ordinary least squares es-
timate from the bent line regression model. Three
plots were examined: a smooth of the scatter plot of
the e2

ij against the tij; a smooth contour plot of the
eij1
eij2

against the �tij1
; tij2
� pairs, for j1 6= j2; and a

smooth of the scatter plot of the eij1
eij2

against the
�tij1
− tij2

�, for j1 6= j2 (Figures 3, 4 and 5). The first
plot would be expected to show a quadratic func-
tion with a minimum at age −σ2

α;β/σ
2
β;β if the linear

growth curve model held, and would be expected to
show a constant function if the variance were inde-
pendent of age. The contour plot would be expected
to show a convex quadratic with minimum at the
point �−σ2

α;β/σ
2
β;β;−σ2

α;β/σ
2
β;β� if the linear growth

curve model held. The expectation of the third plot
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Fig. 3. Empirical and estimated expected absolute residuals as a function of age.

under the linear growth curve model is a compli-
cated function of the children’s ages at the exami-
nations contributing to the data set. However, the
expected smooth can be estimated by smoothing es-
timates of the expected cross products of residuals.
The expected cross product, under the assumptions
of the linear growth curve model, for observations
taken at ages tij1

and tij2
is approximately

Eeij1
eij2
≈ σ2

α; α + �tij1
+ tij2

�σ2
α;β + tij1

tij2
σ2
β;β:

The first and second plots did not seem particu-
larly useful. The problem was that the instability
in the smooths, inherited from the high variability
in blood pressure measurements, precluded distin-
guishing between the two models. In Figure 3, the
square root of the smooth of the squared residuals
is plotted together with the square root of the esti-
mate of the variance expected under the fitted lin-
ear growth curve model and the alternative model.

The smooth was computed using the supsmu func-
tion in the S-PLUS statistical package with the de-
fault settings. Figure 5 contains a representative
version of the contour plot. The heights were com-
puted via a kernel smooth with a kernel of the form
k�x� = exp�−0:1 month−2 � x �2�, and plotted using
the contour function in S-PLUS.

The third plot, by including the large number
of cross-product terms while collapsing the two-
dimensional time index to the one-dimensional
absolute difference, seemed to provide a fairly sta-
ble estimate. The smooth plot is shown in Figure 5
superimposed over the estimated expectation from
the linear growth curve analysis and from the fit
of the alternative variance components model de-
scribed below. The plot suggests that the alternative
model provides a superior fit.

This result may be contrasted with Gillman et al.
(1992) analysis of a longitudinal data set of blood
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Fig. 4. Contour plot of covariance function estimated by a kernel smooth of residual cross products.

pressure measurements from a cohort of school chil-
dren. They chose a compound symmetry model that
contains neither the random slope component nor
the Ornstein–Uhlenbeck component over the model
with the Ornstein–Uhlenbeck process. However,
the measurements in that study were performed
on three annual sets of four successive weekly ex-
aminations. The correlation coefficient estimated
from our data for the Ornstein–Uhlenbeck process
is such that practically no information about the
correlation structure of the Ornstein–Uhlenbeck
component is available from measurements sep-
arated by more than six months. It is possible
that even had there been a substantial compo-
nent with a covariance structure close to that of
the Ornstein–Uhlenbeck process, it might not have
been identifiable with the sampling scheme used in
Gillman et al. (1992).

The final stage of the analysis was to fit the
alternative random effects model. Restricted max-
imum likelihood estimates of ω2

α; α, ω2
W, ω2 and ρ

were 28.64 mmHg2, 17.35 mmHg2, 23.02 mmHg2

and 0.48 month−1, respectively. Standard errors
were 3.26 mmHg2, 4.79 mmHg2, 0.10 and 4.77
mmHg2 respectively. The estimates of the slope be-
fore age 72 months was 0.44 mmHg per month,

and the estimate of the slope after age 72 months
was 0.20 mmHg per month. The estimate of the
intercept was 70.77 mmHg. The standard error
for the difference in slopes was 0.06 mmHg per
month. Note that the Ornstein–Uhlenbeck compo-
nent was estimated to account for a substantial
portion �17/�28 + 17 + 23� ≈ 25%� of the variabil-
ity of blood pressure. The estimate of ρ corresponds
to negligible correlation in the Ornstein–Uhlenbeck
process after approximately five or six months
(ρ5 = 0:03; ρ6 = 0:01).

All of the maximum likelihood and restricted
maximum likelihood analyses were based on as-
suming Gaussian distributions for the random
effects and error terms. See, for example, Laird
and Ware (1982) or Harville (1977). Computations
were carried out using the SAS statistical package
routines PROC GLM and PROC MIXED.

4. FITTING THE LINEAR MODEL
TO NONLINEAR DATA

In this section, the expected behavior of fitting
the linear growth curve model to data that follow
the alternative model is explored. For the sake of
simplicity, attention is restricted to the special case
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Fig. 5. Expected residual cross products as a function of absolute age difference.

in which the subjects are all examined at the same
ages, µ is assumed to be zero and the examination
ages are symmetric around the average age.

Let t1; t2; : : : ; tk denote the sequence of examina-
tion ages and let t̄ denote their average. Let Ȳi de-
note the average of the Yij, let β̂i denote the ith
subject’s estimated slope,

β̂i =
k∑
i=1

�Yij − Ȳi��ti − t̄ �/T;

where

T =
k∑
j=1

�tj − t̄ �2:

Let s2
i denote the sum of squared residuals,

s2
i =

k∑
j=1

�Yij − Ȳi − �tj − t̄ �β̂i�2;

In the linear growth curve model, the s2
i , Ȳi and

β̂i are sufficient with the s2
i distributed as σ2χ2

k−2

independent of the �Ȳi; βi� pairs and the covariance
of the pairs is given by

(
σ2
α; α + σ2/k σ2

α;β

σ2
α;β σ2

β;β + σ2/T

)

so that the zeros of the expected score equations
satisfy

σ2 = Es2
i

�k− 2� ;

σ2
α; α�t̄ � + σ2/k = EȲ2

i ;

σ2
β;β +

σ2

�k
j=1�tj − t̄ �2

= Eβ̂ 2
i ;

σ2
α;β�t̄ � = EȲiβ̂i:

Evaluating the expectations under the assump-
tions of the alternative model, and solving reveals
that the solutions to the expected score equations
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are

σ2 = ω2 + ω2
W

k− 2

(
k−

k∑
j1=1

k∑
j2=1

ρ�tj1
−tj2
�

·
(

1
k
−
�tj1
− t̄ ��tj2

− t̄ �
T

))
;

σ2
α; α�t̄ � = ω2

α; α −
1
k

ω2
W

k− 2

(
k−

k∑
j1=1

k∑
j2=1

ρ�tj1
−tj2
�

·
(

1
k
−
�tj1
− t̄ ��tj2

− t̄ �
T

))
;

σ2
α;β�t̄ � =

k∑
j1=1

k∑
j2=1

ω2
Wρ
�tj1
−tj2
� ti − t̄
kT

;

σ2
β;β = ω2

W

k∑
j1=1

k∑
j2=1

ρ�tj1
−tj2
� �tj1

− t̄ ��tj2
− t̄ �

T2

− 1
T

ω2
W

k− 2

(
k−

k∑
j1=1

k∑
j2=1

ρ�tj1
−tj2
�

·
(

1
k
−
�tj1
− t̄ ��tj2

− t̄ �
T

))
:

It may be calculated that for symmetric values
of the examination times, the solution correspond-
ing to σα;β�t̄� = 0, while the solution corresponding
to σβ;β is positive. It follows that the estimate of
the correlation between underlying blood pressure
value at the first examination time and the slope of
the underlying blood pressure will be negative.

These formulae may be evaluated at the values of
the estimated parameters of the alternative model.
The average number of examinations in the data
set was between 10 and 11, and the average time
between the first and last examinations was ap-
proximately 22 months. When the formula for the
expectation of the estimate of σ2

β;β evaluated with
11 equally spaced examinations ranging over 22
months, and with the variance components of the
alternative model given by those estimated from
the data, the result is 0.013. This is not far from
the estimated value, 0.019. The corresponding ex-
pected estimates of σ2

α; α�t̄ � and σ2 are 27.2 and
38.89. The corresponding maximum likelihood esti-
mates of σ2

α; α�69� and σ2 were 29.22 and 38.14. The
estimates obtained from the linear growth curve
model are quite close to those that are predicted
using the estimated parameters of the alternative
model.

5. DISCUSSION

The original purpose of this investigation was to
determine whether there was a horse-racing phe-
nomenon or a Jenss effect in a longitudinal data set

of children’s systolic blood pressure. An initial anal-
ysis based on a model in which each subject’s un-
derlying blood pressure differed linearly over time
from the population average suggested a Jenss ef-
fect: fitting the linear growth curve model resulted
in a negative estimate of the correlation between the
underlying systolic blood pressure value at the be-
ginning of the study and the slope of the underlying
blood pressure. The age at which underlying blood
pressure is independent of slope was estimated to
be at approximately the midpoint of the study.

The linear growth curve model is suspect, how-
ever, both on a priori and empirical grounds. The
linearity constraint implies the unnatural situa-
tion that an underlying blood pressure trajectory
that begins on a given course must maintain that
course without deviation. Underlying blood pres-
sure values that move away from a given level are
constrained by the definition of the model never
to return to that level. In addition, the graphical
model checking approach suggested that an alter-
native random effects model fits our data better
than the linear growth curve model.

Interpretation of the apparent Jenss phenomenon
presents a paradox. The result of the linear growth
curve analysis suggests that this difference between
an individual’s underlying blood pressure and the
population average blood pressure begins either
above or below a subject-specific level, crosses that
level at approximately the midpoint of the study
and then continues along the same trajectory to
end up on the opposite side of the level. A possi-
ble resolution of the paradox may be found in the
theoretical investigations that indicate that the ap-
parent Jenss phenomenon can be explained as an
artifact of fitting the linear growth curve model to
data that follow the alternative model. An intuitive
explanation of the theoretical result may be found
in recognizing that as long as the magnitude of the
Ornstein–Uhlenbeck component is large enough to
cause a significant positive estimate of the vari-
ance of the random slope term, the stationarity of
the alternative model will place the estimate of the
age at which level and slope are independent at ap-
proximately the midpoint of the study. Accordingly,
a typical trajectory with a negative slope will start
the study at relatively higher value and a typical
trajectory with a positive slope will start the study
at a relatively lower value.

Some caution should be used in extrapolating this
explanation of the apparent Jenss phenomenon to
other studies. Gillman et al. (1992) did not find
the Ornstein–Uhlenbeck component in their data.
However, their sampling plan, while quite effective
in differentiating between long term, fairly short
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term and completely transient components of vari-
ance was probably not very sensitive to the mod-
erately persistent Ornstein–Uhlenbeck component
estimated in our data.

As it is known that a variety of transient be-
havioral and environmental factors influence blood
pressure, it is not surprising to find a nonlinear com-
ponent of variance in children’s blood pressure. It
would be of interest to collect blood pressure data
at a high sampling density and in tandem with ac-
curate measures of factors that influence blood pres-
sure to explore which factors are responsible for long
term differences in underlying blood pressure and
which are responsible for transient changes.

Finally, it might be noted that, although Fig-
ure 5 suggests the Ornstein–Uhlenbeck structure
and the theoretical calculations show that the re-
sult of fitting the linear growth curve model are
consistent with an Ornstein–Uhlenbeck compo-
nent, the Ornstein–Uhlenbeck component is at
best only an approximation to the effect of the
transient factors that influence blood pressure. A
nongraphical approach to comparing the fit of the
Ornstein–Uhlenbeck model and the linear growth
curve model would be to fit a model that included
both kinds of components. The likelihood for models
that fit both kinds of components, however, is not
very well behaved. The Newton–Raphson approach
to maximizing the likelihood is very sensitive to
the choice of starting points. With some starting
points, the algorithm fails to converge, and with
others it converges at untenable parameter val-
ues. If starting points are chosen to correspond to
a model with only the Ornstein–Uhlenbeck com-
ponent, then the algorithm iterates to a solution
with a negligible linear growth curve component.
On the other hand, if starting points are chosen to
correspond to a model with only the linear growth
curve component, then the algorithm iterates to
a solution with no Ornstein–Uhlenbeck compo-
nent. The estimated parameters resulting from
starting at a model with no linear growth curve
component are σ2

α; α = 28:59 mmHg2, σ2
α;β = 0:10

mmHg2 per month, σ2
β;β = 0:0012 mmHg2 per

month2, σ2
W = 17:49 mmHg, ρ = 0:48 month−1

and σ2
ε = 22:73 mmHg2. The p-values for test-

ing whether σβ;β and σα;β are zero were 0.90 and
0.36, respectively, and the p-value for the com-
posite hypothesis that both parameters are zero
was 0.65. The fitted log likelihood for the model
with slopes and intercepts only was −7483; for
the model with the Ornstein–Uhlenbeck compo-
nent only, it was −7939; and for the model with

both but with starting points corresponding to the
Ornstein–Uhlenbeck component only, it was −7397.
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