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A Geometric Interpretation of the
Metropolis–Hastings Algorithm
Louis J. Billera and Persi Diaconis

Abstract. The Metropolis–Hastings algorithm transforms a given
stochastic matrix into a reversible stochastic matrix with a prescribed
stationary distribution. We show that this transformation gives the min-
imum distance solution in an L1 metric.

1. INTRODUCTION

Let X be a finite set and suppose that π�x� >
0�

�
π�x� = 1 is a probability distribution on X

from which we wish to draw samples. The Metropo-
lis (or Metropolis–Hastings) algorithm is a widely
used procedure for drawing approximate samples
from π, which works by finding a Markov chain on
X with π as stationary distribution and using the
well-known fact that after running the chain for a
long time it is approximately distributed as π.

An important feature of the Metropolis–Hastings
algorithm is that it can be applied when π is known
only through ratios π�x�/π�y�. This allows the algo-
rithm to be used without knowing the normalizing
constant: for example, if π is specified as π�x� ∝
e−βH�x�, which is in practice impossible to sum if X
is very large as happens in many problems in statis-
tical physics, or π�θ� ∝ P�θ�L�x� θ� as happens in
Bayesian posterior distributions when P is a prior
and L is a likelihood.

The algorithm is widely used for simulations in
physics, chemistry, biology and statistics. It appears
as the first entry of a recent list of great algo-
rithms of 20th-century scientific computing [4]. Yet
for many people (including the present authors)
the Metropolis–Hastings algorithm seems like a
magic trick. It is hard to see where it comes from
or why it works. In this paper we give a develop-
ment which explains at least some of the properties
of the algorithm and we also show how there is a
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natural class of related algorithms, amongst which
it is optimal.

The mechanics of the algorithm are simple to
explain. The Metropolis–Hastings algorithm takes
a base chain given by an absolutely arbitrary
stochastic matrix K�x�y� and transforms this into
a stochastic matrix M�x�y� that is reversible with
respect to π, that is, one such that

π�x�M�x�y� = π�y�M�y�x��(1.1)

This implies that π is a stationary distribution
for M, and so we have found the required Markov
chain.

The transformation is easy to implement. If

R�x�y� = π�y�K�y�x�
π�x�K�x�y� �(1.2)

then

M�x�y�=




K�x�x�min�1�R�x�y��� if x �=y,

K�x�y�+∑
z

K�x�z�

×�1−min�1�R�x�z��� else.

(1.3)

The transformation (1.3) has a simple probabilis-
tic interpretation: from x, choose y with probabil-
ity K�x�y�. With probability min�1�R�x�y�� accept
this choice and move to y. Failing to accept, stay at
x. It is easy to check directly that M�x�y� satisfies
the reversibility condition (1.1). If the base chain K
is irreducible, then M is irreducible.

The Metropolis algorithm was introduced in
1953 by Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller (1953). In the original version K was
taken as symmetric, so K�x�y� = K�y�x� can-
cels out of (1.2), which makes the rejection step
easier to understand: the chain moves to higher
π-density regions automatically but only with
appropriate probabilities to lower regions. The
extension to more general nonsymmetric chains
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Fig. 1. Metropolis map in the 2× 2 case.

appears in Hastings (1970). Textbook descriptions
are in Hammersley and Handscomb (1964), Fish-
man (1996) and Liu (2001). Peskun (2001) shows
that the Metropolis–Hastings algorithm leads to
estimates with smallest asymptotic variance in a
class of variants. Some approaches to convergence
rates are summarized in Diaconis and Saloff-Coste
(1998). Further recent references are Mengersen
and Tweedie (1996) and Robert et al. (1997).

In this paper we show that the Metropolis–
Hastings algorithm can be characterized geometri-
cally as a projection in a particular L1 norm onto
R�π�, the set of π-reversible Markov chains as in
(1.1). Because projections minimize distances, this
shows that M is in this sense the closest reversible
kernel to the original kernel, and hence it is a nat-
ural way in which to construct a good chain with π
as its limiting distribution.

As an example, consider the 2 × 2 case. Then a
stochastic matrix(

1− a a
b 1− b

)
� 0 ≤ a� b ≤ 1�

may be represented as a point �a� b� in the unit
square. The space R�π� of π-reversible matrices is
given by the intersection of a line π�1�b−π�0�a = 0
with the unit square. If π�1� > π�0� the picture
is illustrated in Figure 1. The Metropolis–Hastings
algorithm moves a point �a� b� to the line by project-
ing vertically for the top region and horizontally for
the bottom region, as in the diagram.

In the general case, the space of stochastic
matrices is partitioned into chambers (i.e., con-
nected components of the complement of a finite
union of hyperplanes in Euclidean space) and the
Metropolis–Hastings algorithm is seen as piecewise
linear over this partition, that is, a linear projection
on each piece. Details are given in Section 2, which
also illustrates the difficulty of replacing L1 projec-
tions by L2 projections. Section 3 gives a motivated

development of the recipe (1.3). Section 4 gives an
extension of our main result to general spaces.

2. THE METROPOLIS MAP

Let X be a finite set. Let � �X� be the set of
stochastic matrices indexed by X. Thus K ∈ � �X�
has K�x�y� ≥ 0 and

�
y K�x�y� = 1 for each x ∈

X. Note that � �X� is a convex set of dimension
�X���X� − 1�. Fixing a stationary distribution π�x� >
0�

�
x π�x� = 1, let R�π� be the subset of � �X� con-

sisting of π-reversible Markov chains as in (1.1).
Note thatR�π� is a convex set of dimension �X���X�−
1�/2. The Metropolis–Hastings algorithm gives a
map M from � �X� onto R�π�:

M�K��x�y� = min
(
K�x�y�� π�y�

π�x�K�y�x�
)

(2.1)

for x �= y. Observe that, for x �= y� M is coordinate-
wise decreasing. In particular, K�x�y� = 0 implies
M�K��x�y� = 0. Thus M (weakly) increases the set
of off-diagonal zeros.

Introduce a metric on � �X� via

d�K�K′� = ∑
x

∑
y �=x

π�x� �K�x�y� −K′�x�y���(2.2)

This is a metric on � �X�� if d�K�K′� = 0, then
K�x�y� =K′�x�y� for x �= y and by row stochastic-
ity K�x� x� =K′�x� x�.

The main result of this paper follows.

Theorem 1. The Metropolis map M of (2.1) min-
imizes the distance (2.2) from K to R�π�. In fact,
M�K� is the unique closest element of R�π� that is
coordinatewise smaller than K on its off-diagonal
entries.

Remark 2.1. In �X×X, consider the hyperplanes

Hxy =
{
K � π�x�K�x�y� = π�y�K�y�x�

}

and their corresponding half spaces

H−
xy =

{
K � π�x�K�x�y� < π�y�K�y�x�

}
�

H+
xy =

{
K � π�x�K�x�y� > π�y�K�y�x�

}
�

These divide the matrix space into chambers. Fur-
thermore, ��x �=yHxy�

�
� �X� = ��π�. From (2.1)

the map M is a diagonal linear map on each cham-
ber of this hyperplane arrangement.

Remark 2.2. A related natural metric is d′�K,
K′� = �

x�y π�x��K�x�y�−K′�x�y��. This is the total
variation distance between the rows of K and K′

weighted by the stationary distribution. The follow-
ing example shows that the Metropolis chain does
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not minimize d′. The example has three states and
π�x� = 1

3 for all x. With

K =




1
2

1
4

1
4

3
4

1
4 0

1
8 0 7

8


 �

M�K� =




5
8

1
4

1
8

1
4

3
4 0

1
8 0 7

8


 �

N =




1
8

3
4

1
8

3
4

1
4 0

1
8 0 7

8


 �

we have d′�K�M�K�� = 5
12 and d′�K�N� = 1

3 .
Note that, for the metric d of (2.2), d�K�M�K�� =
d�K�N� = 5

24 . This does not violate the claimed
uniqueness in Theorem 1; the matrix N is not
coordinatewise smaller than K in the (1, 2) entry.
The following proof shows that M�K� minimizes d′

among elements of R�π� coordinatewise less than
K on off-diagonal entries.

Remark 2.3. It is natural to seek an L2 min-
imizer. A glance at Figure 1 shows the problem.
Near the point �1�1� the unconstrained L2 min-
imizer falls outside the box; it increases a and
causes the diagonal entry in its row to become
negative. Thus, to implement an L2 minimizing
projection, one would have to take into account all
the entries in a row in order to limit the amount
an entry might be increased. This would require a
complete knowledge of all previous moves in the
algorithm.

Remark 2.4. The distance between K ∈ � �X�
and R�π� has a simple interpretation. Let
πK�x�y� = π�x�K�x�y�� πK�x�y� = π�y�K�y�x�.
Both are probabilities on X×X andK is π-reversible
if and only if πK = πK. With this notation, an
easy computation shows

d
(
K�R�π�) = �πK− πK�TV�

Proof of Theorem 1. We first argue that d�K,
R�π�� = d�K�M�K�� by showing that d�K�N� ≥
d�K�M�K�� for everyN inR�π�. For this, note that

d�K�N� ≥ ∑
x�y �K∈H+

xy

(
π�x� �K�x�y� −N�x�y��

+π�y� �K�y�x� −N�y�x��
)
�

Since N is in R�π�, if N�x�y� = K�x�y� + εxy,
N�y�x� = π�x�

π�y� �K�x�y� + εxy�. Thus

d�K�N� ≥ ∑
x�y �K∈H+

xy

π�x� �εxy� + π�y�
∣∣∣K�y�x�

− π�x�
π�y��K�x�y� + εxy�

∣∣∣
= ∑

x�y �K∈H+
xy

π�x� �εxy� +
∣∣�π�x�K�x�y�

− π�y�K�y�x�� − π�x�εxy
∣∣�

Using �a− b� ≥ �a� − �b� gives
d�K�N� ≥ ∑

x�y �K∈H+
xy

∣∣π�x�K�x�y� − π�y�K�y�x�∣∣

= d�K�M�K���
When N is coordinatewise less than or equal to

K on the off-diagonal entries, we have all εxy ≤ 0.
If any one is negative, we can conclude d�K�N� >
d�K�M�K��, proving uniqueness.

3. DEVELOPING THE ALGORITHM

The following development makes the Metropolis–
Hastings algorithm seem rather natural and, in a
sense, gives all possible variations.

Let K�x�y� be a Markov chain on a finite state
space X. The goal is to change K to a chain with
stationary distribution π�x�. The change must occur
as follows: from x, choose y fromK�x�y� and decide
to accept x or stay at y; this last choice may be
stochastic with acceptance probability F�x�y��0 ≤
F�x�y� ≤ 1. This gives a new chain with transition
probabilities

K�x�y�F�x�y�� x �= y�(3.1)

The diagonal entries are changed so that each row
sums to 1.

The easiest way to get π-stationary is to insist on
π-reversibility:

π�x�K�x�y�F�x�y� = π�y�K�y�x�F�y�x��
Set R�x�y� = π�y�K�y�x�/π�x�K�x�y�. The rever-
sibility constraint becomes

F�x�y� = R�x�y�F�y�x��
0 ≤ F�x�y� ≤ 1�(3.2)

Since F�y�x� = �1/R�x�y��F�x�y� ≤ 1 we must
also have F�x�y� ≤ R�x�y� and so

0 ≤ F�x�y� ≤ min�1�R�x�y���(3.3)

The point now is that F�x�y� may be chosen arbi-
trarily to satisfy (3.3) for some fixed orientation of
pairs and then F�y�x� is forced by (3.2). This gives
all modifications. We summarize.
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Proposition 3.1. Let K�x�y� be a Markov chain
on a finite state space X. For each pair �x�y� choose
an ordering �x�y�. Choose

0 ≤ F�x�y� ≤ min
(
1�R�x�y�)�

R�x�y� = π�y�K�y�x�
π�x�K�x�y� �

and set F�y�x� = �1/R�x�y��F�x�y�. Then the
Markov chain

M�x�y� =



K�x�y�F�x�y�� x �= y�

K�x� x� + ∑
y �=x

K�x�y�(1−F�x�y�)

satisfies π�x�M�x�y� = π�y�M�y�x� for all x�y.
Furthermore, this construction gives all possible
functions F such that (3.1) is π-reversible.

Remark 3.1. The classic Metropolis choice is
F�x�y� = min�1�R�x�y��. This maximizes the
chance of moving from x. Suppose M and M′ are
π-reversible Markov chains on X with eigenval-
ues 1 = λ0 ≥ λ1 ≥ · · · ≥ λ�X�−1 and 1 = λ′0 ≥ λ′1 ≥
· · · ≥ λ′�X�−1 and also M′�x�y� ≤ M�x�y� for all
x �= y. Then the minimax characterization of eigen-
values shows λi ≤ λ′i for all i. Thus, among the
reversible chains of form (3.1), the Metropolis algo-
rithm has the largest spectral gap 1−λ1. Moreover,
Peskun’s theorem shows this gives the chain of form
(3.1) with the minimum asymptotic variance for
additive functionals (the usual form of statistical
estimators as sums of a function evaluated along
the chain). For contrast, chemists sometimes use
“Barker dynamics,” which amounts to the choice

F�x�y� = π�y�K�y�x�
π�x�K�x�y� + π�y�K�y�x� = R

1+R
�

Hastings (1970) introduced the equivalent form

F�x�y� = S�x�y�
�1+ 1/R�

for S�x�y� a symmetric function satisfying

S�x�y� ≤ min
(
1+R�x�y��1+ 1

R�x�y�
)
�

Remark 3.2. It is natural to consider possi-
ble choices of F which are only functions of
R � F�x�y� = g�R�x�y��. Then g must satisfy

g�x� = xg

(
1
x

)
for x ∈ �0�∞��

Such g may be chosen arbitrarily on �0�1� subject to
0 ≤ g�x� ≤ x� 0 ≤ x ≤ 1�

Then the functional equation specifies g on �1�∞�.
This gives Hastings’ class of algorithms. The orig-
inal Metropolis algorithm corresponds to g�x� =
x�0 ≤ x ≤ 1.

Remark 3.3. Of course, the ergodicity of M�x�y�
must be checked; K�x� x� ≡ 1 for all x is a π-
reversible chain!

Remark 3.4. There are still mysterious features
about the Metropolis–Hastings algorithm; when
applied to natural generating sets of finite reflec-
tion groups, changing the stationary distribution
proportional to length, the Metropolis–Hastings
algorithm deforms the multiplication in the group
algebra to multiplication in the Hecke algebra. See
Diaconis and Hanlon (1992) and Diaconis and Ram
(2000) for this.

4. MORE GENERAL SPACES

It is possible to extend Theorem 1 to general
spaces. Let X be a complete separable metric space.
Let µ be a σ-finite measure on X and π�x� a
strictly positive probability density with respect to
µ. Let � be the set of Markov kernels K�x�dy�
on X × X having measurable densities k�x�y� with
respect to µ, with a possible atom at x allowed. The
Metropolis–Hastings algorithm maps K�x�dy� to
M�x�dy� with

M�x�dy� = k�x�y�min�1�R�x�y��µ�dy�
+a�x�δx�dy��

where

R�x�y� = π�y�k�y�x�
π�x�k�x�y�

and

a�x� =M
(
x� �x�)+ ∫ (

1−R�x�y�)+k�x�y�µ�dy��
This maps K to the π-reversible Markov kernels on
X. Define a metric on � by

d�K�K′� =
∫

X×X−$
π�x�∣∣k�x�y� − k′�x�y�∣∣

×µ�dx�µ�dy��
with $ the diagonal in X×X. Then Theorem 1 holds
as stated for this situation.
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