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Ordering and Improving the Performance
of Monte Carlo Markov Chains
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Abstract. An overview of orderings defined on the space of Markov
chains having a prespecified unique stationary distribution is given. The
intuition gained by studying these orderings is used to improve existing
Markov chain Monte Carlo algorithms.
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1. MOTIVATION

Suppose we are given a probability distribution π,
possibly known only up to a normalizing constant,
on a finite set X, and we are interested in estimat-
ing the expectation of some function f�Eπf�x� = µ.
When the dimension of X is large, Markov chain
Monte Carlo (MCMC) methods could be used to esti-
mate µ by the ergodic average µ̂n = 1

n

�n
i=1 f�xi�,

where xi’s are dependent samples collected along
the path of length n of a Markov chain that has π
as its unique stationary (and limiting) distribution.
The Markov chain is identified with its transition
matrix (kernel in general state spaces): P�x� A� =
Pr�xn ∈ A�xn−1 = x� for every set A.
One of the key observations that motivates this

paper is the fact that, given a distribution π, there
are many Markov chains that are stationary with
respect to it and could therefore be used for MCMC
purposes. A choice is thus necessary and criteria to
guide this choice are needed. Orderings defined on
the space of Markov chains that have a specified
stationary distribution allow a comparison and can
aid the selection of one chain over another. The sec-
ond motivation is the fact that often the intuition
behind an ordering leads to the definition of new
MCMC algorithms or to the improvement of exist-
ing ones. This twofold motivation drives the struc-
ture of this paper which is divided in two parts. In
the first part, we define some of the orderings avail-
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able in the MCMC literature; in the second part,
we provide strategies for improving existing MCMC
algorithms relative to the given orderings.
In this paper, we will mainly refer to finite state

spaces and reversible transition matrices but will
point out when extensions of the results stated are
available (to our knowledge) in more general set-
tings.

2. ORDERING MCMC ESTIMATORS
RELATIVE TO THEIR PERFORMANCE

The main criteria used to evaluate the per-
formance of a transition matrix used for MCMC
simulation are the asymptotic variance (AV) of the
resulting estimates and the speed of convergence
(SC) to stationarity. In this paper, we will mainly
focus on the AV measured by v�f�P�, the limit, as n
tends to∞, of n times the variance of the estimator,
µ̂n, computed on a P-chain, that is, a π-stationary
chain updated using the transition matrix P. On
the other hand, SC is measured by how fast the
chain approaches its stationary distribution where
the distance considered is typically total varia-
tion: 	Pn�x� ·� − π�·�	 = supy∈X �Pn�x�y� − π�y��,
where Pn�x�y� = P�xn = y�x0 = x� is the n-step
transition matrix.
As observed by Besag and Green (1993), the

two goals lead to different notions of optimality
since the AV depends on the eigenvalues while con-
vergence to stationarity depends on the absolute
value of the eigenvalues of the transition matrix,
as appears from Theorem 1. We state and prove
the theorem for sufficiently regular problems with
transition matrices described by a sequence of
eigenvalues �λ0P ≥ λ1P ≥ · · · and corresponding
eigenvectors �e0P� e1P� � � �, but the result holds in
general:
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Theorem 1. The AV of MCMC estimates obtained
by averaging along the chain sample path is an
increasing function of the eigenvalues of the tran-
sition matrix used to update the chain. The speed
at which convergence to stationarity is achieved
depends on the second largest eigenvalue in abso-
lute value.

Proof. Let A be the matrix whose rows are
all equal to π. This is the transition matrix we
would use if we could sample i.i.d. observations from
π (MCMC would then reduce to Monte Carlo sim-
ulation). Then v�f�A� is the theoretical indepen-
dence sampling variance of the estimate µ̂n. The
first statement in the theorem follows from this rep-
resentation of the AV:

v�f�P� = ∑
j

1+ λjP
1− λjP

kjv�f�A��(2.1)

where kj are some nonnegative constants such that�
j kj = 1. The result is then a consequence of the
fact that �1+λ�/�1−λ� is an increasing function of λ.
The second statement follows from this represen-

tation of the n-step transition matrix:

Pn�x�y� = ∑
j

ejP�x�ejP�y�λnjP�

For large n, the dominant term in the above rep-
resentation is e0P�·� = π�·� and since λ0P = 1, the
speed at which convergence, in total variation dis-
tance, to stationarity is achieved, depends on the
second largest eigenvalue in absolute value which
we will indicate by λ∗P.

If the transition matrix is positive definite, that
is, its eigenvalues are positive, the optimal Markov
chains relative to the two goals of AV and SC coin-
cide (see Theorem 6). Thus, while the optimal sam-
plers may be different, we could get good perfor-
mance with respect to both criteria simultaneously.
An alternative and appealing practice is to use a
sampler with good convergence properties for the
first part of the simulation (until convergence is
presumably achieved) and then switch to a sampler
with better properties in terms of AV.
We conclude by further stressing that AV and

SC are strongly related concepts and spectral gap
bounds lead to bounds on the asymptotic variance
of MCMC estimators: expression (2.1) leads to the
following inequality:

v�f�P� ≤ 1+ λ
∗
P

1− λ∗P
v�f�A� ≤ 2

1− λ∗P
v�f�A��

where 1− λ∗P is known as the spectral gap.

2.1 Orderings Relative to the Asymptotic
Variance of the Estimators

To justify this criterion, consider that, in classi-
cal asymptotic statistics, estimates are compared
in terms of their asymptotic relative efficiency. If
a Markov chain is irreducible and the state space
is finite, the corresponding MCMC estimates are
strongly consistent and asymptotically normally
distributed; therefore, efficiency can be measured
by the asymptotic variance of estimates. Under
slightly stronger conditions, asymptotic normality
and consistency are also guaranteed on general
state spaces [Tierney (1994)].
Sometimes we run an MCMC simulation having

in mind a specific function of interest whose expec-
tation relative to π we want to estimate. In other
situations, either we have a range of functions or
we do not have any specific function in mind and
are instead interested in studying π per se. In the
first setting, we want a sampler that has good effi-
ciency properties relative to the specific function of
interest. In the second setting, we will look for a
chain that is more efficient uniformly over all sensi-
ble f’s. This distinction leads to the following defi-
nitions. Indicate with � the class of Markov chains
stationary with respect to π [i.e.,

�
x π�x�P�x�y� =

π�y��∀y ∈ X], � the subset of the reversible ones
(π�x�P�x�y� = π�y�P�y�x��∀x�y ∈ X) and L2�π�
the space of all f that have a finite variance with
respect to π.

Definition 2.1. Let P�Q ∈ � . P is at least as
efficient as Q, relative to a particular function f,
P �f Q, if v�f�P� ≤ v�f�Q�.

Definition 2.2. Let P�Q ∈ � . P is at least as
uniformly efficient as Q�P �E Q, if v�f�P� ≤
v�f�Q� for all f ∈ L2�π�.

2.1.1 Uniform efficiency. The first ordering of
MCMC samplers introduced in the literature refers
to uniform efficiency and is due to Peskun (1973):

Definition 2.3. Let P�Q ∈ �. P dominates Q
in the Peskun sense, P �P Q, if each of the off-
diagonal elements of P is greater than or equal to
the corresponding off-diagonal element of Q.

Tierney (1998) extended Peskun ordering from
finite to general state spaces. These orderings pro-
vide a sufficient condition for uniform efficiency as
the following theorem [Peskun (1973) and Tierney
(1998)] states:
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Theorem 2. If P dominates Q in the Peskun
sense, then P �E Q. Furthermore, P �E Q if and
only if λiP ≤ λiQ for all i.

Comments on the proof. Peskun (1973)proved
the first part of Theorem 2 for finite state spaces by
writing the asymptotic variance as a function of the
off-diagonal elements of the transition matrix and
showing that this function is decreasing. Tierney
(1998) gave a more elegant and general proof by first
showing that Peskun ordering implies that Q−P is
a positive semidefinite matrix and then proving that
this implies an ordering on the asymptotic variances
for all functions of interest (uniform efficiency). We
will sketch the proof of this result as part of the
proof of Theorem 3.
Assuming Tierney’s result, the ordering on the

eigenvalues is then well known for symmetric
matrices. In our setting, neither P nor Q need be
symmetric but if we consider them as operators on
L2�π�, that is, if we take the inner product to be
�f�g� = Eπ�f�x�g�x��� then the transition matri-
ces are indeed self-adjoint operators, provided that
the reversibility condition holds. Sufficiency follows
from the Courant–Fisher min–max representa-
tion of the ith largest eigenvalue for self–adjoint
operators [Bellman (1972)]:

λiP = min
�gj�gj�=1
j=1� ���� i−1


 max

�f�gj�=0
j=1� ���� i−1

�f�Pf�
�f�f�


 �

where gj are arbitrary vectors. The reverse implica-
tion follows from the spectral theorem of self-adjoint
operators.
Theorem 2 readily extends to general state spaces

[Mira and Geyer (1999)] except that the eigenvalues
cannot be ordered anymore (since it does not even
make sense to talk about eigenvalues). What can be
ordered are the respective suprema of the spectra
of the operators defined by the transition kernels
(refer to Section 2.2 for a formal definition of the
spectrum).
The first use of Peskun ordering appears in

Peskun (1973) and states that the Metropolis–
Hastings (MH) algorithm dominates a class of
competitors reversible with respect to some π, all
with the same propose/accept updating structure
[see also Billera and Diaconis (2001)]. We remind
the reader how the MH updating mechanism works:
suppose the chain, at time t, is in position
x� Xt = x. Propose a candidate move y by gener-
ating it from a distribution, q�x� ·�� that is allowed
to depend on the current position. With probability
α�x�y� = min�1� π�y�q�y�x�/π�x�q�x�y�, accept
the move and thus set Xt+1 = y; otherwise, retain
the same position: Xt+1 = x.

Another interesting use of Peskun ordering
appears in Tierney (1998) where the author com-
pared the benefit, in terms of uniform efficiency, of
two approaches to using mixtures of MH kernels.
In Frigessi, Hwang and Younes (1992), the optimal
transition matrix relative to the Peskun ordering is
constructed. The construction only applies to finite
state spaces and requires the exact knowledge of π
while, in typical MCMC applications, π is known
only up to a normalizing constant (indeed this is
one of the strengths of MCMC methods).
Unfortunately, there are many Markov chains

that are not comparable relative to the Peskun par-
tial ordering. Just to give some examples, consider
two transition matrices with zeros along the main
diagonal. Since the row sums have to be equal to
one, Peskun will never be able to order them. For
a similar reason, Gibbs samplers on a continu-
ous state space are not comparable in the Peskun
sense: the Gibbs sampler is a special MH algo-
rithm where the proposal for each coordinate is the
conditional target distribution of that coordinate
given everything else (the full-conditional distri-
bution). This results in an acceptance probability
equal to one and thus the probability of staying put
is zero. Likewise, Peskun does not help in finding
a good variance for the proposal in random-walk
MH algorithms: here the proposal is constructed
by adding a random increment to the current posi-
tion. The choice of the spread of the increment
is crucial in designing samplers with good per-
formance. In conclusion, Peskun ordering is nice
when it works but it is far from being the natural
way to compare MCMC algorithms. This motivates
the introduction, in Mira and Geyer (1999), of a
weaker ordering (implied by the Peskun order-
ing), the covariance ordering. The definition and
the interest in this ordering are given in the next
theorem where each one of the equivalent condi-
tions stated can be taken as defining the covariance
ordering. We prefer to take (2) as the defining
condition (thus the name of this ordering), where
Covπ�f�Pf� = Eπ�f�x0�f�x1�� is the lag-one auto-
covariance along a P-chain and f belongs to L20�π�,
the functions of L2�π� with zero mean relative to π.

Theorem 3. Given two reversible Markov chains
P�Q ∈ �, the following statements are equivalent:

(1) Q−P is a positive semidefinite matrix;
(2) Covπ�f�Qf� ≥ Covπ�f�Pf� for all f ∈ L20�π�;
(3) P is uniformly more efficient than Q.

Mira and Geyer (2000) extended the previous the-
orem from finite to general state spaces. We sketch
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the proof for finite state spaces. The equivalence of
(1) and (2) follows from the fact that

�f�Qf� ≥ �f�Pf� ∀f ∈ L20�π�
is equivalent to

�f�Qf� ≥ �f�Pf� ∀f ∈ L2�π��
One implication is obvious. For the other, let f in
L2�π�. Then f0 = f − µ with f0 ∈ L20�π� and
�f�Pf� = �f0�Pf0� + µ2. Similarly, we have
�f�Qf� = �f0�Qf0� + µ2 and this gives what we
want. The equivalence of (1) and (3) is a con-
sequence of the following representation of the
asymptotic variance [Peskun (1973)]: v�f�P� =
2�f� l−1P f�−�f� �I+A�f�, where l−1P = �I−P+A�−1
is the inverse Laplacian and I denotes the identity
matrix. Let A ≥ 0 mean �f�Af� ≥ 0, ∀f ∈ L2�π�.
Then P is at least as efficient as Q if and only
if l−1P ≤ l−1Q which, in turn, is equivalent to
I − P + A ≥ I − Q + A [by Löwner’s theorem;
Löwner (1934) and Bendat and Sherman (1955)],
which is equivalent to (1).
At first sight, Theorem 3 may seem a little coun-

terintuitive: by imposing a condition on the rela-
tive ordering of the lag-one autocovariances, we can
order the asymptotic variance of µ̂ which, by def-
inition, equals the doubly infinite sum of autoco-
variances at all lags. The fact is that the condition
imposed on the lag-one autocovariances is stronger
than it seems since it is required to hold over a large
set of functions [namely L20�π�].
A necessary and sufficient condition for uniform

efficiency in a nonreversible setting is given in Mira
and Geyer (2000).

2.1.2 Relative efficiency. Suppose now we have a
specific function f in mind and, without loss of gen-
erality, assume it is monotone (a finite state space
can always be reordered to make any function mono-
tone).
Let X be a finite set with N elements. Define the

summation matrix T to be anN×N upper triangu-
lar matrix with zeros below the main diagonal and
ones elsewhere. Define the southwest submatrix of
a matrix M to be the submatrix of M obtained by
deleting the first row and the last column. Let � be
the N ×N diagonal matrix with πi as the ith ele-
ment on the diagonal. Indicate by f′ the transpose
of f.
An ordering related to relative efficiency appears

in Mira (2000a):

Definition 2.4. Let P�Q ∈ � . P dominates Q
in the southwest ordering, P �SW Q, if all the ele-
ments of the southwest submatrix of T��P −Q�T
are nonnegative.

This ordering is interesting because of the follow-
ing theorem [Mira (2000a)]:

Theorem 4. Let P�Q ∈ � . If l−1P �SW l−1Q , then
P �f Q for every f monotone on the state space.

Because of the Peskun representation of the
asymptotic variance (Section 2.1.1), to prove the
above result, it is sufficient to show that, for any
monotone function f�f′��l−1P − l−1Q �f ≤ 0. Con-
sider the identity f′��l−1P − l−1Q �f = f′T−1T��l−1P −
l−1Q �TT−1f = f′T−1BT−1f. The last column and the
first row of B contain only zeros as a consequence
of the fact that P and Q are stochastic matrices
stationary with respect to π. This, together with
the definition of southwest ordering, implies that
the entries of the matrix B are nonnegative. The
monotonicity of f implies that the first �N− 1� ele-
ments of T−1f and the last �N − 1� elements of
f′T−1 have opposite signs. The result follows since
f′T−1BT−1f is then the sum of nonpositive terms.
The southwest ordering can be used to also com-

pare transition matrices that are not reversible,
unlike most of the other orderings introduced so
far. On the other hand, a limitation of Theorem 4
is that it requires inverse Laplacians: computing
the inverse can be quite computationally intensive.
Realizing that �I + P − A� provides a first-degree
approximation to the inverse Laplacian [Peskun
(1973)] allows us to work with transition matrices
directly. This realization leads to the following:

Definition 2.5. Let P�Q ∈ � . P is at least as
first degree efficient as Q, for a particular function
f�P �1f Q, if f′��P−Q�f ≤ 0.

The condition f′�Pf ≤ f′�Qf is equivalent to
requiring that the lag-one covariance of f along a P-
chain is less than or equal to the one obtained along
a Q-chain, assuming f has zero mean under π. The
difference between this and the covariance ordering
is that here the ordering on the lag-one covariances
has to hold only for the specific function of interest
and not for all functions in L20�π�. Thus we require
here a much weaker and easier to verify condition,
but, of course, paying less we get less. We get the
following theorem that buys us first-degree effi-
ciency (as opposed to uniform efficiency):

Theorem 5. If P �SW Q, then P �1f Q.

The proof is similar to that of Theorem 4.
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2.2 Orderings Relative to the Speed of
Convergence to Stationarity

To justify this criterion as a measure of MCMC
performance, consider the fact that π, the distribu-
tion of interest, is both the unique stationary and
the limiting distribution of the Markov chain we
simulate. This means that, as the simulation goes
on (n → ∞), the distribution of the chain at time
n�Pn�x� ·�, becomes closer and closer to π in total
variation distance: 	Pn�x� ·� − π�·�	 → 0 regardless
of the starting point x. As stated in Theorem 1,
the rate of convergence is governed by the spec-
tral radius, which, in finite state spaces, is the sec-
ond largest eigenvalue (of the transition matrix) in
absolute value [Besag and Green (1993) and Roberts
(1996), page 48]. This leads to one definition of a
natural ordering. Let σ�P� be the spectrum of P:
the set of λ’s such that λI−P is not invertible. The
spectrum of a Markov chain transition matrix is a
nonempty closed subset of the interval �−1�+1� and
always contains an eigenvalue equal to one asso-
ciated to constant functions. For this reason, we
also define σ1�P� which equals σ�P� except that
the eigenvalue associated with constant functions
is removed. It is known that the eigenvalues are
real valued only if the Markov chain is reversible.
This is why, in the following definition, the class �
is considered.

Definition 2.6. Let P�Q ∈ �. We say that P
dominates Q in the convergence ordering and write
P �SC Q, if

sup
{�λ� � λ ∈ σ1�P�

} ≤ sup{�λ� � λ ∈ σ1�Q�}�
that is, on finite state spaces, if the second largest
eigenvalues in absolute value are ordered.

The above definition readily extends to general
state spaces. As noted before, for positive definite
transition matrices, AV and SC criteria lead to the
same optimal Markov chain and we can therefore
state the following:

Theorem 6. For positive definite transition
matrices P�Q ∈ �, the following implications hold:

P �P Q→ P �SC Q↔ P �E Q↔ P

�C Q↔ λiP ≤ λiQ ∀ i�

The proof follows from Theorem 2 and can be
extended to general state spaces.
There are a few Markov chains with positive def-

inite transition matrices used for MCMC purposes.
Among them are the independence MH algorithm

[Liu (1996a)], the random-scan Gibbs sampler [Liu,
Wong and Kong (1995)] and the slice sampler [Mira
and Tierney (2001)].
The ordering defined in Definition 2.6 also

appears in Frigessi, Di Stefano, Hwang and Sheu
(1993) where the random-scan, single-site update,
MH algorithm and Gibbs sampler are compared
in terms of SC both in general and for simulating
the Ising model at different temperatures. Beside
Frigessi, Di Stefano, Hwang and Sheu (1993), there
are only a few other papers available in the liter-
ature that refer to the convergence ordering. This
is possibly due to the fact that studying the spec-
tral structure of Markov chains used for practical
applications is typically not an easy task. As a con-
sequence, the articles we reference in the rest of
the paper only consider special Markov chains such
as the Gibbs sampler, the independence MH and
the slice sampler, or study particular distributions
of interest that are easier to analyze such as Gaus-
sian distributions or the Ising model. We recall the
following results by Mira and Tierney (2001):

Theorem 7. Given any independence MH sam-
pler, it is always possible to construct a slice sampler
that dominates it in the convergence ordering and
thus in the uniform efficiency ordering.

The slice sampler is an auxiliary variable con-
struction. Suppose a factorization of the target dis-
tribution, possibly up to a constant of proportion-
ality, is available: π�x� ∝ q�x�l�x�, where l�x� is
a nonnegative function. The auxiliary variable u is
introduced by specifying its conditional distribution
given x to be uniform on the interval �0� l�x��. A
Gibbs sampler, stationary with respect to the joint
distribution of x and u, is then constructed on the
enlarged state space. This amounts to generating u
given x from a uniform distribution on the interval
�0� l�x�� and x given u from q�x� restricted to the
set Au� l = �x � l�x� > u. On the negative side, note
that the cost of sampling from this latter distribu-
tion may be high. On the positive side, note that if l
is a bounded function the slice sampler is uniformly
ergodic [Mira and Tierney (2001)].
Different factorizations of π give rise to different

slice samplers and it is not clear which factoriza-
tions result in samplers with good properties. Unfor-
tunately, slice samplers on continuous state spaces
cannot be Peskun ordered since Peskun cannot com-
pare continuous state space Gibbs samplers.
The independence MH is characterized by having

a proposal that does not depend on the current posi-
tion Xt = x of that chain: q�·� x� = q�·�.
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Suppose q�·� is the proposal used for an indepen-
dence MH sampler and let l�·� = π�·�/q�·�. This pro-
vides a possible factorization of π and the resulting
slice sampler outperforms the original independence
MH in that the MCMC estimates have uniformly
smaller asymptotic variance.
Theoretical results on convergence properties of

the independence MH sampler compared to various
Monte Carlo algorithms can be found in Liu (1996a).
In Roberts and Sahu (1997), many different types of
Gibbs sampler on Gaussian distributions are com-
pared in terms of SC. The work covers parame-
terization, blocking and random and deterministic
scan. The comparisons are partially extended to the
non-Gaussian case via a weak convergence result in
Roberts and Sahu (2001). The relationship in terms
of SC between the EM algorithm and the Gibbs sam-
pler is investigated in Sahu and Roberts (1999). The
authors showed that the rate of convergence of the
Gibbs sampler, obtained by Gaussian approxima-
tion, is equal to that of the corresponding EM-type
algorithm.
The lack of many theoretical results is more than

compensated by numerous papers where different
MCMC samplers are compared in terms of speed of
convergence to stationarity via simulation studies.
Distances different from total variation could

be used to measure how far Pn�x� ·� is from π�·�.
One example is the χ2 distance [Diaconis, Holmes
and Neal (2000)]. Furthermore, other forms of con-
vergence could be of interest in the evaluation of
the performance of a Markov chain for MCMC
purposes. We can, for example, consider conver-
gence of moments or pathwise convergence, that is,
limn→∞

1
n

�n
i=1 f�xi� = Eπf�x� a.s. for all starting

points x.
Depending on our aims, different orderings con-

cerning convergence of MCMC samplers can be
defined. We do not pursue this further.

3. IMPROVING THE EFFICIENCY OF
MCMC SAMPLERS

3.1 Improving with Respect to
Absolute Efficiency

What can we learn from Peskun ordering? The
intuition behind Theorem 2 is clear: a Markov chain
that has smaller probability of remaining in the
same position over time (i.e., smaller diagonal ele-
ments in the transition matrix) explores the state
space more efficiently and thus produces better esti-
mates.
This is the intuition used in the Metropolized

Gibbs sampler [Liu (1996b)] which improves, in

terms of uniform efficiency, the regular Gibbs sam-
pler on discrete state spaces (or when at least one
of the state space components is discrete). The
Metropolized Gibbs sampler modifies the random-
scan Gibbs sampler by excluding, when updating
each coordinate xi, an immediate draw of xi itself,
thus preventing the sampler from retaining the
same position over successive points in time. The
proposal distribution is not the full-conditional,
π�xi�x−i�, anymore, where x−i = �xj� j �= i�, but a
value yi, different from xi, is drawn with probabil-
ity π�yi�x−i�/�1−π�yi�x−i��. By doing so, one needs
to insert a reject–accept step to correct for the bias
induced by not using the full-conditional distribu-
tion as the proposal. An acceptance probability that
preserves reversibility relative to π is given in Liu
(1996b).
The Metropolized Gibbs sampler idea relies heav-

ily on the discreteness of the state space. On general
state spaces, the same position is retained over time
when a proposal is rejected. Thus, in principle, we
could improve the MH and the reversible-jump
[Green (1995)] algorithms in the efficiency ordering
by decreasing the rejection frequency of proposed
moves. We remind the reader that reversible jumps
allow the extension of the MH strategy to settings
where there is no elementary dominating mea-
sure for the target distribution. Examples include
variable-dimension problems such as mixture mod-
els with an unknown number of components or
change point problems with an unknown number of
change points. The idea of decreasing the rejection
frequency is used in Tierney and Mira (1999) and
Green and Mira (2001) where a delaying rejection
mechanism is introduced to improve the MH and
the reversible-jump algorithms (respectively) on a
sweep-by-sweep basis.
The delaying rejection strategy works as follows:

suppose that, at some point in time, the chain is
at position x. Generate a candidate move y from
some proposal distribution that may depend on
the current position of the chain, q1�x� ·�. With
the usual MH probability α1�x�y�, accept the
move. If the move is rejected, instead of staying
put and advancing time, according to standard
Metropolis–Hastings (which, we know, leads to a
loss in terms of efficiency of the resulting MCMC
estimates: Peskun told us!), propose a second-stage
candidate move z from a new proposal distribution
q2�x�y� ·� and with some probability α2�x� z� accept
the move. If z is also rejected, we could either
interrupt the delaying rejection process and remain
in the current position (advancing time) or con-
tinue with higher stage proposals. The second-stage
(or higher) proposal distribution can be different
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from the first-stage one and is allowed to depend
on the previously rejected candidate. This means
that a form of within-steps adaptation of the pro-
posal is allowed: we can learn from our previous
“mistakes” (without losing the Markovian prop-
erty of the resulting sampler). In Tierney and Mira
(1999) and Green and Mira (1999), formulas are
provided for second-stage acceptance probabilities
that preserve reversibility with respect to π sep-
arately at each stage of the delaying process. In
Mira (2001b), iterative formulas for higher stage
acceptance probabilities are given.
The delaying rejection strategy certainly reduces

the overall probability of remaining in the current
state and thus leads to improved samplers in the
Peskun ordering. The price paid for this gain is
that it takes longer (in terms of simulation time) for
the chain to perform a step (sweep). Thus, whether
delaying rejection is useful in practice depends on
whether the reduction in variance obtained more
than compensates for the additional computational
cost. The experimental results reported in Green
and Mira (1999), where simulation time is taken
into account, indicate that the gain often more than
compensates for the price.
Finally, we note that there are various alter-

natives to improving efficiency of an existing MH
sampler by adding one or more delaying rejection
steps. Reparameterization, auxiliary variables, data
augmentation, simulated tempering, Langevin dif-
fusions or other samplers [Gilks, Roberts and Sahu
(1998)] should also be considered as valid if not
preferred alternatives, depending on the problem
at hand and depending on how poor the perfor-
mance of the original MH sampler is: a really bad
algorithm should be replaced completely by a dif-
ferent method instead of trying to fix it via delaying
rejection, unless there is really no option.

3.2 Improving with Respect to
Relative Efficiency

In Mira (2000a), we introduced the idea of
stationarity-preserving and efficiency-increasing
probability mass transfers performed on a transi-
tion matrix P having the proper stationary distri-
bution. Transfers of probability mass are motivated
by Definition 2.5 of first-degree efficiency and by
Theorem 5 and are performed in the following way:
given integers 1 ≤ i < j ≤ N and 1 ≤ k < l ≤ N
and a quantity h > 0, increase the entries of the
P matrix, pi� l and pj�k, by h and hπi/πj, respec-
tively, and decrease pi�k and pj� l by h and hπi/πj,
respectively. The quantity h must be chosen so that,
after the mass transfer, in the resulting matrix all
the entries are nonnegative and less than one.

Notice that the knowledge of π up to a normalizing
constant is sufficient to perform these transfers of
probability mass.
If P is derived from Q via a stationarity-

preserving and efficiency-increasing probability
mass transfer (probability mass transfer in short),
then P �SW Q. We can thus increase the relative
efficiency of a transition matrix (provided the first-
degree approximation to the asymptotic variance
is good), while preserving its stationary distribu-
tion, via a sequence of probability mass transfers.
Indeed, until there exist two indices i < j such that
pi�k and pj� l > 0 for some k < l, we can keep mov-
ing probability mass around increasing first-degree
efficiency.
The extreme transition matrix obtained by apply-

ing a sequence of probability mass transfers, that is,
a matrix that cannot be further improved in terms
of first-degree efficiency, has at most one nonzero
element along the main diagonal and presents a
path of positive entries connecting the northeast to
the southwest corner of the matrix. Which specific
pattern is optimal depends on π and f. Of course,
once the extreme matrix is obtained, one has to
check that it is irreducible. The intuition behind
the structure of the extreme matrix is the follow-
ing: when we perform probability mass transfers, we
try to induce first-order negative correlation along
the chain path so that the variance of the resulting
MCMC estimates will be reduced, possibly even to
values smaller than the variance we would get with
i.i.d. sampling from π.
As proved in Mira (2001a), if f does not assume

the same value on any two points of the state
space (so that it is strictly increasing after having
reordered the state space to make f monotone), the
final result of a sequence of probability mass trans-
fers is unique and corresponds to the matrix that
minimizes the linear function f′��P − A�f under
the set of linear constraints that ensure that the
resulting matrix is stochastic and has the proper
stationary distribution (these constraints define
a convex region; thus the minimum is unique).
We will refer to such a matrix as the first-degree
optimal matrix. As proved in Mira, Omtzigt and
Roberts (2001), this matrix is always reversible with
respect to the stationary distribution π even if the
starting point is only stationary with respect to π.
Obtaining, from an initial π-stationary matrix,

the first-degree optimal matrix via a sequence of
probability mass transfers, as presented above, can
be quite computationally expensive, especially for
large state spaces, to the point that exact compu-
tation of the normalizing constant of π and of the
mean of the function of interest via brute-force eval-
uation might become a competitive strategy. In this
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regard, we observe the following. Even if we stop the
process of performing probability mass transfers at
an intermediate stage (before the extreme optimal
matrix is reached), we obtain an improvement over
the original π-stationary matrix (this intermediate
matrix might not be reversible). Second, in Mira,
Omtzigt and Roberts (2001), an algorithm to derive
the first-degree optimal matrix, optimized from a
computational point of view, is presented. The algo-
rithm requires, as its inputs, only the function of
interest f and π up to a normalizing constant.
The construction of the first-degree optimal matrix
becomes thus of actual practical interest (and com-
petitive relative to brute-force evaluation) since it
does not even require the knowledge of an initial
π-stationary transition matrix.
As pointed out by Billera and Diaconis (2001),

there is an insightful geometrical interpretation
of how the MH algorithm transforms a generic
stochastic matrixK, the proposal distribution in an
MH sampler, into a reversible Markov chain. Along
the same lines, we can interpret the final result of a
sequence of probability mass transfers. In the 2× 2
case considered in Figure 2 of Billera and Diaconis
(2001), the first-degree optimal matrix is the one at
the intersection of the stationarity line of equation
b = aπ1/π2 with the boundary of the unit square
containing all the admissible stochastic matrices.
The second largest eigenvalue λ2 of a 2 × 2 matrix
parameterized as in Figure 2 of Billera and Dia-
conis (2001) (i.e., with p1�2 = a and p2�1 = b) is
λ2 = 1−a−b. The figure thus clearly shows that the
first-degree optimal transition matrix has a smaller
second largest eigenvalue than the MH matrix and
any other matrix stationary with respect to π. This
is an indication of the optimal performance of the
corresponding Markov chain in terms of the con-
vergence ordering. But note that this is an artifact
of the fact that we are considering a state space
with only two degrees of freedom. Furthermore,
the first-degree optimal matrix is also the optimal
matrix with respect to uniform efficiency in this
special case because every function is monotone on
the state space considered.
The natural question that occurs is: how does

the construction of the first-degree optimal matrix
extend to general state spaces? Intuition tells us that
there might exist a function, φ� X → X, that asso-
ciates, to every point in the state space x, the point
which has the highest negative correlation with x.
Indeed, such a function exists, preserves stationar-
ity and is related to the minimum of the Fréchet
class and to the overrelaxation ideas proposed in
Neal (1998). The use of the function φ for MCMC
purposes is further studied in Mira, Omtzigt and
Roberts (2001).

4. EXAMPLES

Following Besag (2000), consider the hidden
Markov model for a noisy channel outlined in the
sequel. Let x1� � � � � xk be the output sequence from
a process with xi ∈ �0�1� � � � � s. Suppose that the
signal x = �x1� � � � � xk� is unobservable but that
each xi generates an observation yi that takes val-
ues on the same state space. To keep things simple
(but everything extends readily to the general set-
ting), we restrict our attention to a binary channel;
that is, we let s = 1 and assume that only two
observations are available (k = 2). Let the log-odds
of correct to incorrect transmission of xi to yi be a
known value α. Now suppose that the xi’s form a
stationary Markov chain with symmetric transition
probability matrix and with log-odds β in favor of
xi+1 = xi. The object of interest (target distribu-
tion) is the posterior probability of a true signal x
given data y:

π�x�y�∝exp
{
α

k∑
i=1

1�xi = yi�

+β
k−1∑
i=1

1�xi = xi+1�
}
�

(4.1)

A Markov chain having (4.1) as its unique station-
ary distribution is the Gibbs sampler. The full con-
ditional distributions needed to implement it are

π�xi�x−i� y� ∝ exp
{
α1�xi = yi�
+β(1�xi = xi−1� + 1�xi = xi+1�

)}
�

where x0 = xn+1 = −1 to accommodate the end
points. Thus, interior sites have two neighbors
whereas sites 1 and n have a single neighbor. For
the n = 2 case, we have
π�x1�x2� y� ∝ exp

{
α1�x1 = y1� + β1�x1 = x2�

}
and

π�x2�x1� y� ∝ exp
{
α1�x2 = y2� + β1�x1 = x2�

}
�

Suppose now that, for our specific example (s = 2,
n = 2), the observation is y = �0�0� and let f�x� =
x1 + 2x2 be the function of interest. The ordering
of the state space ��0�0�� �1�0�� �0�1�� �1�1� makes
f monotone. Note that there is a unique ordering
of the state space that makes this function strictly
monotone. The possibly more interesting function
g�x� = x1+x2 is monotone relative to more than one
ordering of the space and this causes an uninterest-
ing proliferation of cases. Let c1 = 1 + exp�α + β�
and c2 = exp�α� + exp�β�. Then the Gibbs sampler
transition matrix is
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G =




exp�2�α+β��
c21

exp�α�
c1c2

exp�α+β�
c21

exp�β�
c1c2

exp�2�α+β��
c21

exp�α�
c1c2

exp�α+β�
c21

exp�β�
c1c2

exp�2α+β�
c1c2

exp�α+β�
c22

exp�α�
c1c2

exp�2β�
c22

exp�2α+β�
c1c2

exp�α+β�
c22

exp�α�
c1c2

exp�2β�
c22




and its stationary distribution is the vector

π�x�y� ∝ [
exp�2α+ β�� exp�α�� exp�α�� exp�β�]�

Let α = log�4� and β = log�3�. The following matrix,
obtained by making the second entry on the main
diagonal equal to zero, moving that probability mass
to entry (2�1) and correspondingly adjusting the
entries (1�1) and (1�2) to preserve stationarity, dom-
inates G in the Peskun and in the covariance sense:

P =



0�848 0�048 0�071 0�033
0�896 0 0�071 0�033
0�527 0�245 0�044 0�184
0�527 0�245 0�044 0�184


 �

Peskun dominance can be verified by inspection
(and this is indeed an advantage of Peskun versus
covariance ordering). The fact that the eigenvalues
of G − P are all zero but one, which is negative,
ensures the P dominates G in the covariance sense.
For the specific f of interest and for every other

function monotone on the given ordering of the state
space, the first-degree optimal matrix is

1-opt =



0�771 0�083 0�083 0�063
1 0 0 0
1 0 0 0
1 0 0 0




whose eigenvalues are �1�−0�229�0�0� which, com-
pared to the eigenvalues of the Gibbs matrix,
�1�0�124�0�0�, show that the first-degree optimal
matrix also has a smaller asymptotic variance (not
only up to the first-degree approximation).
To find out the gain we get in terms of the asymp-

totic variance by switching from G to 1-opt, we can
compute the ratio of the corresponding asymptotic
variances, which turns out to be 2.17; that is, the
asymptotic variance is cut by more than half. For
a different function, say the mean, which is also
monotone on the state space, the ratio is 2.28. In
general, different functions lead to different degrees
of improvement.
One might wonder how good the first-degree

approximation to the asymptotic variance is. Or,

equivalently but more practically, if the sampler is
run for a finite number of steps (as opposed to infin-
ity), what is the gain we get in terms of variance
reduction? To answer this question, we again need
to look at the eigenvalue structure of our transition
matrices. The smaller the eigenvalues of P are in
absolute value, the better this first-degree approxi-
mation to the asymptotic variance is. This is related
to the fact that the smaller the eigenvalues of P are
in absolute value, the faster convergence to station-
arity is achieved. In particular, P and G have the
same spectral radius, while the first-degree optimal
matrix converges to stationarity more slowly.

5. IMPROVING THE SPEED OF
CONVERGENCE OF MCMC SAMPLERS

To conclude, we would like to say something
about strategies to improve MCMC algorithms in
terms of the SC ordering. Intuition suggests that
the closer the proposal distribution is to the target,
the faster convergence to stationarity is achieved.
As an extreme, consider the case in which the pro-
posal is the target itself. If we could sample from
the target, we would then run a Monte Carlo simu-
lation (as opposed to an MCMC simulation) and we
would have instantaneous convergence to station-
arity. A result by Holden (1998) substantiates this
intuition and demonstrates the link between the
convergence rate to stationarity and the closeness
of the proposal to the target. This suggests the idea
of allowing the proposal distribution to depend on
points previously sampled along the chain trajec-
tory. Doing so speeds up convergence since, as the
Markov chain itself converges to π, previous sam-
pled points should help in designing more sensible
proposal distributions.
Several strategies exist for altering the pro-

posal distribution based on the chain’s history.
One approach is to perform a separate pilot run,
and from the resulting sample path, gain insight
about the distribution of interest and tune the pro-
posal for the successive run accordingly. In this
setting, tuning is done once at the beginning of the
simulation (though the procedure can be applied
iteratively). This strategy has been labeled pilot
adaptation [Gilks, Roberts and Sahu (1998)] and
approaches range from simple to complex [see, e.g.,
Haario, Saksman and Tamminen (1999)]. However,
a requirement of such a strategy is that a single
(possibly imperfect) proposal distribution be fixed
in order to generate postconvergence samples that
may be summarized for inference.
Gilks, Roberts and Sahu (1998) discussed an

alternative adaptive strategy, which allows for
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updating of the candidate distribution at the algo-
rithm’s regeneration times. Regeneration times
are time points in the algorithm which divide the
Markov chain into sections whose sample paths are
independent. Thus updating of the candidate distri-
bution can occur repeatedly without disturbing the
chain’s stationary distribution. However, in cases
other than independence MH, the identification of
regeneration times, in a way that makes them suf-
ficiently frequent, is hard in high dimensions, and
it is unknown, at the beginning of the simulation,
how often the algorithm will regenerate. An inter-
esting way of inducing and detecting regeneration
times in a Markov chain via enlargment of the orig-
inal state space with an artificial atom is presented
in Brockwell and Kadane (2001).
In other approaches to adaptive algorithms, the

Markovian property and/or time homogeneity of
the transition kernel is lost and ergodicity of the
resulting samplers is proven from first principles.
Typically, if this last strategy is used, either the
resulting stationary distribution is not the original
one but an approximation of it [as in Holden (1998)
and Haario, Saksman and Tamminen (1999)], or
restrictive conditions on the original target distri-
butions are assumed [as in Chauveau et al. (1999)
and Haario et al. (2001)]. For an overview of adap-
tive methods, the reader can refer to Tierney and
Mira (1999).

6. DISCUSSION

A criterion that we have not yet mentioned, but
that can be of practical use when choosing a Markov
chain for MCMC purposes, is the ease of implemen-
tation of the underlying stochastic process. Once an
algorithm is chosen, we have to write the computer
code to run the simulation. This can be intensive
work mostly due to the debugging process of the
code. Thus a non-expert programmer might choose
a chain easier to implement versus one that has
slightly better performance. In this regard, we note
that the extra computational effort needed to insert
a delaying rejection step into an existing MH or
reversible jumps code is minimal.
All the orderings presented (except the conver-

gence and the first-degree efficiency ordering) are
partial orderings. This means that they do not allow
the comparison of all Markov chains that are either
reversible or stationary with respect to the specific
distribution of interest. We note that, on the space of
nonreversible Markov chains, the covariance order-
ing, which can still be defined, is not a proper order-
ing anymore since the antisymmetry property fails
to hold.

Finally, we stress that the AV of MCMC estima-
tors can be reduced not only by generating a “bet-
ter” Markov chain on which to compute the ergodic
average (as suggested in Sections 3.1 and 3.2), but
also by using a “better” estimator than the ergodic
average. In this regard, we recall that the Rao–
Blackwellization principle used to reduce variance
in i.i.d. sampling can also be exploited in MCMC
simulations. The idea is to replace f�xi� in µ̂n by
a conditional expectation, Eπ�f�xi��h�xi��, for some
function h or to condition on the previous value
of the chain thus using E�f�xi��xi−1 = x� instead
[Gelfand and Smith (1990), Liu, Wong and Kong
(1995), Casella and Robert (1996) and McKeague
and Wefelmeyer (2000)].
Given a Markov chain sampling scheme, does

the ergodic average make the best use of the sam-
ple? This question, related to Rao–Blackwellization
and complementary to the one we have consid-
ered in Section 3, is well analyzed in Greenwood
and Wefelmeyer (1995, 1999) and Greenwood,
McKeague and Wefelmeyer (1996). In these papers,
the authors exploit the specific structure of MCMC
samplers to construct new estimators that can be
combined with the ergodic average to considerably
reduce asymptotic variance.
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